1
|
Wang X, Xu T, Ou A, Hu Z, Li M, Wu L, Jiang J, Wang L. Design, synthesis and in vitro and in vivo biological evaluation of matrine derivatives as efficient anticancer agents with the characteristics of endoplasmic reticulum stress induction and apoptosis activation. Bioorg Chem 2025; 160:108482. [PMID: 40273706 DOI: 10.1016/j.bioorg.2025.108482] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2025] [Revised: 04/10/2025] [Accepted: 04/14/2025] [Indexed: 04/26/2025]
Abstract
Natural products have made significant contributions to the prevention and treatment of malignant tumors. However, natural products often suffer from low efficacy and potential toxicity. Therefore, modifying and optimizing lead compounds derived from natural products is a crucial strategy in drug development. In this study, we used matrine as an ideal lead compound and synthesized 27 matrine derivatives by incorporating indole structures with known antitumor activity. The antiproliferative effects of these derivatives were evaluated against human cancer cell lines (A549, HeLa, and Huh-7) and normal human liver cells (LO2). Compared to matrine, most of the derivatives exhibited superior antiproliferative activity. Notably, compound 9q showed significant antiproliferative activity against HeLa cells, with an IC50 value of 4.48 μM, demonstrating approximately 1500-fold greater potency than matrine (IC50 = 6756 μM). Further mechanistic studies revealed that compound 9q inhibited HeLa cell proliferation by modulating the expression of PI3K/AKT and Activating transcription factor 4 (ATF4) proteins. The upregulation of ATF4 promoted the expression of the key endoplasmic reticulum stress (ER stress) protein C/EBP homologous protein (CHOP). In the HeLa xenograft mouse model, compound 9q demonstrated significant anticancer efficacy. Therefore, compound 9q holds promise as a potential lead compound for the development of novel anticancer drugs.
Collapse
Affiliation(s)
- Xingdong Wang
- School of Chemistry and Chemical Engineering, Guangxi University, Nanning 530004, China
| | - Tingguo Xu
- School of Medicine, Guangxi University, Nanning 530004, China
| | - Anqi Ou
- School of Medicine, Guangxi University, Nanning 530004, China
| | - Zhouxing Hu
- School of Medicine, Guangxi University, Nanning 530004, China
| | - Manqi Li
- School of Medicine, Guangxi University, Nanning 530004, China
| | - Lichuan Wu
- School of Medicine, Guangxi University, Nanning 530004, China.
| | - Jun Jiang
- School of Chemistry and Chemical Engineering, Guangxi University, Nanning 530004, China.
| | - Lisheng Wang
- School of Medicine, Guangxi University, Nanning 530004, China.
| |
Collapse
|
2
|
Yang Y, Li Y, Liao S, Gao P, Tian J, Fu C, Qin X, Jin S. The Potential of Matrine in the Treatment of Breast Cancer: A Review. Biomedicines 2025; 13:1355. [PMID: 40564074 DOI: 10.3390/biomedicines13061355] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2025] [Revised: 05/27/2025] [Accepted: 05/28/2025] [Indexed: 06/28/2025] Open
Abstract
Breast cancer ranks as the fifth-most-prevalent malignancy worldwide, characterized by high heterogeneity and multifactorial etiology across molecular subtypes. Despite advancements in conventional therapies, including surgery and chemotherapy, persistent challenges such as treatment-related adverse effects and acquired drug resistance necessitate alternative therapeutic strategies. Matrine, a naturally occurring alkaloid derived from Sophora flavescens, has demonstrated significant anticancer potential through multiple mechanisms. Experimental evidence indicates that matrine exerts inhibitory effects on tumor cell proliferation, promotes apoptosis, and attenuates metastatic progression via modulation of critical signaling pathways, particularly PI3K/Akt, JAK/STAT, NF-κB, MAPK/ERK, and Wnt/β-catenin. This review systematically examines subtype-specific responses to matrine treatment, highlighting its potential utility in precision oncology for distinct breast cancer classifications. Furthermore, we evaluate matrine's capacity to synergize with standard chemotherapeutic regimens, potentially overcoming drug resistance while reducing required dosages. By integrating current preclinical and clinical findings, this analysis provides new perspectives on matrine's therapeutic applications and underscores the imperative for translational studies to establish optimized treatment protocols for clinical implementation.
Collapse
Affiliation(s)
- Yumin Yang
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Yufeng Li
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Shanshan Liao
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Pan Gao
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Jie Tian
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Cheng Fu
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Xuhua Qin
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Shenrui Jin
- School of Basic Medical Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| |
Collapse
|
3
|
Casarcia N, Rogers P, Guld E, Iyer S, Li Y, Burcher JT, DeLiberto LK, Banerjee S, Bishayee A. Phytochemicals for the prevention and treatment of pancreatic cancer: Current progress and future prospects. Br J Pharmacol 2025; 182:2181-2234. [PMID: 37740585 DOI: 10.1111/bph.16249] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 09/06/2023] [Accepted: 09/13/2023] [Indexed: 09/24/2023] Open
Abstract
Pancreatic cancer is the third leading cause of cancer-related deaths in the United States, owing to its aggressive nature and suboptimal treatment options, emphasizing the need for novel therapeutic approaches. Emerging studies have exhibited promising results regarding the therapeutic utility of plant-derived compounds (phytochemicals) in pancreatic cancer. The purpose of this review is to evaluate the potential of phytochemicals in the treatment and prevention of pancreatic cancer. The Preferred Reporting Items for Systematic Reviews and Meta-Analyses was applied to collect articles for this review. Scholarly databases, including PubMed, Scopus and ScienceDirect, were queried for relevant studies using the following keywords: phytochemicals, phenolics, terpenoids, alkaloids, sulfur-containing compounds, in vitro, in vivo, clinical studies, pancreatic cancer, tumour, treatment and prevention. Aggregate results pooled from qualified studies indicate phytochemicals can inhibit pancreatic cancer cell growth or decrease tumour size and volume in animal models. These effects have been attributed to various mechanisms, such as increasing proapoptotic factors, decreasing antiapoptotic factors, or inducing cell death and cell cycle arrest. Notable signalling pathways modulated by phytochemicals include the rat sarcoma/mitogen activated protein kinase, wingless-related integration site/β-catenin and phosphoinositide 3-kinase/protein kinase B/mammalian target of rapamycin signal transduction pathways. Clinically, phytochemicals have been found to increase survival while being well-tolerated and safe, though research is scarce. While these promising results have produced great interest in this field, further in-depth studies are required to characterize the anticancer activities of phytochemicals before they can be utilized to prevent or treat pancreatic cancer in clinical practice. LINKED ARTICLES: This article is part of a themed issue Natural Products and Cancer: From Drug Discovery to Prevention and Therapy. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v182.10/issuetoc.
Collapse
Affiliation(s)
- Nicolette Casarcia
- College of Osteopathic Medicine, Lake Erie College of Osteopathic Medicine, Bradenton, Florida, USA
| | - Patrick Rogers
- College of Osteopathic Medicine, Lake Erie College of Osteopathic Medicine, Bradenton, Florida, USA
| | - Emma Guld
- College of Osteopathic Medicine, Lake Erie College of Osteopathic Medicine, Bradenton, Florida, USA
| | - Samvit Iyer
- College of Osteopathic Medicine, Lake Erie College of Osteopathic Medicine, Bradenton, Florida, USA
| | - Yutong Li
- College of Osteopathic Medicine, Lake Erie College of Osteopathic Medicine, Bradenton, Florida, USA
| | - Jack T Burcher
- College of Osteopathic Medicine, Lake Erie College of Osteopathic Medicine, Bradenton, Florida, USA
| | - Lindsay K DeLiberto
- College of Osteopathic Medicine, Lake Erie College of Osteopathic Medicine, Bradenton, Florida, USA
| | - Sabyasachi Banerjee
- Department of Pharmaceutical Chemistry, Gupta College of Technological Sciences, Asansol, India
| | - Anupam Bishayee
- College of Osteopathic Medicine, Lake Erie College of Osteopathic Medicine, Bradenton, Florida, USA
| |
Collapse
|
4
|
Zhao L, Gao Q, Hu K, Lu S. Matrine Alleviates Atherosclerosis by Targeting REG1A and Activating the PI3K/AKT/mTOR Pathway to Inhibit Endothelial Cell Ferroptosis. Biochem Genet 2025:10.1007/s10528-025-11117-z. [PMID: 40281246 DOI: 10.1007/s10528-025-11117-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2024] [Accepted: 04/22/2025] [Indexed: 04/29/2025]
Abstract
Matrine, a natural alkaloid, has a wide range of pharmacological effects, such as antibacterial, anti-inflammatory, anti-oxidation, and anti-tumor. However, the molecular mechanism of matrine in the treatment of atherosclerosis (AS) is not fully understood. Human umbilical vein endothelial cells (HUVECs) were treated with 100 μg/mL ox-LDL to construct an AS cell model in vitro, and the cells were treated with matrine at different concentrations. Our results showed that matrine alleviated the decrease of HUVEC viability and the increase of ferroptosis induced by ox-LDL treatment. Subsequently, we found that matrine targeted regenerating family member 1 alpha (REG1A) and inhibited the expression level of REG1A in ox-LDL treated HUVECs. Overexpression of REG1A attenuated the improvement of matrine on activation of the PI3K/Akt/mTOR pathway and ferroptosis in ox-LDL treated HUVECs. In addition, both LY294002 (an inhibitor of the PI3K signaling) and Erastin (an inducer of ferroptosis) reversed the alleviation of matrine treatment on ferroptosis in ox-LDL treated HUVECs. The results in vivo showed that matrine treatment inhibited high-fat diet-induced aortic ferroptosis in ApoE-/- mice and alleviated arterial tissue lesions. In summary, matrine inhibits ferroptosis by targeting REG1A to activate PI3K/Akt/mTOR pathway, thereby alleviating aortic endothelial injury and lipid plaque formation in AS mice, suggesting that matrine has potential value for the treatment of AS.
Collapse
Affiliation(s)
- Liang Zhao
- Department of Vascular Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, 277 West Yanta Road, Xi'an, 710061, Shaanxi, People's Republic of China
| | - Qing Gao
- Department of Nursing, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, People's Republic of China
| | - Kaifeng Hu
- Department of Vascular Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, 277 West Yanta Road, Xi'an, 710061, Shaanxi, People's Republic of China
| | - Shaoying Lu
- Department of Vascular Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, 277 West Yanta Road, Xi'an, 710061, Shaanxi, People's Republic of China.
| |
Collapse
|
5
|
Zhang Y, Xiao Z, Liu H, Cai DC, Luo YQ, Xu J, Luo F, Huang J, Jin YY, Fan TY, Zhang J, Xiao X, Feng JH. Intrapleural administration with traditional Chinese medicine injections ( Sophorae flavescentis preparations) in controlling malignant pleural effusion: a clustered systematic review and meta-analysis. Front Pharmacol 2025; 16:1519794. [PMID: 40343001 PMCID: PMC12058796 DOI: 10.3389/fphar.2025.1519794] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2024] [Accepted: 03/03/2025] [Indexed: 05/11/2025] Open
Abstract
Introduction Sophorae flavescentis (kushen) preparations are widely used to control malignant pleural effusion (MPE) through intrapleural perfusion. Objectives This analysis aims to verify the therapeutic values of perfusion with kushen preparations for controlling MPE, reveal the optimal treatment plan, suitable population, and usage, and to demonstrate their clinical effectiveness and safety. Methods We performed and reported this systematic review/meta-analysis (PROSPERO: CRD42023430139) following the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines. All randomized controlled trials (RCTs) concerning perfusion with kushen preparation for MPE were collected from Chinese and English databases. We clustered all eligible studies into multiple homogeneous treatment units, assessed their methodological quality using a RoB 2, pooled the data from each unit, and summarized the quality of the evidence. Results We included 83 RCTs reporting three types of kushen preparation: compound kushen injection (CKI), kang'ai injection, and matrine injection. All trials were clustered into perfusion with CKI alone or with the addition of sclerosants, kang'ai, or matrine-plus platinum for controlling MPE. Compared with cisplatin alone, perfusion with CKI alone displayed a similar complete response, pleurodesis failure, and pleural progression (odds ratios =1.10, 95% CI 0.76 to 1.60; 0.80, 0.56 to 1.14; 0.63, 0.33 to 1.21). Of 14 homogeneous treatment plans, perfusion with CKI and cisplatin significantly improved the complete response (2.71, 2.30 to 3.19) and showed low pleurodesis failure (0.26, 0.22 to 0.32), pleural progression (0.22, 0.14 to 0.36), myelosuppression (0.34, 0.24 to 0.47), neutropenia (0.35, 0.26 to 0.46), gastrointestinal reaction (0.36, 0.29 to 0.44), hepatorenal toxicity (0.42, 0.28 to 0.63 and 0.32, 0.24 to 0.44), and fever (0.50, 0.30 to 0.82). These results were moderate quality (⊕⊕⊕Ο) supported by firm or conclusive information. Additionally, perfusion with kang'ai or matrine and cisplatin also improved the complete response (3.04, 1.76 to 5.26 and 1.87, 1.26 to 2.78) and displayed low pleurodesis failure (0.23, 0.14 to 0.41 and 0.27, 0.17 to 0.44). The results were moderate to low quality (⊕⊕⊕Ο to ⊕⊕ΟΟ). Conclusion Current moderate evidence demonstrates that CKI may be an effective palliative intervention for MPE which, combined with cisplatin, may be an optimal treatment plan. Kang'ai or matrine may be other potential choices. Systematic Review Registration https://www.crd.york.ac.uk/PROSPERO/view/CRD42023430139.
Collapse
Affiliation(s)
- Yan Zhang
- Evidence-Based Medicine Center, MOE Virtual Research Center of Evidence-based Medicine at Zunyi Medical University, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou, China
- Department of General Practice, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou, China
- Geriatric Medicine Department, Affiliated Hospital (GuiAn) of Guizhou Medical University, Guiyang, Guizhou, China
| | - Zheng Xiao
- Evidence-Based Medicine Center, MOE Virtual Research Center of Evidence-based Medicine at Zunyi Medical University, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou, China
- Department of General Practice, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou, China
| | - Hui Liu
- Evidence-Based Medicine Center, MOE Virtual Research Center of Evidence-based Medicine at Zunyi Medical University, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou, China
- Department of General Practice, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou, China
| | - Da-Chun Cai
- Evidence-Based Medicine Center, MOE Virtual Research Center of Evidence-based Medicine at Zunyi Medical University, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou, China
- Department of General Practice, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou, China
| | - Yao-Qin Luo
- Evidence-Based Medicine Center, MOE Virtual Research Center of Evidence-based Medicine at Zunyi Medical University, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou, China
- Department of General Practice, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou, China
- Department of Oncology, Tongren People’s Hospital, Tongren, Guizhou, China
| | - Jiao Xu
- Evidence-Based Medicine Center, MOE Virtual Research Center of Evidence-based Medicine at Zunyi Medical University, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou, China
- Department of General Practice, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou, China
| | - Feng Luo
- Evidence-Based Medicine Center, MOE Virtual Research Center of Evidence-based Medicine at Zunyi Medical University, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou, China
- Department of General Practice, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou, China
| | - Jun Huang
- Department of Pharmacy, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou, China
| | - Yan-Yan Jin
- Evidence-Based Medicine Center, MOE Virtual Research Center of Evidence-based Medicine at Zunyi Medical University, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou, China
| | - Teng-Yang Fan
- Evidence-Based Medicine Center, MOE Virtual Research Center of Evidence-based Medicine at Zunyi Medical University, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou, China
- Department of General Practice, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou, China
| | - Jun Zhang
- Internal Medicine Department, 96603 Hospital, Huaihua, Hunan, China
| | - Xue Xiao
- Evidence-Based Medicine Center, MOE Virtual Research Center of Evidence-based Medicine at Zunyi Medical University, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou, China
- Department of General Practice, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou, China
| | - Ji-Hong Feng
- Department of Oncology, Lishui People’s Hospital, Sixth Affiliated Hospital of Wenzhou Medical University, Lishui, Zhejiang, China
| |
Collapse
|
6
|
Tang X, He M, Ren Y, Ji M, Yan X, Zeng W, Lv Y, Li Y, He Y. Traditional Chinese Medicine formulas-based interventions on colorectal carcinoma prevention: The efficacies, mechanisms and advantages. JOURNAL OF ETHNOPHARMACOLOGY 2025; 337:119008. [PMID: 39471879 DOI: 10.1016/j.jep.2024.119008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 10/08/2024] [Accepted: 10/26/2024] [Indexed: 11/01/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE The Traditional Chinese Medicine Formulas (TCMFs) represent a distinctive medical approach to disease treatment and have been utilized in clinical practice for treating intestinal diseases for thousands of years. Recently, TCMFs have received increasing attention due to their advantages of high efficiency, safety, as well as low toxicity, providing promising strategies for preventing colorectal carcinoma (CRC). Nonetheless, the potential mechanism of TCMFs in preventing CRC has not been fully elucidated. AIM OF THE STUDY The literature from the past three years was reviewed to highlight the therapeutic effects and underlying mechanisms of TCMFs in preventing CRC. MATERIALS AND METHODS The keywords have been searched, including "traditional Chinese medicine formulas," "herb pairs," "Herbal plant-derived nanoparticles," et al. in "PubMed" and "China National Knowledge Infrastructure (CNKI)," and screened published articles related to the treatment of intestinal precancerous lesions. This review primarily examined the effectiveness and mechanisms of TCMFs in treating intestinal precancerous lesions, highlighting their significant potential in preventing CRC. RESULTS Gegen Qinlian decoction, Shaoyao decoction, Wu Wei Wan, etc., exert substantial therapeutic effects on intestinal precancerous lesions. These therapeutic effects are demonstrated by a reduction in disease activity index scores, suppression of intestinal inflammation, and preservation of body weight and intestinal function, all of which contribute to the effective prevention of CRC. Besides, the classic Chinese herbal pairs and the extracellular vesicle-like nanoparticles of herbaceous plants have demonstrated superior efficacy in the treatment of intestinal precancerous lesions. Mechanistically, protecting the epithelial barrier, regulating gut microbiota as well as related metabolism, modulating macrophage polarization, and maintaining immune balance contribute to the role of TCMFs in CRC prevention. CONCLUSIONS This review demonstrates the great potential and mechanism of TCMFs in CRC prevention and provides a scientific basis for their utilization in CRC prevention.
Collapse
Affiliation(s)
- Xiaojuan Tang
- School of biomedical sciences, Hunan University, Changsha, 410012, Hunan, China; Hunan Provincial Hospital of Integrated Traditional Chinese and Western Medicine (The Affiliated Hospital of Hunan Academy of Traditional Chinese Medicine), Changsha, 410006, Hunan, China; Hunan Academy of Chinese Medicine, Changsha, 410006, Hunan, China.
| | - Min He
- Hunan University of Chinese Medicine, Changsha, 410208, Hunan, China
| | - Yuan Ren
- Hunan University of Chinese Medicine, Changsha, 410208, Hunan, China
| | - Meng Ji
- Hunan University of Chinese Medicine, Changsha, 410208, Hunan, China
| | - Xiaoqi Yan
- Hunan Provincial Hospital of Integrated Traditional Chinese and Western Medicine (The Affiliated Hospital of Hunan Academy of Traditional Chinese Medicine), Changsha, 410006, Hunan, China
| | - Wen Zeng
- Hunan University of Chinese Medicine, Changsha, 410208, Hunan, China
| | - Yuan Lv
- Hunan Provincial Hospital of Integrated Traditional Chinese and Western Medicine (The Affiliated Hospital of Hunan Academy of Traditional Chinese Medicine), Changsha, 410006, Hunan, China; Hunan Academy of Chinese Medicine, Changsha, 410006, Hunan, China
| | - Yongmin Li
- Hunan Provincial Hospital of Integrated Traditional Chinese and Western Medicine (The Affiliated Hospital of Hunan Academy of Traditional Chinese Medicine), Changsha, 410006, Hunan, China; Hunan Academy of Chinese Medicine, Changsha, 410006, Hunan, China
| | - Yongheng He
- Hunan Provincial Hospital of Integrated Traditional Chinese and Western Medicine (The Affiliated Hospital of Hunan Academy of Traditional Chinese Medicine), Changsha, 410006, Hunan, China; Hunan Academy of Chinese Medicine, Changsha, 410006, Hunan, China; Hunan University of Chinese Medicine, Changsha, 410208, Hunan, China.
| |
Collapse
|
7
|
Liu Y, Yu X, Shen H, Hong Y, Hu G, Niu W, Ge J, Xuan J, Qin JJ, Li Q. Mechanisms of traditional Chinese medicine in the treatment and prevention of gastric cancer. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 135:156003. [PMID: 39305742 DOI: 10.1016/j.phymed.2024.156003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 05/21/2024] [Accepted: 06/07/2024] [Indexed: 12/01/2024]
Abstract
BACKGROUND Gastric cancer (GC) ranks as the fifth most prevalent malignancy worldwide. Conventional treatments, including radiotherapy and chemotherapy, often induce severe side effects and significant adverse reactions, and they may also result in drug resistance. Consequently, there is a critical need for the development of new therapeutic agents. Traditional Chinese Medicine (TCM) and natural products are being extensively researched due to their low toxicity, multi-targeted approaches, and diverse pathways. Scholars are increasingly focusing on identifying active anticancer components within TCM. PURPOSE This review aims to summarise research conducted over the past 14 years on the treatment of GC using TCM. The focus is on therapeutic targets, mechanisms, and efficacy of Chinese medicine and natural products, including monomer compounds, extracts or analogues, and active ingredients. METHODS Relevant articles on TCM and GC were retrieved from PubMed using appropriate keywords. The collected articles were screened and classified according to the types of TCM, with an emphasis on the molecular mechanisms underlying the treatment of GC. RESULTS The research on TCM indicates that TCM and natural products can effectively inhibit the metastasis, proliferation, and invasion of tumour cells. They can also induce apoptosis, autophagy and improve the chemosensitivity of drug-resistant cells. Additionally, injections derived from Chinese herbal medicine, when used as an adjunct to conventional chemotherapy, can significantly improve the prognosis of GC patients by reducing chemotherapy toxicity. CONCLUSION This review summarises the progress of TCM treatment of GC over the past 14 years, and discusses its therapeutic application of GC, which proves that TCM is a promising treatment strategy for GC in the future.
Collapse
Affiliation(s)
- Yanyang Liu
- Key Laboratory of Head & Neck Cancer Translational Research of Zhejiang Province, Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, No. 1, Banshan east road, Gongshu district, Hangzhou, Zhejiang, China; Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Xuefei Yu
- Key Laboratory of Head & Neck Cancer Translational Research of Zhejiang Province, Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, No. 1, Banshan east road, Gongshu district, Hangzhou, Zhejiang, China
| | - Huize Shen
- Key Laboratory of Head & Neck Cancer Translational Research of Zhejiang Province, Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, No. 1, Banshan east road, Gongshu district, Hangzhou, Zhejiang, China; School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China
| | - Yangjian Hong
- Key Laboratory of Head & Neck Cancer Translational Research of Zhejiang Province, Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, No. 1, Banshan east road, Gongshu district, Hangzhou, Zhejiang, China; Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Gaofeng Hu
- Key Laboratory of Head & Neck Cancer Translational Research of Zhejiang Province, Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, No. 1, Banshan east road, Gongshu district, Hangzhou, Zhejiang, China; Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Wenyuan Niu
- Key Laboratory of Head & Neck Cancer Translational Research of Zhejiang Province, Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, No. 1, Banshan east road, Gongshu district, Hangzhou, Zhejiang, China; School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China
| | - Jiaming Ge
- Key Laboratory of Head & Neck Cancer Translational Research of Zhejiang Province, Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, No. 1, Banshan east road, Gongshu district, Hangzhou, Zhejiang, China; Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Jie Xuan
- Key Laboratory of Head & Neck Cancer Translational Research of Zhejiang Province, Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, No. 1, Banshan east road, Gongshu district, Hangzhou, Zhejiang, China; Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Jiang-Jiang Qin
- Key Laboratory of Head & Neck Cancer Translational Research of Zhejiang Province, Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, No. 1, Banshan east road, Gongshu district, Hangzhou, Zhejiang, China; Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, Zhejiang, China.
| | - Qinglin Li
- Key Laboratory of Head & Neck Cancer Translational Research of Zhejiang Province, Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, No. 1, Banshan east road, Gongshu district, Hangzhou, Zhejiang, China.
| |
Collapse
|
8
|
Zheng S, Qi W, Xue T, Zao X, Xie J, Zhang P, Li X, Ye Y, Liu A. Chinese medicine in the treatment of chronic hepatitis B: The mechanisms of signal pathway regulation. Heliyon 2024; 10:e39176. [PMID: 39640799 PMCID: PMC11620126 DOI: 10.1016/j.heliyon.2024.e39176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2024] [Accepted: 10/08/2024] [Indexed: 12/07/2024] Open
Abstract
Chronic hepatitis B (CHB) is a chronic inflammatory disease of the liver caused by infection with the hepatitis B virus (HBV), which in later stages can lead to the development of end-stage liver diseases such as cirrhosis and hepatocellular carcinoma in severe cases, jeopardizing long-term quality of life, with a poor prognosis, and placing a serious financial burden on many families around the world. The pathogenesis of the disease is complex and closely related to the immune function of the body, which has not yet been fully elucidated. The development of chronic hepatitis B is closely related to the involvement of various signaling pathways, such as JAK/STAT, PI3K/Akt, Toll-like receptor, NF-κB and MAPK signaling pathways. A large number of studies have shown that Chinese medicine has obvious advantages in anti-hepatitis B virus, and it can effectively treat the disease by modulating relevant signaling pathways, strengthening immune resistance and defense, and inhibiting inflammatory responses, and certain research progress has been made, but there is still a lack of a comprehensive review on the modulation of relevant signaling pathways in Chinese medicine for the treatment of CHB. Therefore, this article systematically combed and elaborated the relevant literature on the modulation of relevant signaling pathways by traditional Chinese medicine in recent years, with a view to providing new ideas for the treatment of CHB and further drug development.
Collapse
Affiliation(s)
- Shihao Zheng
- Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, 100007, China
- Beijing University of Chinese Medicine, Beijing, 100102, China
| | - Wenying Qi
- Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, 100007, China
- Beijing University of Chinese Medicine, Beijing, 100102, China
| | - Tianyu Xue
- Hebei Provincial Hospital of Traditional Chinese Medicine, Shijiazhuang, 050000, China
| | - Xiaobin Zao
- Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, 100007, China
- Key Laboratory of Chinese Internal Medicine of Ministry of Education and Beijing, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, 100007, China
| | - Jinchi Xie
- Dongfang Hospital, Beijing University of Chinese Medicine, Beijing, 100078, China
| | - Peng Zhang
- Dongfang Hospital, Beijing University of Chinese Medicine, Beijing, 100078, China
| | - Xiaoke Li
- Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, 100007, China
- Liver Diseases Academy of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Yongan Ye
- Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, 100007, China
- Liver Diseases Academy of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Aimin Liu
- Shangzhuang Township Community Health Service Center, Beijing, 100094, China
| |
Collapse
|
9
|
Wang F, Liu J, Liao W, Zheng L, Qian S, Mao L. Matrine alkaloids modulating DNA damage repair in chemoresistant non-small cell lung cancer cells. BMC Cancer 2024; 24:1283. [PMID: 39415176 PMCID: PMC11481340 DOI: 10.1186/s12885-024-12991-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Accepted: 09/25/2024] [Indexed: 10/18/2024] Open
Abstract
BACKGROUND Non-small cell lung cancer (NSCLC) presents a significant challenge in the medical field due to its high incidence and resistance to chemotherapy. Chemoresistance in NSCLC diminishes treatment efficacy and contributes to poor patient outcomes. Matrine alkaloids have shown promise in reversing chemotherapy resistance in NSCLC by targeting DNA repair mechanisms. METHODS Utilizing molecular dynamics simulations, we explored the interactions between Matrine alkaloids and DNA repair-related proteins to elucidate their impact on NSCLC cells. In vitro experiments involved treating A549/DDP cells with Matrine alkaloids to evaluate their sensitizing effects on lung cancer cells. Additionally, animal model experiments were conducted to validate the therapeutic potential of Matrine alkaloids in NSCLC treatment. RESULTS Our findings demonstrate that Matrine alkaloids disrupt DNA damage repair processes in NSCLC cells, leading to increased sensitivity to chemotherapy. Molecular docking studies revealed the intricate mechanisms by which Matrine alkaloids interact with DNA repair proteins, impacting cell survival and proliferation. Both cell experiments and animal models confirmed the chemosensitizing effects of Matrine alkaloids in NSCLC treatment. CONCLUSION Matrine alkaloids offer a promising avenue for overcoming chemotherapy resistance in NSCLC by interfering with DNA repair pathways. This study lays a solid foundation for future clinical investigations into the potential of Matrine alkaloids as effective therapeutic agents for enhancing NSCLC treatment outcomes.
Collapse
Affiliation(s)
- Fengping Wang
- Department of Clinical Laboratory, The Quzhou Affiliated Hospital of Wenzhou Medical University, Quzhou People's Hospital, Quzhou, 324000, China
| | - Jun Liu
- Department of Clinical Laboratory, The Quzhou Affiliated Hospital of Wenzhou Medical University, Quzhou People's Hospital, Quzhou, 324000, China
| | - Wenliang Liao
- Department of Clinical Laboratory, The Quzhou Affiliated Hospital of Wenzhou Medical University, Quzhou People's Hospital, Quzhou, 324000, China
| | - Lixiang Zheng
- Department of Pharmacy, The Quzhou Affiliated Hospital of Wenzhou Medical University, Quzhou People's Hospital, No. 100, Minjiang Avenue, Kecheng District, Quzhou, Zhejiang Province, 324000, China
| | - Shuai Qian
- Department of Clinical Laboratory, The Quzhou Affiliated Hospital of Wenzhou Medical University, Quzhou People's Hospital, Quzhou, 324000, China
| | - Lisi Mao
- Department of Pharmacy, The Quzhou Affiliated Hospital of Wenzhou Medical University, Quzhou People's Hospital, No. 100, Minjiang Avenue, Kecheng District, Quzhou, Zhejiang Province, 324000, China.
| |
Collapse
|
10
|
Huang X, Zeng J, Ruan S, Lei Z, Zhang J, Cao H. The use of matrine to inhibit osteosarcoma cell proliferation via the regulation of the MAPK/ERK signaling pathway. Front Oncol 2024; 14:1338811. [PMID: 39161382 PMCID: PMC11330765 DOI: 10.3389/fonc.2024.1338811] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Accepted: 07/23/2024] [Indexed: 08/21/2024] Open
Abstract
Background Matrine is an alkaloid extracted from Sophorus beans of the legume family, and it has significant effects and a variety of pharmacological activities. Osteosarcoma(OS) is a common malignant bone tumor that is characterized by high incidence and rapid progression. There have been some preliminary studies on the therapeutic effect of matrine on OS, but the specific mechanism remains unclear. Objective The aim of this study was to investigate the antitumor effect of matrine on HOS cells and the underlying molecular mechanism. Methods The effects of matrine on the proliferation, apoptosis and cell cycle progression of HOS cells were determined by CCK-8 assay, TUNEL assay and flow cytometry in vitro. Wound healing and Transwell invasion assays were used to observe the effect of matrine on the migration and invasion of HOS cells. The mechanism underlying the antitumor effect of matrine on HOS cells was investigated by Western blotting. Results Matrine significantly inhibited HOS cell proliferation, promoted HOS cell apoptosis, and arrested HOS cells in the G1 phase of the cell cycle. Both wound healing and Transwell invasion assays showed that matrine inhibited HOS cell migration and invasion. Western blotting results showed that matrine inhibited the activation of the MAPK/ERK signaling pathway. We found that matrine also downregulated Bcl-2 expression, which may be related to protein synthesis inhibition. Conclusion Matrine can inhibit the proliferation of HOS cells, arrest HOS cells in the G1 phase, and promote HOS cell apoptosis through the MAPK/ERK signaling pathway.
Collapse
Affiliation(s)
- Xincheng Huang
- Department of Traumatic Orthopedics, Renmin Hospital, Hubei University of Medicine, Shiyan, China
| | - Jun Zeng
- Department of Anesthesiology, Shiyan People’s Hospital, Shiyan, China
| | - Siyuan Ruan
- Department of Traumatic Orthopedics, Renmin Hospital, Hubei University of Medicine, Shiyan, China
| | - Zhuolin Lei
- Department of Traumatic Orthopedics, Renmin Hospital, Hubei University of Medicine, Shiyan, China
| | - Jingyuan Zhang
- Department of Traumatic Orthopedics, Renmin Hospital, Hubei University of Medicine, Shiyan, China
| | - Hong Cao
- Department of Traumatic Orthopedics, Renmin Hospital, Hubei University of Medicine, Shiyan, China
| |
Collapse
|
11
|
Li X, Zhou J, Ling Y, Tan Y, Zhang J, Wang X, Li F, Jiang S, Zhang S, Yu K, Han Y. Matrine induces autophagic cell death by triggering ROS/AMPK/mTOR axis and apoptosis in multiple myeloma. Biomed Pharmacother 2024; 175:116738. [PMID: 38759291 DOI: 10.1016/j.biopha.2024.116738] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 04/25/2024] [Accepted: 05/09/2024] [Indexed: 05/19/2024] Open
Abstract
Despite significant advancements in multiple myeloma (MM) treatment in recent years, most patients will eventually develop resistance or experience relapse. Matrine, a primary active compound of traditional Chinese medicinal herb Sophora flavescens Ait, has been found to have anti-tumor properties in various types of malignant tumors. Whether autophagy plays a crucial role in the anti-MM effect of matrine remain unknown. Herein, we found that matrine could trigger apoptosis and cell cycle arrest, and meanwhile induce autophagy in MM cells in vitro. We further ascertained the role of autophagy by using ATG5 siRNA or the autophagy inhibitor spautin-1, which partially reversed matrine's inhibitory effect on MM cells. Conversely, the combination of matrine with the autophagy inducer rapamycin enhanced their anti-tumor activity. These findings suggest that autophagy induced by matrine can lead to cell death in MM cells. Further mechanism investigation revealed that matrine treatment increased the levels of reactive oxygen species (ROS) and AMPKα1 phosphorylation and decreased the phosphorylation of mTOR in MM cells. Additionally, co-treatment with AMPKα1 siRNA or the ROS scavenger N-acetyl-1-cysteine weakened the increase in autophagy that was induced by matrine. Finally, we demonstrated a synergistic inhibitory effect of matrine and rapamycin against MM in a xenograft mouse model. Collectively, our findings provided novel insights into the anti-MM efficacy of matrine and suggest that matrine induces autophagy by triggering ROS/AMPK/mTOR axis in MM cells, and combinatorial treatment of matrine and rapamycin may be a promising therapeutic strategy against MM.
Collapse
Affiliation(s)
- Xue Li
- Department of Hematology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China; Institute of Hematology, Wenzhou Medical University, Wenzhou, Zhejiang, China; Wenzhou Key Laboratory of Hematology, Wenzhou, Zhejiang, China
| | - Jifan Zhou
- Department of Hematology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China; Institute of Hematology, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Yixin Ling
- Department of Hematology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China; Institute of Hematology, Wenzhou Medical University, Wenzhou, Zhejiang, China; Wenzhou Key Laboratory of Hematology, Wenzhou, Zhejiang, China
| | - Yicheng Tan
- Institute of Hematology, Wenzhou Medical University, Wenzhou, Zhejiang, China; Wenzhou Key Laboratory of Hematology, Wenzhou, Zhejiang, China; Laboratory Animal Center, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Jialing Zhang
- Institute of Hematology, Wenzhou Medical University, Wenzhou, Zhejiang, China; Wenzhou Key Laboratory of Hematology, Wenzhou, Zhejiang, China; Central Laboratory, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Xiaofang Wang
- Department of Hematology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China; Institute of Hematology, Wenzhou Medical University, Wenzhou, Zhejiang, China; Wenzhou Key Laboratory of Hematology, Wenzhou, Zhejiang, China
| | - Fanfan Li
- Department of Hematology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China; Institute of Hematology, Wenzhou Medical University, Wenzhou, Zhejiang, China; Wenzhou Key Laboratory of Hematology, Wenzhou, Zhejiang, China
| | - Songfu Jiang
- Department of Hematology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China; Institute of Hematology, Wenzhou Medical University, Wenzhou, Zhejiang, China; Wenzhou Key Laboratory of Hematology, Wenzhou, Zhejiang, China
| | - Shenghui Zhang
- Department of Hematology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China; Institute of Hematology, Wenzhou Medical University, Wenzhou, Zhejiang, China; Wenzhou Key Laboratory of Hematology, Wenzhou, Zhejiang, China; Laboratory Animal Center, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China.
| | - Kang Yu
- Department of Hematology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China; Institute of Hematology, Wenzhou Medical University, Wenzhou, Zhejiang, China; Wenzhou Key Laboratory of Hematology, Wenzhou, Zhejiang, China.
| | - Yixiang Han
- Institute of Hematology, Wenzhou Medical University, Wenzhou, Zhejiang, China; Wenzhou Key Laboratory of Hematology, Wenzhou, Zhejiang, China; Central Laboratory, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China.
| |
Collapse
|
12
|
Wang X, Lin Z, Tang X, Xie M, Li T, Zhou J. Matrine induces cardiotoxicity by promoting ferroptosis through the Nrf2 antioxidant system in H9c2 cells. Toxicol Lett 2024; 397:11-22. [PMID: 38723914 DOI: 10.1016/j.toxlet.2024.05.001] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2024] [Revised: 04/19/2024] [Accepted: 05/03/2024] [Indexed: 05/12/2024]
Abstract
Matrine (MT) has shown promising efficacy in various cancers and chronic hepatitis; however, its clinical application is limited because of its side effects. Our previous studies have indicated that MT can induce severe hepatotoxicity and nephrotoxicity. The current study aimed to investigate its cardiotoxicity and potential underlying mechanisms in H9c2 cells. Our results showed that MT induced H9c2 cell death and disrupted the cellular membrane integrity. Moreover, MT decreased glutathione (GSH) and cysteine (Cys) levels, and increased Fe2+, lipid peroxidation, reactive oxygen species (ROS), and MDA levels, ultimately leading to ferroptosis. Interestingly, these phenomena were alleviated by the ferroptosis inhibitor Fer-1, whereas MT-induced ferroptosis was exacerbated by the ferroptosis agonist RSL3. In addition, MT significantly reduced FTH, Nrf2, xCT, GPX4, and FSP1 protein levels and inhibited the transcriptional activity of Nrf2 while increasing TFR1 protein levels. Supplementation with Nrf2 agonist (Dimethyl fumarate, DMF) or selenium (Sodium selenite, SS) and CoQ10 alleviated MT-induced cytotoxic effects in H9c2 cells. These results suggest that ferroptosis, which is mediated by an imbalance in the Nrf2 antioxidant system, is involved in MT-induced cardiac toxicity.
Collapse
Affiliation(s)
- Xi Wang
- School of Medicine, Yichun University, 576 XueFu Road, Yuanzhou District, Yichun 336000, PR China
| | - Zixiong Lin
- School of Medicine, Yichun University, 576 XueFu Road, Yuanzhou District, Yichun 336000, PR China
| | - Xinyi Tang
- School of Medicine, Yichun University, 576 XueFu Road, Yuanzhou District, Yichun 336000, PR China
| | - Minjuan Xie
- School of Medicine, Yichun University, 576 XueFu Road, Yuanzhou District, Yichun 336000, PR China
| | - Ting Li
- School of Medicine, Yichun University, 576 XueFu Road, Yuanzhou District, Yichun 336000, PR China
| | - Jie Zhou
- School of Medicine, Yichun University, 576 XueFu Road, Yuanzhou District, Yichun 336000, PR China.
| |
Collapse
|
13
|
Shen JJ, Xue SJ, Mei ZH, Li TT, Li HF, Zhuang XF, Pan LM. Synthesis, characterization, and efficacy evaluation of a PH-responsive Fe-MOF@GO composite drug delivery system for the treating colorectal cancer. Heliyon 2024; 10:e28066. [PMID: 38524612 PMCID: PMC10957435 DOI: 10.1016/j.heliyon.2024.e28066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2023] [Revised: 03/10/2024] [Accepted: 03/11/2024] [Indexed: 03/26/2024] Open
Abstract
Luteolin is a potent anti-colorectal cancer chemical. However, its effectiveness is hindered by its poor solubility in water and fat, and it is easy to degrade by gastrointestinal enzymes. In this study, a nano-composite carrier, NH2-MIL-101(Fe)@GO (MG), based on aminated MIL-101(Fe) and graphene oxide (GO) was developed and evaluated. This carrier co-delivered luteolin and matrine, while marine was used to balance the pH for the nano-preparation. The loading capacities for luteolin and matrine were approximately 9.8% and 14.1%, respectively. Luteolin's release at pH = 5 was significantly higher than at pH = 7.4, indicating it had an acidic pH response release characteristic. Compared to MOF and GO alone, MG and NH2-MIL-101(Fe)@GO@Drugs (MGD) enhanced anti-cancer activity by inhibiting tumor cell migration, increasing ROS generation, and upregulating the expression of Caspase-3 and Caspase-9. In conclusion, this study contributes new ideas and methods to the treatment strategy of multi-component anti-colorectal cancer therapy. It also advances drug delivery systems and supports the development of more effective and targeted treatment approaches for colorectal cancer.
Collapse
Affiliation(s)
- Jia-Jie Shen
- Plant medicine Deep Processing Engineering Center, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Shi-Jiao Xue
- Qidong Hospital of Traditional Chinese Medicine, Nantong, 226200, China
| | - Zhang-Hao Mei
- Plant medicine Deep Processing Engineering Center, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Ting-Ting Li
- Plant medicine Deep Processing Engineering Center, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Hui-Fen Li
- Plant medicine Deep Processing Engineering Center, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Xue-Fei Zhuang
- Plant medicine Deep Processing Engineering Center, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Lin-Mei Pan
- Plant medicine Deep Processing Engineering Center, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| |
Collapse
|
14
|
Jiao JY, Cheng CS, Cao ZQ, Chen LY, Chen Z. Evidence-Based Dampness-Heat ZHENG (Syndrome) in Cancer: Current Progress toward Establishing Relevant Animal Model with Pancreatic Tumor. Chin J Integr Med 2024; 30:85-95. [PMID: 35723813 DOI: 10.1007/s11655-022-3675-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/14/2022] [Indexed: 11/30/2022]
Abstract
Cancer is one of the deadliest diseases affecting the health of human beings. With limited therapeutic options available, complementary and alternative medicine has been widely adopted in cancer management and is increasingly becoming accepted by both patients and healthcare workers alike. Chinese medicine characterized by its unique diagnostic and treatment system is the most widely applied complementary and alternative medicine. It emphasizes symptoms and ZHENG (syndrome)-based treatment combined with contemporary disease diagnosis and further stratifies patients into individualized medicine subgroups. As a representative cancer with the highest degree of malignancy, pancreatic cancer is traditionally classified into the "amassment and accumulation". Emerging perspectives define the core pathogenesis of pancreatic cancer as "dampness-heat" and the respective treatment "clearing heat and resolving dampness" has been demonstrated to prolong survival in pancreatic cancer patients, as has been observed in many other cancers. This clinical advantage encourages an exploration of the essence of dampness-heat ZHENG (DHZ) in cancer and investigation into underlying mechanisms of action of herbal formulations against dampness-heat. However, at present, there is a lack of understanding of the molecular characteristics of DHZ in cancer and no standardized and widely accepted animal model to study this core syndrome in vivo. The shortage of animal models limits the ability to uncover the antitumor mechanisms of herbal medicines and to assess the safety profile of the natural products derived from them. This review summarizes the current research on DHZ in cancer in terms of the clinical aspects, molecular landscape, and animal models. This study aims to provide comprehensive insight that can be used for the establishment of a future standardized ZHENG-based cancer animal model.
Collapse
Affiliation(s)
- Ju-Ying Jiao
- Department of Integrative Oncology, Fudan University Shanghai Cancer Center, Shanghai, 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China
| | - Chien-Shan Cheng
- Department of Integrative Oncology, Fudan University Shanghai Cancer Center, Shanghai, 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China
| | - Zhang-Qi Cao
- Department of Integrative Oncology, Fudan University Shanghai Cancer Center, Shanghai, 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China
| | - Lian-Yu Chen
- Department of Integrative Oncology, Fudan University Shanghai Cancer Center, Shanghai, 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China
| | - Zhen Chen
- Department of Integrative Oncology, Fudan University Shanghai Cancer Center, Shanghai, 200032, China.
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China.
| |
Collapse
|
15
|
Zhu Y, Ning Z, Li X, Lin Z. Machine Learning Algorithms Identify Target Genes and the Molecular Mechanism of Matrine against Diffuse Large B-cell Lymphoma. Curr Comput Aided Drug Des 2024; 20:847-859. [PMID: 37605410 DOI: 10.2174/1573409920666230821102806] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 06/22/2023] [Accepted: 07/13/2023] [Indexed: 08/23/2023]
Abstract
BACKGROUND Diffuse large B-cell lymphoma (DLBCL) is the most common type of non-Hodgkin's lymphoma worldwide. Novel treatment strategies are still needed for this disease. OBJECTIVE The present study aimed to systematically explore the potential targets and molecular mechanisms of matrine in the treatment of DLBCL. METHODS Potential matrine targets were collected from multiple platforms. Microarray data and clinical characteristics of DLBCL were downloaded from publicly available database. Differential expression analysis and weighted gene co-expression network analysis (WGCNA) were applied to identify the hub genes of DLBCL using R software. Then, the shared target genes between matrine and DLBCL were identified as the potential targets of matrine against DLBCL. The least absolute shrinkage and selection operator (LASSO) algorithm was used to determine the final core target genes, which were further verified by molecular docking simulation and receiver operating characteristic (ROC) curve analysis. Functional analysis was also performed to elucidate the potential mechanisms. RESULTS A total of 222 matrine target genes and 1269 DLBCL hub genes were obtained through multiple databases and machine learning algorithms. From the nine shared target genes of matrine and DLBCL, five final core target genes, including CTSL, NR1H2, PDPK1, MDM2, and JAK3, were identified. Molecular docking showed that the binding of matrine to the core genes was stable. ROC curves also suggested close associations between the core genes and DLBCL. Additionally, functional analysis showed that the therapeutic effect of matrine against DLBCL may be related to the PI3K-Akt signaling pathway. CONCLUSION Matrine may target five genes and the PI3K-Akt signaling pathway in DLBCL treatment.
Collapse
Affiliation(s)
- Yidong Zhu
- Department of Traditional Chinese Medicine, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, 200072, China
| | - Zhongping Ning
- Department of Cardiology, Shanghai Pudong New District Zhoupu Hospital, Shanghai University of Medicine & Health Sciences, Shanghai, 201318, China
| | - Ximing Li
- Department of Cardiology, Shanghai Pudong New District Zhoupu Hospital, Shanghai University of Medicine & Health Sciences, Shanghai, 201318, China
| | - Zhikang Lin
- Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 200032, China
| |
Collapse
|
16
|
Jin J, Fan Z, Long Y, Li Y, He Q, Yang Y, Zhong W, Lin D, Lian D, Wang X, Xiao J, Chen Y. Matrine induces ferroptosis in cervical cancer through activation of piezo1 channel. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 122:155165. [PMID: 37922791 DOI: 10.1016/j.phymed.2023.155165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 09/30/2023] [Accepted: 10/24/2023] [Indexed: 11/07/2023]
Abstract
BACKGROUND Cervical cancer, which is a significant public health concern in women, currently lacks effective therapeutic drugs. Matrine, a constituent of the traditional Chinese herb Sophora flavescentis Radix, is known for its anti-cervical cancer properties and ability to induce programmed cell death. The induction of cancer cell ferroptosis, which is a novel cell death pattern, can become an effective clinical therapy for tumor in the future. However, the effect of matrine on ferroptosis in cervical cancer remains to be elucidated. PURPOSE In this study, we investigated whether matrine induces ferroptosis in cervical cancer and elucidated the underlying mechanisms. METHODS We established an SiHa-derived tumor-bearing mouse model using CB17 severe combined immunodeficient (SCID) mice and administered a group of matrine (25, 50, and 75 mg/kg) and cisplatin (2 mg/kg). We meticulously tracked alterations in body weight and tumor size and evaluated liver and kidney health using haematoxylin and eosin (H&E) staining. Using Gene Expression Omnibus (GEO) Dataset (GSE201309), we evaluated the relationship between the effects of matrine on malignant tumor cells and ferroptosis. In vitro, tetrazolium-based colorimetric (MTT), lactate dehydrogenase (LDH) and colony formation assays were used to study the effects of matrine on SiHa cell activity and cytotoxicity. We assessed ferroptosis-related protein abundance using western blotting and ferroptosis-related indices in cells using confocal immunofluorescence microscopy. The interaction of matrine with a protein linked to ferroptosis was studied using cellular thermal shift assay (CETSA). The effects of matrine on Piezo1 expression were investigated using calcium imaging. We also used Piezo1-specific siRNA to explore the role of Piezo1 in ferroptosis. RESULTS Matrine administration effectively inhibited tumor growth in a SiHa-derived tumor-bearing mouse model without inducing noticeable harm. The analysis results of GEO data set show matrine-induced effects in tumor cells were indeed involved in the process of ferroptosis. Treatment with matrine resulted in a significant reduction in GPX4 protein levels and a concurrent increase in lipid peroxide and Fe2+ content, suggesting matrine-induced modulation of ferroptosis. Matrine promoted SiHa cell death in vitro, as evidenced by the results of MTT and LDH assays. Cell death coincides with increases in intracellular Fe2+, reactive oxygen species (ROS), and lipid peroxides. Our study also revealed significant upregulation of Piezo1 expression through the action of matrine, whereas transferrin receptor (Tfr) and System Xc- (xCT) expression and interaction remained unaffected. We provided further evidence that matrine induces calcium influx through the Piezo1 channel, thereby potentially influencing ferroptosis. Transfection with Piezo1 siRNA reversed the effects of matrine in SiHa cell. CONCLUSIONS Our findings indicate that matrine exerts a protective effect against cervical cancer by inducing ferroptosis through the activation of Piezo1, but not xCT or Tfr.
Collapse
Affiliation(s)
- Jiaqi Jin
- Department of Pharmacology, School of Pharmaceutical, Guangzhou University of Chinese Medicine, No. 232 Waihuan Dong Rd., Guangzhou University Town, Panyu District, Guangzhou 510000, China; Department of Gynaecology, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, 111Da De Road, Guangzhou 510120, China
| | - Zhaofeng Fan
- Department of Gynaecology, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, 111Da De Road, Guangzhou 510120, China; The Second Clinical College of Guangzhou University of Chinese Medicine, No.232 Waihuan Dong Rd,Guangzhou University Town, Panyu District, Guangzhou 510000, China
| | - Yonglin Long
- Department of Pharmacology, School of Pharmaceutical, Guangzhou University of Chinese Medicine, No. 232 Waihuan Dong Rd., Guangzhou University Town, Panyu District, Guangzhou 510000, China; Department of Gynaecology, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, 111Da De Road, Guangzhou 510120, China
| | - Yinping Li
- Laboratory Animal Center, Guangzhou University of Chinese Medicine, No. 232 Waihuan Dong Rd., Guangzhou University Town, Panyu District, Guangzhou 510000, China
| | - Qian He
- Laboratory Animal Center, Guangzhou University of Chinese Medicine, No. 232 Waihuan Dong Rd., Guangzhou University Town, Panyu District, Guangzhou 510000, China
| | - Yiming Yang
- Department of Pharmacology, School of Pharmaceutical, Guangzhou University of Chinese Medicine, No. 232 Waihuan Dong Rd., Guangzhou University Town, Panyu District, Guangzhou 510000, China
| | - Weijian Zhong
- Department of Pharmacology, School of Pharmaceutical, Guangzhou University of Chinese Medicine, No. 232 Waihuan Dong Rd., Guangzhou University Town, Panyu District, Guangzhou 510000, China
| | - Disheng Lin
- Department of Pharmacology, School of Pharmaceutical, Guangzhou University of Chinese Medicine, No. 232 Waihuan Dong Rd., Guangzhou University Town, Panyu District, Guangzhou 510000, China
| | - Dawei Lian
- Dongguan Institute of Guangzhou University of Chinese Medicine, Dongguan 523808, China
| | - Xiao Wang
- Laboratory Animal Center, Guangzhou University of Chinese Medicine, No. 232 Waihuan Dong Rd., Guangzhou University Town, Panyu District, Guangzhou 510000, China.
| | - Jing Xiao
- Department of Gynaecology, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, 111Da De Road, Guangzhou 510120, China.
| | - Yang Chen
- Department of Pharmacology, School of Pharmaceutical, Guangzhou University of Chinese Medicine, No. 232 Waihuan Dong Rd., Guangzhou University Town, Panyu District, Guangzhou 510000, China.
| |
Collapse
|
17
|
Guo Q, Yu Y, Tang W, Zhou S, Lv X. Matrine exerts an anti-tumor effect via regulating HN1 in triple breast cancer both in vitro and in vivo. Chem Biol Drug Des 2023; 102:1469-1477. [PMID: 37674344 DOI: 10.1111/cbdd.14338] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 07/25/2023] [Accepted: 08/18/2023] [Indexed: 09/08/2023]
Abstract
The treatment of triple-negative breast cancer (TNBC) cannot meet medical needs, and it is urgent to find new drugs for intervention. This study aimed to investigate the anti-tumor effect of matrine on the proliferation and apoptosis of TNBC cells based on HN1 regulation in vitro and in vivo. TNBC cell lines (MDA-MB-453 and HCC-1806) were treated with varying concentrations of matrine (0, 1.0, 2.0, 3.0, 4.0, and 5.0 mM). CCK-8, colony formation assay, transwell assay, and flow cytometry assay were employed to detect proliferation, clone formation, invasion, and apoptosis of TNBC cells. Western blot analysis was applied to detect the protein expression of apoptosis HN1. The effects of matrine on tumor growth, protein expression of HN1, and apoptosis in vivo were validated by xenograft tumor models and histology. It was found that matrine inhibited proliferation, colony formation, and invasion and promoted apoptosis of TNBC cells in vitro. HN1 expression was suppressed by matrine. HN1 overexpression perceptibly reversed the above-mentioned additive effect in vitro. In vivo experiments found that matrine inhibited tumor growth and the expression of HN1 protein but promoted the protein expression of Cleared-Caspase-3. Above all, this study demonstrated that matrine inhibited proliferation and promoted apoptosis of TNBC cells via suppressing HN1 expression. Targeting HN1 by matrine may provide new insights into the therapeutic management of patients with TNBC.
Collapse
Affiliation(s)
- Qiusheng Guo
- Department of Medical Oncology, Affiliated Jinhua Hospital, Zhejiang University School of Medicine, Jinhua, China
| | - Yuan Yu
- Zhejiang Cancer Research Institute, Cancer Hospital of The University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Hangzhou, China
| | - Wanfen Tang
- Department of Medical Oncology, Affiliated Jinhua Hospital, Zhejiang University School of Medicine, Jinhua, China
| | - Shishi Zhou
- Department of Medical Oncology, Affiliated Jinhua Hospital, Zhejiang University School of Medicine, Jinhua, China
| | - Xianmei Lv
- Department of Radiotherapy, Jinhua People's Hospital, Jinhua, China
| |
Collapse
|
18
|
Huang Z, Li H, Li Q, Chen X, Liu R, Chang X. Matrine suppresses liver cancer progression and the Warburg effect by regulating the circROBO1/miR-130a-5p/ROBO1 axis. J Biochem Mol Toxicol 2023; 37:e23436. [PMID: 37376914 DOI: 10.1002/jbt.23436] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Revised: 05/15/2023] [Accepted: 06/13/2023] [Indexed: 06/29/2023]
Abstract
Matrine, an effective component extracted from the traditional Chinese herb, Sophora flavescens, has been indicated to exert antitumor activity in different types of cancer. However, the role and precise mechanism of matrine in the progression of liver cancer remains largely unclear. Cell viability, cell proliferation, cell apoptosis, and Warburg effect were estimated by cell counting kit-8 assay, colony formation assay, flow cytometry assay, and glucose uptake and lactate production assay, respectively. The candidate Circular RNAs (circRNAs) were screened by integrating the Gene Expression Omnibus database (GSE155949) analysis with the online program GEO2R. A quantitative real-time polymerase chain reaction was employed to test the expression of circRNA circROBO1, microRNA miR-130a-5p, and roundabout homolog 1 (ROBO1). The interaction of circROBO1/miR-130a-5p/ROBO1 axis was predicted and confirmed by bioinformatics analysis, a dual-luciferase reporter assay, and an RNA pull-down assay. A xenograft mouse model was employed to reveal the role of matrine in vivo. Matrine repressed liver cancer cell viability, proliferation, and Warburg effect, but increased cell apoptosis in vitro. CircROBO1 and ROBO1 were upregulated, but miR-130a-5p was downregulated in liver cancer tissues. Additionally, matrine could reduce the expression of circROBO1 and ROBO1, and increase the expression of miR-130a-5p. Mechanically, overexpression of circROBO1 partly recovered the effect of matrine on liver cancer cell viability, proliferation, apoptosis, and Warburg effect by regulating the miR-130a-5p/ROBO1 axis. Matrine impeded liver cancer development by mediating the circROBO1/miR-130a-5p/ROBO1 axis, which provided a theoretical basis for the application of matrine as an effective anticancer drug for liver cancer.
Collapse
Affiliation(s)
- Zhengchun Huang
- Department of Human Anatomy, Gannan Medical University, Ganzhou, Jiangxi, China
| | - Hongwei Li
- Department of Human Anatomy, Gannan Medical University, Ganzhou, Jiangxi, China
| | - Qihua Li
- Department of Human Anatomy, Gannan Medical University, Ganzhou, Jiangxi, China
| | - Xuehong Chen
- Department of Human Anatomy, Gannan Medical University, Ganzhou, Jiangxi, China
| | - Ruizhen Liu
- Department of Human Anatomy, Gannan Medical University, Ganzhou, Jiangxi, China
| | - Xinfeng Chang
- Department of Human Anatomy, Jiangsu Vocational College of Medicine, Yancheng, Jiangsu, China
| |
Collapse
|
19
|
Kong F, Wang C, Zhang J, Wang X, Sun B, Xiao X, Zhang H, Song Y, Jia Y. Chinese herbal medicines for prostate cancer therapy: From experimental research to clinical practice. CHINESE HERBAL MEDICINES 2023; 15:485-495. [PMID: 38094009 PMCID: PMC10715895 DOI: 10.1016/j.chmed.2023.05.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 04/17/2023] [Accepted: 05/20/2023] [Indexed: 06/26/2024] Open
Abstract
Prostate cancer remains the second most common malignancy in men worldwide, is a global health issue, and poses a huge health burden. Precision medicine provides more treatment options for prostate cancer patients, but its popularity, drug resistance, and adverse reactions still need to be focused on. Chinese herbal medicines (CHMs) have been widely accepted as an alternative therapy for cancer, with the advantages of multiple targets, multiple pathways, and low toxicity. We searched the experimental research and clinical practice of CHMs for prostate cancer treatment published in PubMed, Embase, and Web of Science in the last five years. We found five CHM formulas and six single CHM extracts as well as 12 CHM-derived compounds, which showed induction of apoptosis, autophagy, and cell cycle arrest, suppression of angiogenesis, proliferation, and migration of prostate cancer cells, reversal of drug resistance, and enhancement of anti-tumor immunity. The mechanisms of action include the PI3K/Akt/mTOR, AR, EGFR and Wnt/β-catenin signaling pathways, which are commonly implicated in the development of prostate cancer. We also summarized the advantages of CHMs in patients with hormone-sensitive and castration-resistant prostate cancer and provided ideas for their further experimental design and application.
Collapse
Affiliation(s)
- Fanming Kong
- Department of Oncology, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin 300381, China
- National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin 300381, China
| | - Chaoran Wang
- Department of Oncology, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin 300381, China
- National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin 300381, China
- Graduate School, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Jing Zhang
- Department of Oncology, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin 300381, China
- National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin 300381, China
| | - Xiaoqun Wang
- Department of Oncology, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin 300381, China
- National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin 300381, China
| | - Binxu Sun
- Department of Oncology, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin 300381, China
- National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin 300381, China
| | - Xian Xiao
- Department of Oncology, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin 300381, China
- National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin 300381, China
- Graduate School, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Haojian Zhang
- Department of Oncology, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin 300381, China
- National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin 300381, China
- Graduate School, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Yanqi Song
- Department of Traditional Chinese Medicine, Tianjin Medical University General Hospital, Tianjin 300052, China
| | - Yingjie Jia
- Department of Oncology, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin 300381, China
- National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin 300381, China
| |
Collapse
|
20
|
Huang S, Qi Y, Chen S, He B, Chen X, Xu J. Effect of heat-clearing and dampness-eliminating Chinese medicine for high-risk cervical cancer papillomavirus infection: a systematic review and meta-analysis of randomized controlled trials. Front Med (Lausanne) 2023; 10:1022030. [PMID: 37692777 PMCID: PMC10484520 DOI: 10.3389/fmed.2023.1022030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2022] [Accepted: 07/05/2023] [Indexed: 09/12/2023] Open
Abstract
Background Heat-clearing and dampness-eliminating Chinese medicine (HDCM) has been studied in clinical trials for cervical HPV infection for decades. However, there has been little comprehensive assessment of the strength and quality of the evidence. Therefore, this study conducted a systematic review and meta-analysis to assess the effectiveness and safety of HDCM in high-risk cervical HPV-infected patients. Methods The research focus questions were constructed in accordance with the criteria of participants, intervention, comparison, and outcomes (PICO), and a protocol was registered in PROSPERO. Comprehensive and systematic searches and inquiries in eight electronic databases were conducted from their inception to 30th June 2022. Further, a systematic review and meta-analysis of all randomized controlled trials (RCTs) were conducted to evaluate the HDCM therapy methods. Results A total of 12 studies were eligible for inclusion, including 1,574 patients. Data synthesis showed that the HPV clearance rate of HDCM groups was superior to both interferon and follow-up groups (RR = 1.40,95% CI:1.15, 1.71, P < 0.01) and (RR = 3.15, 95% CI:2.43,4.08, P < 0.01), respectively. HDCM was proven to exhibit greater potential in reducing HPV-DNA virus load (MD = -5.16, 95% CI: -5.91, -4.41, P < 0.01). The reversal rate of cervical intraepithelial neoplasia (CIN) for HDCM groups was approximately 2.8 times (RR = 2.80, 95% CI: 2.19, 3.57, P < 0.01), as high as the follow-up groups. Additionally, the recurrence rate of HR-HPV at the end of follow-up in this meta-analysis was reported to be lower in HDCM groups compared to follow-up groups [6.81% (16/235) and 14.65% (29/198), respectively]. The most commonly used Chinese herbal remedies were as follows: Huangbai (Phellodendron chinense var.Glabriusculum C.K. Schneid.), Kushen (Sophora flavescens Aiton), Daqingye (Isatis indigotica Fortune), Zicao (Arnebia hi-spidissima DC.), Baihuasheshecao (Hedyotis diffusa Spreng.), Banlangen (Isatis tinctoria subsp.tinctoria L.), Huzhang (Reynoutria japonica Houtt.), and Huangqi (Orobanche astragali Mouterde). Conclusion HDCM interventions appeared to generate significant effects on enhancing the rate of HR-HPV clearance, reducing the HPV-DNA virus load, and increasing the CIN regression rate. Some active components were confirmed to be responsible for this efficacy, which deserves further exploration. Systematic review registration https://www.crd.york.ac.uk/PROSPERO/, identifier: CRD42022333226.
Collapse
Affiliation(s)
- Shan Huang
- Department of Traditional Chinese Medicine, College of Clinical Medicine for Obstetrics and Gynecology and Pediatrics, Fujian Maternity and Child Health Hospital, Fujian Medical University, Fuzhou, Fujian, China
| | - Yuanjie Qi
- Department of Gynecology, College of Clinical Medicine for Obstetrics and Gynecology and Pediatrics, Fujian Maternity and Child Health Hospital, Fujian Medical University, Fuzhou, Fujian, China
| | - Shouzhen Chen
- Department of Obstetrics, College of Clinical Medicine for Obstetrics and Gynecology and Pediatrics, Fujian Maternity and Child Health Hospital, Fujian Medical University, Fuzhou, Fujian, China
| | - Baochang He
- Fujian Provincial Key Laboratory of Environment Factors and Cancer, Department of Epidemiology and Health Statistics, School of Public Health, Fujian Medical University, Fuzhou, Fujian, China
| | - Xueli Chen
- Department of Traditional Chinese Medicine, College of Clinical Medicine for Obstetrics and Gynecology and Pediatrics, Fujian Maternity and Child Health Hospital, Fujian Medical University, Fuzhou, Fujian, China
| | - Jinbang Xu
- Department of Traditional Chinese Medicine, College of Clinical Medicine for Obstetrics and Gynecology and Pediatrics, Fujian Maternity and Child Health Hospital, Fujian Medical University, Fuzhou, Fujian, China
| |
Collapse
|
21
|
Chhabra S, Mehan S. Matrine exerts its neuroprotective effects by modulating multiple neuronal pathways. Metab Brain Dis 2023; 38:1471-1499. [PMID: 37103719 DOI: 10.1007/s11011-023-01214-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Accepted: 04/10/2023] [Indexed: 04/28/2023]
Abstract
Recent evidence suggests that misfolding, clumping, and accumulation of proteins in the brain may be common causes and pathogenic mechanism for several neurological illnesses. This causes neuronal structural deterioration and disruption of neural circuits. Research from various fields supports this idea, indicating that developing a single treatment for several severe conditions might be possible. Phytochemicals from medicinal plants play an essential part in maintaining the brain's chemical equilibrium by affecting the proximity of neurons. Matrine is a tetracyclo-quinolizidine alkaloid derived from the plant Sophora flavescens Aiton. Matrine has been shown to have a therapeutic effect on Multiple Sclerosis, Alzheimer's disease, and various other neurological disorders. Numerous studies have demonstrated that matrine protects neurons by altering multiple signalling pathways and crossing the blood-brain barrier. As a result, matrine may have therapeutic utility in the treatment of a variety of neurocomplications. This work aims to serve as a foundation for future clinical research by reviewing the current state of matrine as a neuroprotective agent and its potential therapeutic application in treating neurodegenerative and neuropsychiatric illnesses. Future research will answer many concerns and lead to fascinating discoveries that could impact other aspects of matrine.
Collapse
Affiliation(s)
- Swesha Chhabra
- Division of Neuroscience, Department of Pharmacology, ISF College of Pharmacy, Moga, 142001, Punjab, India
| | - Sidharth Mehan
- Division of Neuroscience, Department of Pharmacology, ISF College of Pharmacy, Moga, 142001, Punjab, India.
| |
Collapse
|
22
|
Li L, Li J, Ma L, Shang H, Zou Z. SAR-guided development of indole-matrine hybrids as potential anticancer agents via mitochondrial stress/cytochrome c/caspase 3 signaling pathway. Bioorg Chem 2023; 134:106341. [PMID: 36842321 DOI: 10.1016/j.bioorg.2023.106341] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 12/31/2022] [Accepted: 01/02/2023] [Indexed: 01/06/2023]
Abstract
Matrine is a clinically used adjuvant anticancer drug, yet its mild potency limited its application. To improve the anticancer activity of matrine, a total of 31 indole-matrine hybrids were constructed in four rounds of SAR-guided iterative structural optimization process. All of the synthesized compounds were evaluated for their antiproliferative activities against a panel of four human cancer cell lines (Hela, MCF-7, SGC-7901, HepG2) and two normal cell lines (GES-1, LO2). The most active hybrid 8g exhibited the anticancer IC50 values of 0.9 to 1.2 μM, which was 3-magnitude of orders more potent than matrine. 8g also showed better selectivity towards cancer cells with the selectivity index value raised from 1.5 to 6.2. Mechanistic studies demonstrated a mitochondrial distribution for 8g by intracellular click chemistry approaches, which led to the discovery that 8g strongly induced mitochondrial stress, as evidenced by impaired energy metabolism, depolarized mitochondrial membrane potential, overload of mitochondrial calcium and escalated ROS production. 8g-induced mitochondrial stress further led to the release of cytochrome c and subsequent activation of caspase 3, which significantly promoted cellular death and inhibited colony formation.
Collapse
Affiliation(s)
- Lingyu Li
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100193, China; State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China
| | - Jingrong Li
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100193, China; State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China
| | - Liyan Ma
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100193, China; State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China
| | - Hai Shang
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100193, China; State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China.
| | - Zhongmei Zou
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100193, China; State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China.
| |
Collapse
|
23
|
Yu HB, Hu JQ, Han BJ, Cao HJ, Chen ST, Chen X, Xiong HT, Gao J, Du YY, Zheng HG. Evaluation of efficacy and safety for compound kushen injection combined with intraperitoneal chemotherapy for patients with malignant ascites: A systematic review and meta-analysis. Front Pharmacol 2023; 14:1036043. [PMID: 36937874 PMCID: PMC10020185 DOI: 10.3389/fphar.2023.1036043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2022] [Accepted: 02/23/2023] [Indexed: 03/06/2023] Open
Abstract
Objectives: Compound Kushen injection (CKI) combined with intraperitoneal chemotherapy (IPC) is widely used in the treatment of malignant ascites (MA). However, evidence about its efficacy and safety remains limited. This review aimed to evaluate the efficacy and safety of CKI combined with IPC for the treatment of MA. Methods: Protocol of this review was registered in PROSPERO (CRD42022304259). Randomized controlled trials (RCTs) on the efficacy and safety of IPC with CKI for the treatment of patients with MA were searched through 12 electronic databases and 2 clinical trials registration platforms from inception until 20 January 2023. The Cochrane risk-of-bias tool was used to assess the quality of the included trials through the risk of bias assessment. We included RCTs that compared IPC single used or CKI combined with IPC for patients with MA schedule to start IPC. The primary outcome was identified as an objective response rate (ORR), while the secondary outcomes were identified as the quality of life (QoL), survival time, immune functions, and adverse drug reactions (ADRs). The Revman5.4 and Stata17 software were used to calculate the risk ratio (RR) at 95% confidence intervals (CI) for binary outcomes and the mean difference (MD) at 95% CI for continuous outcomes. The certainty of the evidence was assessed according to the GRADE criteria. Results: A total of 17 RCTs were assessed, which included 1200 patients. The risk of bias assessment of the Cochrane risk-of-bias tool revealed that one study was rated high risk and the remaining as unclear or low risk. Meta-analysis revealed that CKI combined with IPC had an advantage in increasing ORR (RR = 1.31, 95% CI 1.20 to 1.43, p < 0.00001) and QoL (RR = 1.50, 95% CI 1.23 to 1.83, p < 0.0001) when compared with IPC alone. Moreover, the combined treatment group showed a lower incidence of myelosuppression (RR = 0.51, 95%CI 0.40-0.64, p < 0.00001), liver dysfunction (RR = 0.33, 95%CI 0.16 to 0.70, p = 0.004), renal dysfunction (RR = 0.39, 95%CI 0.17 to 0.89, p = 0.02), and fever (RR = 0.51, 95%CI 0.35 to 0.75, p = 0.0007) compared to those of the control group. The quality of evidence assessment through GRADE criteria showed that ORR, myelosuppression, and fever were rated moderate, renal dysfunction and liver dysfunction were rated low, and QoL and abdominal pain were rated very low. Conclusion: The efficacy and safety of CKI combined with IPC were superior to that with IPC alone for the treatment of MA, which indicates the potentiality of the treatment. However, more high-quality RCTs are required to validate this conclusion. Systematic Review Registration: [https://www.crd.york.ac.uk/prospero/display_record.php?ID=CRD42022304259], identifier [PROSPERO 2022 CRD42022304259].
Collapse
Affiliation(s)
- Hui-Bo Yu
- Department of Oncology, Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
- Graduate School, Beijing University of Chinese Medicine, Beijing, China
| | - Jia-Qi Hu
- Department of Oncology, Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
- Graduate School, Beijing University of Chinese Medicine, Beijing, China
| | - Bao-Jin Han
- Department of Oncology, Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
- Graduate School, Beijing University of Chinese Medicine, Beijing, China
| | - Hui-Juan Cao
- Graduate School, Beijing University of Chinese Medicine, Beijing, China
- Centre for Evidence-Based Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Shun-Tai Chen
- Graduate School, Beijing University of Chinese Medicine, Beijing, China
| | - Xin Chen
- Department of Oncology, Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Hong-Tai Xiong
- Department of Oncology, Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Jin Gao
- Department of Oncology, Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
- Graduate School, Beijing University of Chinese Medicine, Beijing, China
| | - Yan-Yuan Du
- Department of Oncology, Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Hong-Gang Zheng
- Department of Oncology, Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
- *Correspondence: Hong-Gang Zheng,
| |
Collapse
|
24
|
Wu Z, Yu X, Zhang S, He Y, Guo W. Mechanism underlying circRNA dysregulation in the TME of digestive system cancer. Front Immunol 2022; 13:951561. [PMID: 36238299 PMCID: PMC9550895 DOI: 10.3389/fimmu.2022.951561] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Accepted: 09/12/2022] [Indexed: 11/18/2022] Open
Abstract
Circular RNAs (circRNAs) are a new series of noncoding RNAs (ncRNAs) that have been reported to be expressed in eukaryotic cells and have a variety of biological functions in the regulation of cancer pathogenesis and progression. The TME, as a microscopic ecological environment, consists of a variety of cells, including tumor cells, immune cells and other normal cells, ECM and a large number of signaling molecules. The crosstalk between circRNAs and the TME plays a complicated role in affecting the malignant behaviors of digestive system cancers. Herein, we summarize the mechanisms underlying aberrant circRNA expression in the TME of the digestive system cancers, including immune surveillance, angiogenesis, EMT, and ECM remodelling. The regulation of the TME by circRNA is expected to be a new therapeutic method.
Collapse
Affiliation(s)
- Zeyu Wu
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Key Laboratory of Hepatobiliary and Pancreatic Surgery and Digestive Organ Transplantation of Henan Province, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Open and Key Laboratory of Hepatobiliary & Pancreatic Surgery and Digestive Organ Transplantation at Henan Universities, Zhengzhou, China
- Henan Key Laboratory of Digestive Organ Transplantation, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Xiao Yu
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Key Laboratory of Hepatobiliary and Pancreatic Surgery and Digestive Organ Transplantation of Henan Province, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Open and Key Laboratory of Hepatobiliary & Pancreatic Surgery and Digestive Organ Transplantation at Henan Universities, Zhengzhou, China
- Henan Key Laboratory of Digestive Organ Transplantation, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Shuijun Zhang
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Key Laboratory of Hepatobiliary and Pancreatic Surgery and Digestive Organ Transplantation of Henan Province, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Open and Key Laboratory of Hepatobiliary & Pancreatic Surgery and Digestive Organ Transplantation at Henan Universities, Zhengzhou, China
- Henan Key Laboratory of Digestive Organ Transplantation, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Yuting He
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Key Laboratory of Hepatobiliary and Pancreatic Surgery and Digestive Organ Transplantation of Henan Province, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Open and Key Laboratory of Hepatobiliary & Pancreatic Surgery and Digestive Organ Transplantation at Henan Universities, Zhengzhou, China
- Henan Key Laboratory of Digestive Organ Transplantation, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- *Correspondence: Wenzhi Guo, ; Yuting He,
| | - Wenzhi Guo
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Key Laboratory of Hepatobiliary and Pancreatic Surgery and Digestive Organ Transplantation of Henan Province, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Open and Key Laboratory of Hepatobiliary & Pancreatic Surgery and Digestive Organ Transplantation at Henan Universities, Zhengzhou, China
- Henan Key Laboratory of Digestive Organ Transplantation, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- *Correspondence: Wenzhi Guo, ; Yuting He,
| |
Collapse
|
25
|
Sun XY, Jia LY, Rong Z, Zhou X, Cao LQ, Li AH, Guo M, Jin J, Wang YD, Huang L, Li YH, He ZJ, Li L, Ma RK, Lv YF, Shao KK, Zhang J, Cao HL. Research Advances on Matrine. Front Chem 2022; 10:867318. [PMID: 35433636 PMCID: PMC9010661 DOI: 10.3389/fchem.2022.867318] [Citation(s) in RCA: 44] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Accepted: 02/22/2022] [Indexed: 11/13/2022] Open
Abstract
Matrine is an alkaloid extracted from traditional Chinese herbs including Sophora flavescentis, Sophora alopecuroides, Sophora root, etc. It has the dual advantages of traditional Chinese herbs and chemotherapy drugs. It exhibits distinct benefits in preventing and improving chronic diseases such as cardiovascular disease and tumors. The review introduced recent research progresses on extraction, synthesis and derivatization of Matrine. The summary focused on the latest research advances of Matrine on anti-atherosclerosis, anti-hypertension, anti-ischemia reperfusion injury, anti-arrhythmia, anti-diabetic cardiovascular complications, anti-tumor, anti-inflammatory, anti-bacterium, anti-virus, which would provide new core structures and new insights for new drug development in related fields.
Collapse
Affiliation(s)
- Xiao-Ying Sun
- College of Pharmacy, Shaanxi University of Chinese Medicine, Xianyang, China
| | - Li-Yi Jia
- College of Pharmacy, Shaanxi University of Chinese Medicine, Xianyang, China
| | - Zheng Rong
- College of Pharmacy, Shaanxi University of Chinese Medicine, Xianyang, China
| | - Xin Zhou
- Xi’an Key Laboratory of Basic and Translation of Cardiovascular Metabolic Disease, Shaanxi Key Laboratory of Ischemic Cardiovascular Disease, Institute of Basic and Translational Medicine, Xi’an Medical University, Xi’an, China
| | - Lu-Qi Cao
- Xi’an Key Laboratory of Basic and Translation of Cardiovascular Metabolic Disease, Shaanxi Key Laboratory of Ischemic Cardiovascular Disease, Institute of Basic and Translational Medicine, Xi’an Medical University, Xi’an, China
| | - Ai-Hong Li
- Shaanxi Key Laboratory of Chinese Herb and Natural Drug Development, Medicine Research Institute, Shaanxi Pharmaceutical Holding Group Co., LTD, Xi’an, China
| | - Meng Guo
- College of Pharmacy, Shaanxi University of Chinese Medicine, Xianyang, China
| | - Jie Jin
- College of Pharmacy, Shaanxi University of Chinese Medicine, Xianyang, China
| | - Yin-Di Wang
- College of Pharmacy, Shaanxi University of Chinese Medicine, Xianyang, China
| | - Ling Huang
- College of Pharmacy, Shaanxi University of Chinese Medicine, Xianyang, China
| | - Yi-Heng Li
- College of Life Sciences, Northwest University, Xi’an, China
| | - Zhong-Jing He
- College of Life Sciences, Northwest University, Xi’an, China
| | - Long Li
- Xi’an Key Laboratory of Basic and Translation of Cardiovascular Metabolic Disease, Shaanxi Key Laboratory of Ischemic Cardiovascular Disease, Institute of Basic and Translational Medicine, Xi’an Medical University, Xi’an, China
| | - Rui-Kang Ma
- Xi’an Key Laboratory of Basic and Translation of Cardiovascular Metabolic Disease, Shaanxi Key Laboratory of Ischemic Cardiovascular Disease, Institute of Basic and Translational Medicine, Xi’an Medical University, Xi’an, China
| | - Yi-Fan Lv
- Xi’an Key Laboratory of Basic and Translation of Cardiovascular Metabolic Disease, Shaanxi Key Laboratory of Ischemic Cardiovascular Disease, Institute of Basic and Translational Medicine, Xi’an Medical University, Xi’an, China
| | - Ke-Ke Shao
- Xi’an Key Laboratory of Basic and Translation of Cardiovascular Metabolic Disease, Shaanxi Key Laboratory of Ischemic Cardiovascular Disease, Institute of Basic and Translational Medicine, Xi’an Medical University, Xi’an, China
| | - Juan Zhang
- College of Pharmacy, Shaanxi University of Chinese Medicine, Xianyang, China
- *Correspondence: Juan Zhang, ; Hui-Ling Cao,
| | - Hui-Ling Cao
- College of Pharmacy, Shaanxi University of Chinese Medicine, Xianyang, China
- Xi’an Key Laboratory of Basic and Translation of Cardiovascular Metabolic Disease, Shaanxi Key Laboratory of Ischemic Cardiovascular Disease, Institute of Basic and Translational Medicine, Xi’an Medical University, Xi’an, China
- Shaanxi Key Laboratory of Chinese Herb and Natural Drug Development, Medicine Research Institute, Shaanxi Pharmaceutical Holding Group Co., LTD, Xi’an, China
- College of Life Sciences, Northwest University, Xi’an, China
- *Correspondence: Juan Zhang, ; Hui-Ling Cao,
| |
Collapse
|