1
|
Tu L, Zou Z, Yang Y, Wang S, Xing B, Feng J, Jin Y, Cheng M. Targeted drug delivery systems for atherosclerosis. J Nanobiotechnology 2025; 23:306. [PMID: 40269931 PMCID: PMC12016489 DOI: 10.1186/s12951-025-03384-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2025] [Accepted: 04/10/2025] [Indexed: 04/25/2025] Open
Abstract
Atherosclerosis is a complex cardiovascular disease driven by multiple factors, including aging, inflammation, oxidative stress, and plaque rupture. The progression of this disease is often covert, emphasizing the need for early biomarkers and effective intervention measures. In recent years, advancements in therapeutic strategies have highlighted the potential of targeting specific processes in atherosclerosis, such as plaque localization, macrophage activity, and key enzymes. Based on this, this review discusses the potential role of targeted drugs in the treatment of atherosclerosis. It also focuses on their clinical efficacy in anti-atherosclerosis treatment and their ability to provide more precise therapeutic approaches. The findings underscore that future research can concentrate on exploring newer drug delivery systems and biomarkers to further refine clinical treatment strategies and enhance the long-term dynamic management of atherosclerosis.
Collapse
Affiliation(s)
- Liangxing Tu
- Jiangxi University of Chinese Medicine, Nanchang, 330006, P.R. China
| | - Zijian Zou
- Jiangxi University of Chinese Medicine, Nanchang, 330006, P.R. China
| | - Ye Yang
- Wenzhou Yining Geriatric Hospital, Wenzhou, 325041, P.R. China
| | - Siying Wang
- Jiangxi University of Chinese Medicine, Nanchang, 330006, P.R. China
| | - Banghuai Xing
- Jiangxi University of Chinese Medicine, Nanchang, 330006, P.R. China
| | - Jianfang Feng
- Jiangxi University of Chinese Medicine, Nanchang, 330006, P.R. China
- Guangxi University of Chinese Medicine, Nanning, 530200, P.R. China
| | - Yi Jin
- Jiangxi University of Chinese Medicine, Nanchang, 330006, P.R. China.
| | - Meng Cheng
- Jiangxi University of Chinese Medicine, Nanchang, 330006, P.R. China.
| |
Collapse
|
2
|
Hu J, Ji WJ, Liu GY, Su XH, Zhu JM, Hong Y, Xiong YF, Zhao YY, Li WP, Xie W. IDO1 modulates pain sensitivity and comorbid anxiety in chronic migraine through microglial activation and synaptic pruning. J Neuroinflammation 2025; 22:42. [PMID: 39966822 PMCID: PMC11837436 DOI: 10.1186/s12974-025-03367-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2024] [Accepted: 02/03/2025] [Indexed: 02/20/2025] Open
Abstract
BACKGROUND Chronic migraine is a prevalent and potentially debilitating neurological disorder that is often comorbid with mental health conditions (such as anxiety and depression), but the underlying mechanisms linking these conditions remain poorly understood. Indoleamine 2,3-dioxygenase 1 (IDO1) has been implicated in inflammatory processes, including neuroinflammation and pain. However, its role as a link between neuroinflammation and pain sensitization in chronic migraine is not well defined. METHODS Male mice were used to establish a model of chronic migraine by recurrent intraperitoneal injections of nitroglycerin (NTG, 10 mg/kg). Using pharmacological approaches, transgenic strategies and adeno-associated virus (AAV) intervention, we investigated the role of IDO1 in pain sensitization and migraine-related mood disorders in an NTG-induced chronic migraine mouse model. We employed a combination of immunoblotting, immunohistochemistry, three-dimensional reconstruction, RNA sequencing, electrophysiology, in vivo fiber photometry, and behavioral assays to elucidate the underlying mechanisms involved. RESULTS Our findings demonstrated that pharmacological inhibition and genetic knockout of IDO1 significantly alleviated pain sensitivity in a chronic migraine model. Neuronal activity in the anterior cingulate cortex (ACC) was evaluated with in vitro c-Fos immunostaining as well as in vivo fiber photometry, and a shift in the excitation/inhibition (E/I) balance toward excitation was observed through whole-cell patch clamp recording. Notably, IDO1 expression was increased in the ACC, and AAV-mediated IDO1 knockdown in the ACC rescued pain sensitivity, electrophysiological E/I balance changes, and anxiety-like behavior in chronic migraine model mice. Furthermore, IDO1 regulated microglial activation and pruning of neuronal synapses in the ACC. IDO1's microglial pruning function appears to be mediated through the interferon (IFN) signaling pathway, and the behavioral changes induced by IDO1 knockdown in the ACC could be reversed by activating this pathway. CONCLUSIONS Our findings revealed that microglial IDO1 in the ACC drives pain sensitization and anxiety in chronic migraine, highlighting IDO1 as a potential therapeutic target for chronic migraine treatment.
Collapse
Affiliation(s)
- Jiao Hu
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, 510515, China
- Guangdong Basic Research Center of Excellence for Integrated Traditional and Western Medicine for Qingzhi Diseases, Guangzhou, 510515, China
| | - Wen-Juan Ji
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, 510515, China
- Guangdong Basic Research Center of Excellence for Integrated Traditional and Western Medicine for Qingzhi Diseases, Guangzhou, 510515, China
| | - Gui-Yu Liu
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, 510515, China
- Guangdong Basic Research Center of Excellence for Integrated Traditional and Western Medicine for Qingzhi Diseases, Guangzhou, 510515, China
| | - Xiao-Hong Su
- Department of Neurology, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, 510630, China
| | - Jun-Ming Zhu
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, 510515, China
- Guangdong Basic Research Center of Excellence for Integrated Traditional and Western Medicine for Qingzhi Diseases, Guangzhou, 510515, China
| | - Yu Hong
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, 510515, China
| | - Yi-Fan Xiong
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, 510515, China
| | - Yun-Yan Zhao
- Department of Critical Care Medicine, The Affiliated Traditional Chinese Medicine Hospital of Guangzhou Medical University, Guangzhou, 510130, China.
| | - Wei-Peng Li
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, 510515, China.
- Guangdong Basic Research Center of Excellence for Integrated Traditional and Western Medicine for Qingzhi Diseases, Guangzhou, 510515, China.
- Department of Neurology, Southern Medical University Hospital of Integrated Traditional Chinese and Western Medicine, Southern Medical University, Guangzhou, 510317, China.
| | - Wei Xie
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, 510515, China.
- Guangdong Basic Research Center of Excellence for Integrated Traditional and Western Medicine for Qingzhi Diseases, Guangzhou, 510515, China.
| |
Collapse
|
3
|
Li Q, Sheng J, Baruscotti M, Liu Z, Wang Y, Zhao L. Identification of Senkyunolide I as a novel modulator of hepatic steatosis and PPARα signaling in zebrafish and hamster models. JOURNAL OF ETHNOPHARMACOLOGY 2025; 336:118743. [PMID: 39209000 DOI: 10.1016/j.jep.2024.118743] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Revised: 08/19/2024] [Accepted: 08/25/2024] [Indexed: 09/04/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Non-alcoholic fatty liver disease (NAFLD) is the leading cause of liver-related morbidity and mortality, with hepatic steatosis being the hallmark symptom. Salvia miltiorrhiza Bunge (Smil, Dan-Shen) and Ligusticum striatum DC (Lstr, Chuan-Xiong) are commonly used to treat cardiovascular diseases and have the potential to regulate lipid metabolism. However, whether Smil/Lstr combo can be used to treat NAFLD and the mechanisms underlying its lipid-regulating properties remain unclear. PURPOSE To assess the feasibility and reliability of a short-term high-fat diet (HFD) induced zebrafish model for evaluating hepatic steatosis phenotype and to investigate the liver lipid-lowering effects of Smil/Lstr, as well as its active components. METHODS The phenotypic alterations of liver and multiple other organ systems were examined in the HFD zebrafish model using fluorescence imaging and histochemistry. The liver-specific lipid-lowering effects of Smil/Lstr combo were evaluated endogenously. The active molecules and functional mechanisms were further explored in zebrafish, human hepatocytes, and hamster models. RESULTS In 5-day HFD zebrafish, significant lipid accumulation was detected in the blood vessels and the liver, as evidenced by increased staining with Oil Red O and fluorescent lipid probes. Hepatic hypertrophy was observed in the model, along with macrovesicular steatosis. Smil/Lstr combo administration effectively restored the lipid profile and alleviated hepatic hypertrophy in the HFD zebrafish. In oleic-acid stimulated hepatocytes, Smil/Lstr combo markedly reduced lipid accumulation and cell damage. Subsequently, based on zebrafish phenotypic screening, the natural phthalide senkyunolide I (SEI) was identified as a major molecule mediating the lipid-lowering activities of Smil/Lstr combo in the liver. Moreover, SEI upregulated the expression of the lipid metabolism regulator PPARα and downregulated fatty acid translocase CD36, while a PPARα antagonist sufficiently blocked the regulatory effect of SEI on hepatic steatosis. Finally, the roles of SEI on hepatic lipid accumulation and PPARα signaling were further verified in the hamster model. CONCLUSIONS We proposed a zebrafish-based screening strategy for modulators of hepatic steatosis and discovered the regulatory roles of Smil/Lstr combo and its component SEI on liver lipid accumulation and PPARα signaling, suggesting their potential value as novel candidates for NAFLD treatment.
Collapse
Affiliation(s)
- Qingquan Li
- Pharmaceutical Informatics Institute, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Jian Sheng
- Pharmaceutical Informatics Institute, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Mirko Baruscotti
- Department of Biosciences, University of Milano, Milan, 1-20133, Italy
| | - Zhenjie Liu
- Department of Vascular Surgery, The Second Affiliated Hospital of Zhejiang University Medical School, Hangzhou, 310003, China
| | - Yi Wang
- Pharmaceutical Informatics Institute, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China; Innovation Institute for Artificial Intelligence in Medicine of Zhejiang University, Hangzhou, 310020, China
| | - Lu Zhao
- Pharmaceutical Informatics Institute, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China; Department of Vascular Surgery, The Second Affiliated Hospital of Zhejiang University Medical School, Hangzhou, 310003, China; State Key Laboratory of Chinese Medicine Modernization, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China.
| |
Collapse
|
4
|
Wang Y, Jin L, Liu X, Shu B, Xu J, Pan L. UPLC-MS/MS Combined with Microdialysis for Determination of Two Active Components of Chuanxiong Rhizoma Extracts in Rat Brain: Application in Pharmacokinetic Study. J Chromatogr Sci 2025; 63:bmae059. [PMID: 39696967 DOI: 10.1093/chromsci/bmae059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Revised: 11/15/2024] [Indexed: 12/20/2024]
Abstract
Chuanxiong Rhizoma (Chuanxiong), a traditional Chinese medicine, has been widely used to treat various nervous and cardiovascular system-related conditions. Its active components, senkyunolide A (SA) and 3-n-butylphthalide (NBP), have been proven effective in treating nervous system diseases. A new method was established based on microdialysis coupled with ultra-performance liquid chromatography-tandem mass spectrometry (UPLC-MS/MS) to estimate the concentrations of these components in brain extracellular fluid. Chromatographic separation was achieved using an Acquity UPLC BEH C8 column (2.1 × 100 mm, 1.7 μm) with acetonitrile and 0.1% formic acid as mobile phase. The calibration curves of SA and NBP were linear in the concentration ranges of 0.25-100.00 and 0.12-48.00 ng/mL, respectively, with a correlation coefficient above 0.9992. All validation parameters, including intra- and inter-day precision, accuracy, matrix effect and stability, were within the acceptance limits of bioanalytical guidelines. The validated method was successfully applied to study the pharmacokinetics of SA and NBP in rat brain microdialysis after oral administration of Chuanxiong extracts. The results showed that both components penetrated the brain and reached maximum concentrations in the microdialysates of 72.31 and 9.93 ng/mL at 1.50 and 1.58 h, respectively.
Collapse
Affiliation(s)
- Yu Wang
- Experiment Center for Science and Technology, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Liang Jin
- Xinhua Hospital Affiliated to Shanghai Jiaotong University School of Medicine, Shanghai 200092, China
| | - Xinhua Liu
- Experiment Center for Science and Technology, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Bing Shu
- Spine Institute, Shanghai University of Traditional Chinese Medicine, Shanghai 200092, China
| | - Jia Xu
- Department of Pharmacy, Fudan University Shanghai Cancer Center, Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Lingyun Pan
- Experiment Center for Science and Technology, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| |
Collapse
|
5
|
Chen Y, Cheng Q, Zeng S, Lv S. Potential analgesic effect of Foshousan oil-loaded chitosan-alginate nanoparticles on the treatment of migraine. Front Pharmacol 2023; 14:1190920. [PMID: 37680717 PMCID: PMC10482050 DOI: 10.3389/fphar.2023.1190920] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Accepted: 08/07/2023] [Indexed: 09/09/2023] Open
Abstract
Background: Migraine is a common neurovascular disorder with typical throbbing and unilateral headaches, causing a considerable healthcare burden on the global economy. This research aims to prepare chitosan-alginate (CS-AL) nanoparticles (NPs) containing Foshousan oil (FSSO) and investigate its potential therapeutic effects on the treatment of migraine. Methods: FSSO-loaded CS-AL NPs were prepared by using the single emulsion solvent evaporation method. Lipopolysaccharide (LPS)-stimulated BV-2 cells and nitroglycerin (NTG)-induced migraine mice were further used to explore anti-migraine activities and potential mechanisms of this botanical drug. Results: FSSO-loaded CS-AL NPs (212.1 ± 5.2 nm, 45.1 ± 6.2 mV) had a well-defined spherical shape with prolonged drug release and good storage within 4 weeks. FSSO and FSSO-loaded CS-AL NPs (5, 10, and 15 μg/mL) showed anti-inflammatory activities in LPS-treated BV-2 cells via reducing the levels of pro-inflammatory cytokines such as tumor necrosis factor-α (TNF-α), interleukin-1β (IL-1β), interleukin-6 (IL-6), and nitric oxide (NO), but elevating interleukin-10 (IL-10) expressions. Moreover, FSSO-loaded CS-AL NPs (52 and 104 mg/kg) raised pain thresholds against the hot stimulus and decreased acetic acid-induced writhing frequency and foot-licking duration in NTG-induced migraine mice. Compared with the model group, calcitonin gene-related peptide (CGRP) and NO levels were downregulated, but 5-hydroxytryptamine (5-HT) and endothelin (ET) levels were upregulated along with rebalanced ET/NO ratio, and vasomotor dysfunction was alleviated by promoting cerebral blood flow (CBF) in the FSSO-loaded CS-AL NPs (104 mg/kg) group. Conclusion: FSSO-loaded CS-AL NPs could attenuate migraine via inhibiting neuroinflammation in LPS-stimulated BV-2 cells and regulating vasoactive substances in NTG-induced migraine mice. These findings suggest that the FSS formula may be exploited as new phytotherapy for treating migraine.
Collapse
Affiliation(s)
- Yulong Chen
- College of Medicine and Health Science, Wuhan Polytechnic University, Wuhan, China
| | - Qingzhou Cheng
- College of Medicine and Health Science, Wuhan Polytechnic University, Wuhan, China
| | - Shan Zeng
- School of Mathematics and Computer Science, Wuhan Polytechnic University, Wuhan, China
| | - Site Lv
- School of Mathematics and Computer Science, Wuhan Polytechnic University, Wuhan, China
| |
Collapse
|
6
|
Demartini C, Francavilla M, Zanaboni AM, Facchetti S, De Icco R, Martinelli D, Allena M, Greco R, Tassorelli C. Biomarkers of Migraine: An Integrated Evaluation of Preclinical and Clinical Findings. Int J Mol Sci 2023; 24:ijms24065334. [PMID: 36982428 PMCID: PMC10049673 DOI: 10.3390/ijms24065334] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 03/02/2023] [Accepted: 03/08/2023] [Indexed: 03/14/2023] Open
Abstract
In recent years, numerous efforts have been made to identify reliable biomarkers useful in migraine diagnosis and progression or associated with the response to a specific treatment. The purpose of this review is to summarize the alleged diagnostic and therapeutic migraine biomarkers found in biofluids and to discuss their role in the pathogenesis of the disease. We included the most informative data from clinical or preclinical studies, with a particular emphasis on calcitonin gene-related peptide (CGRP), cytokines, endocannabinoids, and other biomolecules, the majority of which are related to the inflammatory aspects and mechanisms of migraine, as well as other actors that play a role in the disease. The potential issues affecting biomarker analysis are also discussed, such as how to deal with bias and confounding data. CGRP and other biological factors associated with the trigeminovascular system may offer intriguing and novel precision medicine opportunities, although the biological stability of the samples used, as well as the effects of the confounding role of age, gender, diet, and metabolic factors should be considered.
Collapse
Affiliation(s)
- Chiara Demartini
- Department of Brain and Behavioral Sciences, University of Pavia, Via Bassi 21, 27100 Pavia, Italy
- Unit of Translational Neurovascular Research, IRCCS Mondino Foundation, Via Mondino 2, 27100 Pavia, Italy
| | - Miriam Francavilla
- Department of Brain and Behavioral Sciences, University of Pavia, Via Bassi 21, 27100 Pavia, Italy
- Unit of Translational Neurovascular Research, IRCCS Mondino Foundation, Via Mondino 2, 27100 Pavia, Italy
| | - Anna Maria Zanaboni
- Department of Brain and Behavioral Sciences, University of Pavia, Via Bassi 21, 27100 Pavia, Italy
- Unit of Translational Neurovascular Research, IRCCS Mondino Foundation, Via Mondino 2, 27100 Pavia, Italy
| | - Sara Facchetti
- Department of Brain and Behavioral Sciences, University of Pavia, Via Bassi 21, 27100 Pavia, Italy
| | - Roberto De Icco
- Department of Brain and Behavioral Sciences, University of Pavia, Via Bassi 21, 27100 Pavia, Italy
- Unit of Translational Neurovascular Research, IRCCS Mondino Foundation, Via Mondino 2, 27100 Pavia, Italy
| | - Daniele Martinelli
- Unit of Translational Neurovascular Research, IRCCS Mondino Foundation, Via Mondino 2, 27100 Pavia, Italy
| | - Marta Allena
- Unit of Translational Neurovascular Research, IRCCS Mondino Foundation, Via Mondino 2, 27100 Pavia, Italy
| | - Rosaria Greco
- Unit of Translational Neurovascular Research, IRCCS Mondino Foundation, Via Mondino 2, 27100 Pavia, Italy
- Correspondence: ; Tel.: +39-(0382)-380255
| | - Cristina Tassorelli
- Department of Brain and Behavioral Sciences, University of Pavia, Via Bassi 21, 27100 Pavia, Italy
- Unit of Translational Neurovascular Research, IRCCS Mondino Foundation, Via Mondino 2, 27100 Pavia, Italy
| |
Collapse
|
7
|
Zhang CS, Lyu S, Zhang AL, Guo X, Sun J, Lu C, Luo X, Xue CC. Natural products for migraine: Data-mining analyses of Chinese Medicine classical literature. Front Pharmacol 2022; 13:995559. [PMID: 36386198 PMCID: PMC9650126 DOI: 10.3389/fphar.2022.995559] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2022] [Accepted: 10/13/2022] [Indexed: 08/12/2024] Open
Abstract
Background: Treatment effect of current pharmacotherapies for migraine is unsatisfying. Discovering new anti-migraine natural products and nutraceuticals from large collections of Chinese medicine classical literature may assist to address this gap. Methods: We conducted a comprehensive search in the Encyclopedia of Traditional Chinese Medicine (version 5.0) to obtain migraine-related citations, then screened and scored these citations to identify clinical management of migraine using oral herbal medicine in history. Information of formulae, herbs and symptoms were further extracted. After standardisation, these data were analysed using frequency analysis and the Apriori algorithm. Anti-migraine effects and mechanisms of actions of the main herbs and formula were summarised. Results: Among 614 eligible citations, the most frequently used formula was chuan xiong cha tiao san (CXCTS), and the most frequently used herb was chuan xiong. Dietary medicinal herbs including gan cao, bai zhi, bo he, tian ma and sheng jiang were identified. Strong associations were constructed among the herb ingredients of CXCTS formula. Symptoms of chronic duration and unilateral headache were closely related with herbs of chuan xiong, gan cao, fang feng, qiang huo and cha. Symptoms of vomiting and nausea were specifically related to herbs of sheng jiang and ban xia. Conclusion: The herb ingredients of CXCTS which presented anti-migraine effects with reliable evidence of anti-migraine actions can be selected as potential drug discovery candidates, while dietary medicinal herbs including sheng jiang, bo he, cha, bai zhi, tian ma, and gan cao can be further explored as nutraceuticals for migraine.
Collapse
Affiliation(s)
- Claire Shuiqing Zhang
- The China-Australia International Research Centre for Chinese Medicine, STEM College, RMIT University, Melbourne, VIC, Australia
| | - Shaohua Lyu
- The China-Australia International Research Centre for Chinese Medicine, STEM College, RMIT University, Melbourne, VIC, Australia
- The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangdong Provincial Hospital of Chinese Medicine and Guangdong Provincial Academy of Chinese Medical Sciences, Guangzhou, China
| | - Anthony Lin Zhang
- The China-Australia International Research Centre for Chinese Medicine, STEM College, RMIT University, Melbourne, VIC, Australia
| | - Xinfeng Guo
- The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangdong Provincial Hospital of Chinese Medicine and Guangdong Provincial Academy of Chinese Medical Sciences, Guangzhou, China
| | - Jingbo Sun
- The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangdong Provincial Hospital of Chinese Medicine and Guangdong Provincial Academy of Chinese Medical Sciences, Guangzhou, China
| | - Chuanjian Lu
- The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangdong Provincial Hospital of Chinese Medicine and Guangdong Provincial Academy of Chinese Medical Sciences, Guangzhou, China
| | - Xiaodong Luo
- The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangdong Provincial Hospital of Chinese Medicine and Guangdong Provincial Academy of Chinese Medical Sciences, Guangzhou, China
| | - Charlie Changli Xue
- The China-Australia International Research Centre for Chinese Medicine, STEM College, RMIT University, Melbourne, VIC, Australia
- The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangdong Provincial Hospital of Chinese Medicine and Guangdong Provincial Academy of Chinese Medical Sciences, Guangzhou, China
| |
Collapse
|