1
|
El-Shiekh RA, Radi MH, Elshimy R, Abdel-Sattar E, El-Halawany AM, Ibrahim MA, Ali ME, Hassanen EI. Friedelin: A natural compound exhibited potent antibacterial, anti-inflammatory, and wound healing properties against MRSA-infected wounds. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2025:10.1007/s00210-025-03965-8. [PMID: 40100378 DOI: 10.1007/s00210-025-03965-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2024] [Accepted: 02/19/2025] [Indexed: 03/20/2025]
Abstract
Methicillin-resistant Staphylococcus aureus (MRSA) is primarily recognized as a pathogen responsible for skin, soft tissue, and multiple organs infection. The colonization of the skin and mucous membranes by hypervirulent resistant bacteria like MRSA during hospitalization significantly contributes to life-threatening conditions. Friedelin (FRN) is a pentacyclic triterpene (C30H50O) isolated from Euphorbia grantii Oliv. The current work aims to determine the efficacy of FRN against MRSA-infected wounds in mice besides the in vitro study to evaluate its bactericidal activity. The in vitro study revealed that FRN was strongly active against MRSA which had a wide zone of MRSA growth inhibition and promising minimum inhibitory concentration (MIC). Moreover, FRN downregulated the major virulence genes seb and icaD, responsible for the production of staphylococcal enterotoxin SED and biofilm formation, respectively in contrast to the untreated group. The dressing of MRSA-infected wound with 40 ppm FRN significantly reduced the wound size and bacterial count and accelerated the process of wound healing which had a higher immune expression of both VEGF (vascular endothelial growth factor) and α-SMA (alpha smooth muscle actin) compared with other treated groups. Additionally, FRN could reduce the inflammatory response of MRSA in a dose-dependent manner by downregulating the TNF-α (tumor necrosis factor-α) and PGS-2 (prostaglandin synthase-2) gene expression levels. FRN is effective against MRSA-infected wounds via its potent bactericidal and anti-inflammatory activities that accelerate angiogenesis and wound maturation.
Collapse
Affiliation(s)
- Riham A El-Shiekh
- Department of Pharmacognosy, Faculty of Pharmacy, Cairo University, Cairo, 11562, Egypt.
| | - Mai Hussin Radi
- Herbal Department, Egyptian Drug Authority, Cairo, 15301, Egypt
| | - Rana Elshimy
- Department of Microbiology and Immunology, Faculty of Pharmacy, Ahram Canadian University, Giza, 12573, Egypt
- Department of Microbiology and Immunology, Egyptian Drug Authority, Cairo, 15301, Egypt
| | - Essam Abdel-Sattar
- Department of Pharmacognosy, Faculty of Pharmacy, Cairo University, Cairo, 11562, Egypt.
| | - Ali M El-Halawany
- Department of Pharmacognosy, Faculty of Pharmacy, Cairo University, Cairo, 11562, Egypt
| | - Marwa A Ibrahim
- Department of Biochemistry and Molecular Biology, Faculty of Veterinary Medicine, Cairo University, Giza, 12211, Egypt
| | - Merhan E Ali
- Department of Pathology, Faculty of Veterinary Medicine, Cairo University, Giza, 12211, Egypt
| | - Eman I Hassanen
- Department of Pathology, Faculty of Veterinary Medicine, Cairo University, Giza, 12211, Egypt
| |
Collapse
|
2
|
Moralev A, Zenkova MA, Markov AV. Complex Inhibitory Activity of Pentacyclic Triterpenoids against Cutaneous Melanoma In Vitro and In Vivo: A Literature Review and Reconstruction of Their Melanoma-Related Protein Interactome. ACS Pharmacol Transl Sci 2024; 7:3358-3384. [PMID: 39539268 PMCID: PMC11555519 DOI: 10.1021/acsptsci.4c00422] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Revised: 09/13/2024] [Accepted: 10/14/2024] [Indexed: 11/16/2024]
Abstract
Pentacyclic triterpenoids (PTs) are a class of plant metabolites with a wide range of pharmacological activities, including strong antitumor potential against skin malignancies. By acting on multiple signaling pathways that control key cellular processes, PTs are able to exert complex effects on melanoma progression in vitro and in vivo. In this review, we have analyzed the works published in the past decade and devoted to the effects of PTs, both natural and semisynthetic, on cutaneous melanoma pathogenesis, including not only their direct action on melanoma cells but also their influence on the tumor microenvironment and abberant melanogenesis, often associated with melanoma aggressiveness. Special attention will be paid to the molecular basis of the pronounced antimelanoma potency of PTs, including a detailed consideration of the pathways sensitive to PTs in melanoma cells, as well as the reconstruction of the melanoma-related protein interactome of PTs using a network pharmacology approach based on previously published experimentally verified protein targets of PTs. The information collected on the primary targets of PTs was compiled in the Protein Interactome of PTs (PIPTs) database, freely available at http://www.pipts-db.ru/, which can be used to further optimize the mechanistic studies of PTs in the context of melanoma and other malignancies. By summarizing recent research findings, this review provides valuable information to scientists working in the fields related to the evaluation of melanoma pathogenesis and development of PTs-based drug candidates.
Collapse
Affiliation(s)
- Arseny
D. Moralev
- Institute of Chemical Biology and Fundamental
Medicine, Siberian Branch of the Russian
Academy of Sciences, 630090, Lavrent’ev avenue 8, Novosibirsk, Russia
| | - Marina A. Zenkova
- Institute of Chemical Biology and Fundamental
Medicine, Siberian Branch of the Russian
Academy of Sciences, 630090, Lavrent’ev avenue 8, Novosibirsk, Russia
| | - Andrey V. Markov
- Institute of Chemical Biology and Fundamental
Medicine, Siberian Branch of the Russian
Academy of Sciences, 630090, Lavrent’ev avenue 8, Novosibirsk, Russia
| |
Collapse
|
3
|
de Melo LFM, Barbosa JDS, Cordeiro MLDS, Aquino-Martins VGDQ, da Silva AP, Paiva WDS, Silveira ER, dos Santos DYAC, Rocha HAO, Scortecci KC. The Antioxidant and Immunomodulatory Potential of Coccoloba alnifolia Leaf Extracts. Int J Mol Sci 2023; 24:15885. [PMID: 37958868 PMCID: PMC10650087 DOI: 10.3390/ijms242115885] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 10/23/2023] [Accepted: 10/27/2023] [Indexed: 11/15/2023] Open
Abstract
Oxidative stress has been associated with different diseases, and different medicinal plants have been used to treat or prevent this condition. The leaf ethanolic extract (EE) and aqueous extract (AE) from Coccoloba alnifolia have previously been characterized to have antioxidant potential in vitro and in vivo. In this study, we worked with EE and AE and two partition phases, AF (ethyl acetate) and BF (butanol), from AE extract. These extracts and partition phases did not display cytotoxicity. The EE and AE reduced NO production and ROS in all three concentrations tested. Furthermore, it was observed that EE and AE at 500 μg/mL concentration were able to reduce phagocytic activity by 30 and 50%, respectively. A scratch assay using a fibroblast cell line (NHI/3T3) showed that extracts and fractions induced cell migration with 60% wound recovery within 24 h, especially for BF. It was also observed that AF and BF had antioxidant potential in all the assays evaluated. In addition, copper chelation was observed. This activity was previously not detected in AE. The HPLC-DAD analysis showed the presence of phenolic compounds such as p-cumaric acid and vitexin for extracts, while the GNPS annotated the presence of isoorientin, vitexin, kanakugiol, and tryptamine in the BF partition phase. The data presented here demonstrated that the EE, AE, AF, and BF of C. alnifolia have potential immunomodulatory effects, antioxidant effects, as well as in vitro wound healing characteristics, which are important for dynamic inflammation process control.
Collapse
Affiliation(s)
- Luciana Fentanes Moura de Melo
- Laboratory of Plant Transformation and Microscopy Analysis (LPTAM), Cell Biology and Genetics Department, Centro de Biociências, Federal University of Rio Grande do Norte (UFRN), Natal 59078-970, RN, Brazil; (L.F.M.d.M.); (V.G.d.Q.A.-M.); (A.P.d.S.)
- Laboratory of Biotechnology of Natural Polymers (BIOPOL), Biochemistry Department, Centro de Biociências, Federal University of Rio Grande do Norte (UFRN), Natal 59078-970, RN, Brazil; (J.d.S.B.); (W.d.S.P.); (H.A.O.R.)
- Biochemistry and Molecular Biology Graduation School Programa de Pós-Graduação em Bioquímica, Federal University of Rio Grande do Norte (UFRN), Natal 59012-570, RN, Brazil
| | - Jefferson da Silva Barbosa
- Laboratory of Biotechnology of Natural Polymers (BIOPOL), Biochemistry Department, Centro de Biociências, Federal University of Rio Grande do Norte (UFRN), Natal 59078-970, RN, Brazil; (J.d.S.B.); (W.d.S.P.); (H.A.O.R.)
- Federal Institut of Education, Science and Technology of Rio Grande do Norte (IFRN), São Gonçalo do Amarante 59291-727, RN, Brazil
| | - Maria Lúcia da Silva Cordeiro
- Laboratory of Plant Transformation and Microscopy Analysis (LPTAM), Cell Biology and Genetics Department, Centro de Biociências, Federal University of Rio Grande do Norte (UFRN), Natal 59078-970, RN, Brazil; (L.F.M.d.M.); (V.G.d.Q.A.-M.); (A.P.d.S.)
- Laboratory of Biotechnology of Natural Polymers (BIOPOL), Biochemistry Department, Centro de Biociências, Federal University of Rio Grande do Norte (UFRN), Natal 59078-970, RN, Brazil; (J.d.S.B.); (W.d.S.P.); (H.A.O.R.)
- Biochemistry and Molecular Biology Graduation School Programa de Pós-Graduação em Bioquímica, Federal University of Rio Grande do Norte (UFRN), Natal 59012-570, RN, Brazil
| | - Verônica Giuliani de Queiroz Aquino-Martins
- Laboratory of Plant Transformation and Microscopy Analysis (LPTAM), Cell Biology and Genetics Department, Centro de Biociências, Federal University of Rio Grande do Norte (UFRN), Natal 59078-970, RN, Brazil; (L.F.M.d.M.); (V.G.d.Q.A.-M.); (A.P.d.S.)
- Laboratory of Biotechnology of Natural Polymers (BIOPOL), Biochemistry Department, Centro de Biociências, Federal University of Rio Grande do Norte (UFRN), Natal 59078-970, RN, Brazil; (J.d.S.B.); (W.d.S.P.); (H.A.O.R.)
- Biochemistry and Molecular Biology Graduation School Programa de Pós-Graduação em Bioquímica, Federal University of Rio Grande do Norte (UFRN), Natal 59012-570, RN, Brazil
| | - Ariana Pereira da Silva
- Laboratory of Plant Transformation and Microscopy Analysis (LPTAM), Cell Biology and Genetics Department, Centro de Biociências, Federal University of Rio Grande do Norte (UFRN), Natal 59078-970, RN, Brazil; (L.F.M.d.M.); (V.G.d.Q.A.-M.); (A.P.d.S.)
- Laboratory of Biotechnology of Natural Polymers (BIOPOL), Biochemistry Department, Centro de Biociências, Federal University of Rio Grande do Norte (UFRN), Natal 59078-970, RN, Brazil; (J.d.S.B.); (W.d.S.P.); (H.A.O.R.)
| | - Weslley de Souza Paiva
- Laboratory of Biotechnology of Natural Polymers (BIOPOL), Biochemistry Department, Centro de Biociências, Federal University of Rio Grande do Norte (UFRN), Natal 59078-970, RN, Brazil; (J.d.S.B.); (W.d.S.P.); (H.A.O.R.)
- Northeast Biotecnology Network (RENORBIO), Federal University of Rio Grande do Norte (UFRN), Natal 59078-970, RN, Brazil
| | - Elielson Rodrigo Silveira
- Phytochemistry Laboratory, Botany Departament, Bioscience Institut, São Paulo University, São Paulo 05508-070, SP, Brazil; (E.R.S.); (D.Y.A.C.d.S.)
| | - Déborah Yara A. Cursino dos Santos
- Phytochemistry Laboratory, Botany Departament, Bioscience Institut, São Paulo University, São Paulo 05508-070, SP, Brazil; (E.R.S.); (D.Y.A.C.d.S.)
| | - Hugo Alexandre Oliveira Rocha
- Laboratory of Biotechnology of Natural Polymers (BIOPOL), Biochemistry Department, Centro de Biociências, Federal University of Rio Grande do Norte (UFRN), Natal 59078-970, RN, Brazil; (J.d.S.B.); (W.d.S.P.); (H.A.O.R.)
- Biochemistry and Molecular Biology Graduation School Programa de Pós-Graduação em Bioquímica, Federal University of Rio Grande do Norte (UFRN), Natal 59012-570, RN, Brazil
| | - Kátia Castanho Scortecci
- Laboratory of Plant Transformation and Microscopy Analysis (LPTAM), Cell Biology and Genetics Department, Centro de Biociências, Federal University of Rio Grande do Norte (UFRN), Natal 59078-970, RN, Brazil; (L.F.M.d.M.); (V.G.d.Q.A.-M.); (A.P.d.S.)
- Biochemistry and Molecular Biology Graduation School Programa de Pós-Graduação em Bioquímica, Federal University of Rio Grande do Norte (UFRN), Natal 59012-570, RN, Brazil
| |
Collapse
|
4
|
Complete Genome Sequence and Cosmetic Potential of Viridibacillus sp. JNUCC6 Isolated from Baengnokdam, the Summit Crater of Mt. Halla. COSMETICS 2022. [DOI: 10.3390/cosmetics9040073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
Novel microbe-derived products are gaining increasing attention for their ability to modulate skin conditions. The use of microbial metabolites to improve skin health outcomes is of particular interest because growing evidence points to the importance of natural products without side effects on human health. This study aimed to sequence the genome of Viridibacillus sp. JNUCC6 isolated from Baengnokdam, the summit crater of Mt. Halla. We further investigated the potential use of its extract as a cosmetic ingredient in controlling melanogenesis and inflammation. The genome of this strain was sequenced using both Illumina Novaseq 6000 and third-generation sequencing technology (PacBio RSII) to obtain trustworthy assembly and annotation. Different concentrations of the Viridibacillus sp. JNUCC6 extract were tested for its anti-melanogenic and anti-inflammatory effects in α-melanocyte-stimulating hormone (α-MSH)-induced B16F10 melanoma and lipopolysaccharide (LPS)-activated RAW 264.7 cells, respectively. The whole genome sequence of the strain contained 4,526,142 bp with 35.61% GC content, one contig, and 4364 protein-coding sequences. Furthermore, antiSMASH analysis of the whole genome revealed three putative biosynthetic gene clusters that are responsible for the production of various secondary metabolites. Our study found that the Viridibacillus sp. JNUCC6 extract inhibited the α-MSH-induced melanin production and tyrosinase activity in B16F10 melanoma cells. In addition, it decreased the LPS-induced nitric oxide (NO) production caused by LPS stimulation in a concentration-dependent manner. Therefore, Viridibacillus sp. JNUCC6 has potential applications as an ingredient in skin-whitening and anti-inflammatory products and can be used in the cosmetic and medical industries.
Collapse
|
5
|
Apaza Ticona L, Rumbero Sánchez Á, Humanes Bastante M, Serban AM, Hernáiz MJ. Anti-inflammatory properties of Neowerdermannia vorwerkii Frič 'Achacana' used in treating stomach-related ailments. JOURNAL OF ETHNOPHARMACOLOGY 2022; 292:115198. [PMID: 35314420 DOI: 10.1016/j.jep.2022.115198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2021] [Revised: 03/06/2022] [Accepted: 03/11/2022] [Indexed: 06/14/2023]
Abstract
ETHNO-PHARMACOLOGICAL RELEVANCE The tuber of Neowerdermannia vorwerkii commonly known as 'Achacana' is used as an infusion in Andean countries to treat various gastrointestinal ailments, kidney and liver diseases. AIM OF THE STUDY This study determined the anti-inflammatory activity of the aqueous extract from Neowerdermannia vorwerkii and identified the compounds related to this activity. MATERIALS AND METHODS A bio-guided isolation of the active compounds of Neowerdermannia vorwerkii was carried out, selecting the sub-extracts and fractions depending on their anti-inflammatory activity in the Hs 738.St/Int, Hs 746T and NCI-N87 cells. RESULTS Three compounds were obtained and characterised by nuclear magnetic resonance and mass spectrometry. These compounds are (3-(pyridin-3-yl)-5-(tiophen-3-yl)-1,2,4-oxadiazole (1), 5-(3-methoxyphenyl)-3-(pyridin-3-yl)-1,2,4-oxadiazole (2) and 5-(3-hydroxyphenyl)-3-(pyridin-3-yl)-1,2,4-oxadiazole (3). Regarding their anti-inflammatory activity, the three compounds inhibited the production of cytokines (IL-1β, IL-6 and TNF-α), however, compound 1 was the most active, with an IC50 of 0.87 μM in all cell lines. CONCLUSION In the present study, the anti-inflammatory activity of the aqueous extract of Neowerdermannia vorwerkii was tested and analysed, following the isolation of three 1,2,4-oxadiazoles type compounds with similar pharmacological properties.
Collapse
Affiliation(s)
- Luis Apaza Ticona
- Organic Chemistry Unit, Department of Chemistry in Pharmaceutical Sciences, Faculty of Pharmacy, Universidad Complutense de Madrid, Plza. Ramón y Cajal s/n, 28040, Madrid, Spain; Department of Organic Chemistry, Faculty of Sciences, Universidad Autónoma de Madrid. Cantoblanco, 28049, Madrid, Spain.
| | - Ángel Rumbero Sánchez
- Department of Organic Chemistry, Faculty of Sciences, Universidad Autónoma de Madrid. Cantoblanco, 28049, Madrid, Spain
| | - Marcos Humanes Bastante
- Department of Organic Chemistry, Faculty of Sciences, Universidad Autónoma de Madrid. Cantoblanco, 28049, Madrid, Spain
| | - Andreea Madalina Serban
- Maria Sklodowska Curie University Hospital for Children. Constantin Brancoveanu Boulevard, 077120, Bucharest, Romania
| | - María J Hernáiz
- Organic Chemistry Unit, Department of Chemistry in Pharmaceutical Sciences, Faculty of Pharmacy, Universidad Complutense de Madrid, Plza. Ramón y Cajal s/n, 28040, Madrid, Spain
| |
Collapse
|