1
|
Chenchula S, Ghanta MK, Alhammadi M, Mohammed A, Anitha K, Nuthalapati P, Raju GSR, Huh YS, Bhaskar L. Phytochemical compounds for treating hyperuricemia associated with gout: a systematic review. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2025; 398:4779-4801. [PMID: 39636406 DOI: 10.1007/s00210-024-03686-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Accepted: 11/27/2024] [Indexed: 12/07/2024]
Abstract
Gout is a prevalent metabolic disorder characterized by increased uric acid (UA) synthesis or decreased UA clearance from the bloodstream, leading to the formation of urate crystals in joints and surrounding tissues. Hyperuricemia (HUA), the underlying cause of gout, poses a growing challenge for healthcare systems in developed and developing countries. Currently, the most common therapeutic approaches for gouty HUA primarily involve the use of allopathic or modern medicine. However, these treatments are often accompanied by adverse effects and may not be universally effective for all patients. Therefore, this systematic review aims to provide a comprehensive outline of phytochemical compounds that have emerged as alternative treatments for HUA associated with gout and to examine their specific mechanisms of action. A systematic search was conducted to identify phytochemicals that have previously been evaluated for their effectiveness in reducing HUA. From a review of > 800 published articles, 100 studies reporting on 50 phytochemicals associated with the management of HUA and gout were selected for analysis. Experimental models were used to investigate the effects of these phytochemicals, many of which exhibited multiple mechanisms beneficial for managing HUA. This review offers valuable insights for identifying and developing novel compounds that are safer and more effective for treating HUA associated with gout.
Collapse
Affiliation(s)
- Santenna Chenchula
- Department of Pharmacology, All India Institute of Medical Sciences, Bhopal, Madhya Pradesh, India
| | - Mohan Krishna Ghanta
- Department of Pharmacology, MVJ Medical College and Research Hospital, Bangalore, 562114, Karnataka, India
| | - Munirah Alhammadi
- NanoBio High-Tech Materials Research Center, Department of Biological Sciences and Bioengineering, Inha University, Incheon, 22212, Republic of Korea
| | - Arifullah Mohammed
- Department of Agriculture Science, Faculty of Agro-Based Industry, Universiti Malaysia Kelantan, 17600, Jeli, Kelantan, Malaysia
- College of Agriculture, KL University, Vaddeswaram Campus, Guntur, Andhra Pradesh, 522302, India
| | - Kuttiappan Anitha
- Department of Pharmacology, Amity Institute of Pharmacy, Amity University Madhya Pradesh (AUMP), Gwalior, 474005, Madhya Pradesh, India
| | - Poojith Nuthalapati
- Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Ganji Seeta Rama Raju
- Department of Energy and Materials Engineering, Dongguk University-Seoul, Seoul, 04620, Republic of Korea
| | - Yun Suk Huh
- NanoBio High-Tech Materials Research Center, Department of Biological Sciences and Bioengineering, Inha University, Incheon, 22212, Republic of Korea.
| | - Lvks Bhaskar
- Department of Zoology, Guru Ghasidas Vishwavidyalaya, Bilaspur, 495009, India.
| |
Collapse
|
2
|
Qin SS, Tian CB, Qian YL, Wu XR, Wen X, Zhao YL, Luo XD. Alstonia scholaris (L.) R. Br. ameliorated diabetic nephropathy through PPAR-δ pathway. JOURNAL OF ETHNOPHARMACOLOGY 2025; 348:119839. [PMID: 40294665 DOI: 10.1016/j.jep.2025.119839] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2025] [Revised: 04/12/2025] [Accepted: 04/18/2025] [Indexed: 04/30/2025]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Alstonia scholaris was utilized as a medicinal herb for the management of diabetes traditionally, with diabetic nephropathy (DN) was one of its major complications. However, the effect of A. scholaris on DN have yet to be explored. AIM OF THE STUDY To investigate the effect and mechanism of A. scholaris in treating DN. MATERIALS AND METHODS The high glucose (HG)-induced renal podocyte (MPC5) injury model was conducted in vitro, and DN mice induced by high fat diet and combined with streptozotocin (HFD + STZ) was employed to evaluate bioactivity in vivo. Transcriptome analysis was conducted to explore the potential targets of vallesamine, with findings further validated by RT-qPCR and WB analysis. Furthermore, the binding affinity of vallesamine to its potential target was investigated through molecular docking and dynamics simulation. RESULTS Four major alkaloids of A. scholaris demonstrated significant efficacy in mitigating HG-induced MPC5 cell damage, and they also restored oxidation balance while reducing the release of nitric oxide and lactate dehydrogenase. Oral administration of the total alkaloids and the four compounds for 6 weeks, respectively, could ameliorate proteinuria, urinary protein-to-creatinine ratio, hyperglycemia and hyperlipidemia significantly, and as well elevate serum levels of total protein and albumin concurrently in HFD + STZ induced mice. Moreover, renal injury and matrix hyperplasia were also improved after the treatment. Notably, vallesamine (5 mg/kg) exerted a pronounced effect on DN through upregulating Ppar-δ, Fads2, Me1, Ehhadh, Lpl, Scd1, Acsl1, and downregulating Hmgcs5, Slc27a1, Dbil5 and Plin5 gene expressions of PPAR pathway. Meanwhile, proteins related to lipid metabolism (PPAR-δ and ACSL1, HMGCS2) as well as the associated with renal inflammation (PODOCIN, BCL-2, and IL-6) were regulated by vallesamine intervention. In addition, vallesamine-PPAR-δ complexes maintained structural integrity, with the binding free energy of -25.84 kJ/mol, indicating a particularly high affinity between the ligand and the receptor in molecular dynamics and docking. CONCLUSION Total alkaloids from A. scholaris and its main components vallesamine alleviated kidney injury induced by HFD + STZ through modulation the PPAR-δ pathway, providing a potential strategy for the development of new botanical drug to treat DN.
Collapse
Affiliation(s)
- Shi-Shi Qin
- Yunnan Characteristic Plant Extraction Laboratory Co., Ltd., Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education, Yunnan Key Laboratory of Research and Development for Natural Products, School of Pharmacy, School of Chemical Science and Technology, Yunnan University, Southwest United Graduate School, Kunming, 650091, PR China
| | - Cai-Bo Tian
- Yunnan Characteristic Plant Extraction Laboratory Co., Ltd., Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education, Yunnan Key Laboratory of Research and Development for Natural Products, School of Pharmacy, School of Chemical Science and Technology, Yunnan University, Southwest United Graduate School, Kunming, 650091, PR China
| | - Yan-Ling Qian
- Yunnan Characteristic Plant Extraction Laboratory Co., Ltd., Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education, Yunnan Key Laboratory of Research and Development for Natural Products, School of Pharmacy, School of Chemical Science and Technology, Yunnan University, Southwest United Graduate School, Kunming, 650091, PR China
| | - Xian-Run Wu
- Yunnan Characteristic Plant Extraction Laboratory Co., Ltd., Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education, Yunnan Key Laboratory of Research and Development for Natural Products, School of Pharmacy, School of Chemical Science and Technology, Yunnan University, Southwest United Graduate School, Kunming, 650091, PR China
| | - Xi Wen
- Key Laboratory of Natural Drug Pharmacology, School of Pharmacy, Kunming Medical University, Kunming, 650500, PR China
| | - Yun-Li Zhao
- Yunnan Characteristic Plant Extraction Laboratory Co., Ltd., Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education, Yunnan Key Laboratory of Research and Development for Natural Products, School of Pharmacy, School of Chemical Science and Technology, Yunnan University, Southwest United Graduate School, Kunming, 650091, PR China.
| | - Xiao-Dong Luo
- Yunnan Characteristic Plant Extraction Laboratory Co., Ltd., Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education, Yunnan Key Laboratory of Research and Development for Natural Products, School of Pharmacy, School of Chemical Science and Technology, Yunnan University, Southwest United Graduate School, Kunming, 650091, PR China; State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences Kunming, 650201, PR China.
| |
Collapse
|
3
|
Wu D, Yang S, Yuan C, Zhang K, Tan J, Guan K, Zeng H, Huang C. Targeting purine metabolism-related enzymes for therapeutic intervention: A review from molecular mechanism to therapeutic breakthrough. Int J Biol Macromol 2024; 282:136828. [PMID: 39447802 DOI: 10.1016/j.ijbiomac.2024.136828] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 10/02/2024] [Accepted: 10/21/2024] [Indexed: 10/26/2024]
Abstract
Purines are ancient metabolites with established and emerging metabolic and non-metabolic signaling attributes. The expression of purine metabolism-related genes is frequently activated in human malignancies, correlating with increased cancer aggressiveness and chemoresistance. Importantly, under certain stimulating conditions, the purine biosynthetic enzymes can assemble into a metabolon called "purinosomes" to enhance purine flux. Current evidence suggests that purine flux is regulated by a complex circuit that encompasses transcriptional, post-translational, metabolic, and association-dependent regulatory mechanisms. Furthermore, purines within the tumor microenvironment modulate cancer immunity through signaling mediated by purinergic receptors. The deregulation of purine metabolism has significant metabolic consequences, particularly hyperuricemia. Herbal-based therapeutics have emerged as valuable pharmacological interventions for the treatment of hyperuricemia by inhibiting the activity of hepatic XOD, modulating the expression of renal urate transporters, and suppressing inflammatory responses. This review summarizes recent advancements in the understanding of purine metabolism in clinically relevant malignancies and metabolic disorders. Additionally, we discuss the role of herbal interventions and the interaction between the host and gut microbiota in the regulation of purine homeostasis. This information will fuel the innovation of therapeutic strategies that target the disease-associated rewiring of purine metabolism for therapeutic applications.
Collapse
Affiliation(s)
- Di Wu
- Institute of Reproductive Medicine, School of Medicine, Nantong University, Nantong 226001, China
| | - Shengqiang Yang
- School of Basic Medicine, Youjiang Medical University for Nationalities, Baise 533000, China
| | - Chenyang Yuan
- College of Veterinary Medicine, Northwest A&F University, Yangling 712100, China
| | - Kejia Zhang
- Institute of Reproductive Medicine, School of Medicine, Nantong University, Nantong 226001, China
| | - Jiachen Tan
- Institute of Reproductive Medicine, School of Medicine, Nantong University, Nantong 226001, China
| | - Kaifeng Guan
- School of Advanced Agricultural Sciences, Peking University, Beijing 100871, China.
| | - Hong Zeng
- School of Basic Medicine, Youjiang Medical University for Nationalities, Baise 533000, China.
| | - Chunjie Huang
- Institute of Reproductive Medicine, School of Medicine, Nantong University, Nantong 226001, China.
| |
Collapse
|
4
|
Hu BY, Zhao YL, He YJ, Qin Y, Luo XD. Undescribed indole lactones from Alstonia scholaris protecting hepatic cell damage. PHYTOCHEMISTRY 2024; 217:113926. [PMID: 37981062 DOI: 10.1016/j.phytochem.2023.113926] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 11/08/2023] [Accepted: 11/09/2023] [Indexed: 11/21/2023]
Abstract
Six previously undescribed rigidly monoterpenoid indole alkaloids, alstolactines F-K (1-6), were isolated from Alstonia scholaris. Among them, a pair of cage-like epimers, 1 and 2, featuring a rare 6/5/6/6/7 ring system, represent the first example of C5→C20-olide, while compound 3 possesses unique degraded C18 and C19. The structures of the isolates were established by multiple spectroscopic analyses, quantum computational chemistry methods, and X-ray diffraction. Furthermore, the expression levels of proteins including NLRP3, TLR4, P-p65, NF-ĸB, Notch-2, IL-18, P-p38, and p38 in LPS-induced human normal hepatocyte (LO2) cells could be significantly downregulated by compounds 1-6, which showed potent anti-inflammatory bioactivity.
Collapse
Affiliation(s)
- Bin-Yuan Hu
- Yunnan Characteristic Plant Extraction Laboratory, Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education and Yunnan Province, School of Chemical Science and Technology, Yunnan University, Kunming, 650501, PR China
| | - Yun-Li Zhao
- Yunnan Characteristic Plant Extraction Laboratory, Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education and Yunnan Province, School of Chemical Science and Technology, Yunnan University, Kunming, 650501, PR China
| | - Ying-Jie He
- Yunnan Characteristic Plant Extraction Laboratory, Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education and Yunnan Province, School of Chemical Science and Technology, Yunnan University, Kunming, 650501, PR China
| | - Yan Qin
- Yunnan Characteristic Plant Extraction Laboratory, Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education and Yunnan Province, School of Chemical Science and Technology, Yunnan University, Kunming, 650501, PR China
| | - Xiao-Dong Luo
- Yunnan Characteristic Plant Extraction Laboratory, Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education and Yunnan Province, School of Chemical Science and Technology, Yunnan University, Kunming, 650501, PR China; State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences Kunming, 650201, PR China.
| |
Collapse
|
5
|
Hu BY, Zhao YL, Xu Y, Wang XN, Luo XD. New Lupanes from Alstonia scholaris Reducing Uric Acid Level. PLANTA MEDICA 2023. [PMID: 37857337 DOI: 10.1055/a-2186-3260] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/21/2023]
Abstract
Twelve lupanes including three new compounds named alstoscholarilups A-C (1: -3: ) were isolated from the leaves of Alstonia scholaris. Their structures were elucidated by spectroscopic analysis and ECD calculation. Structurally, compound 1: with a rare A ring-seco skeleton formed lactone and degraded C-3, while 2: with a 28-nor and 3: with a 29-nor-lupane skeleton supported the phytochemical diversity and novelty of the plant. Pharmacologically, compounds 4, 7: , and 10: reduced the serum uric acid (UA) levels of mice significantly.
Collapse
Affiliation(s)
- Bin-Yuan Hu
- Yunnan Characteristic Plant Extraction Laboratory, Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education and Yunnan Province, School of Chemical Science and Technology, Yunnan University, Kunming, P. R. China
| | - Yun-Li Zhao
- Yunnan Characteristic Plant Extraction Laboratory, Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education and Yunnan Province, School of Chemical Science and Technology, Yunnan University, Kunming, P. R. China
| | - Yuan Xu
- Yunnan Characteristic Plant Extraction Laboratory, Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education and Yunnan Province, School of Chemical Science and Technology, Yunnan University, Kunming, P. R. China
| | - Xiao-Na Wang
- Yunnan Characteristic Plant Extraction Laboratory, Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education and Yunnan Province, School of Chemical Science and Technology, Yunnan University, Kunming, P. R. China
| | - Xiao-Dong Luo
- Yunnan Characteristic Plant Extraction Laboratory, Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education and Yunnan Province, School of Chemical Science and Technology, Yunnan University, Kunming, P. R. China
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, P. R. China
| |
Collapse
|
6
|
Guo R, Shang JH, Ye RH, Zhao YL, Luo XD. Pharmacological investigation of indole alkaloids from Alstonia scholaris against chronic glomerulonephritis. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2023; 118:154958. [PMID: 37453192 DOI: 10.1016/j.phymed.2023.154958] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 06/05/2023] [Accepted: 07/07/2023] [Indexed: 07/18/2023]
Abstract
BACKGROUND As one of the most commonly used folk medicines in "Dai" ethno-medicine system, Alstonia scholaris (l.) R. Br. has also been used for treat "water related diseases", such as chronic kidney disease. However, few study was reported for it on the intervention of chronic glomerulonephritis (CGN). PURPOSE To investigate the effect and potential mechanism of indole alkaloids from A. scholaris leaves in ICR mice with adriamycin nephropathy, as well as providing experimental evidence for the further application. METHODS ICR Mice were selected for injections of adriamycin (ADR) to induce the CGN model and administered total alkaloids (TA) and four main alkaloids continuously for 42 and 28 days, respectively. The pharmacological effects were indicated by serum, urine, and renal pathological observations. The targets and pathways of indole alkaloids on CGN intervention were predicted using the network pharmacology approach, and the immortalized mice glomerular podocyte (MPC5) cells model stimulated by ADR was subsequently selected to further verify this by western blotting and RT-qPCR methods. RESULTS TA and four major compounds dramatically reduced the levels of urinary protein, serum urea nitrogen (BUN), and creatinine (CRE) in ADR - induced CGN mice, while increasing serum albumin (ALB) and total protein (TP) levels as well as ameliorating kidney damage. Moreover, four alkaloids effected on 33 major target proteins and 153 pathways in the CGN, among which, PI3K-Akt as the main pathway, an important pathway for kidney protection by network pharmacology prediction, and then the four target proteins - HRAS, CDK2, HSP90AA1, and KDR were screened. As a result, Val-and Epi can exert a protective effect on ADR-stimulated MPC5 cells injury at a concentration of 50 μM. Furthermore, the proteins and RNA expression of HRAS, HSP90AA1, and KDR were down-regulated, and CDK2 was up-regulated after the intervention of Val-and Epi, which were supported by Western blotting and RT-qPCR. Additionally, Val-and Epi inhibited ROS production in the MPC5 cells model. CONCLUSION This study is the first to confirm the potential therapeutic effect of alkaloids from A. scholaris on CGN. TA with major bioactive components (vallesamine and 19‑epi-scholaricine) could exert protective effects against the ADR-induced CGN by regulating four key proteins: HRAS, CDK2, HSP90AA1, and KDR of the PI3K-Akt pathway.
Collapse
Affiliation(s)
- Rui Guo
- Yunnan Characteristic Plant Extraction Laboratory, Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education and Yunnan Province, School of Chemical Science and Technology, Yunnan University, Kunming 650500, PR China; Chinese Materia Medica, Yunnan University of Chinese Medicine, Kunming 650500, PR China
| | - Jian-Hua Shang
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences Kunming 650201, PR China
| | - Rui-Han Ye
- Chinese Materia Medica, Yunnan University of Chinese Medicine, Kunming 650500, PR China
| | - Yun-Li Zhao
- Yunnan Characteristic Plant Extraction Laboratory, Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education and Yunnan Province, School of Chemical Science and Technology, Yunnan University, Kunming 650500, PR China.
| | - Xiao-Dong Luo
- Yunnan Characteristic Plant Extraction Laboratory, Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education and Yunnan Province, School of Chemical Science and Technology, Yunnan University, Kunming 650500, PR China; State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences Kunming 650201, PR China.
| |
Collapse
|
7
|
Islam F, Khadija JF, Harun-Or-Rashid M, Rahaman MS, Nafady MH, Islam MR, Akter A, Emran TB, Wilairatana P, Mubarak MS. Bioactive Compounds and Their Derivatives: An Insight into Prospective Phytotherapeutic Approach against Alzheimer's Disease. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:5100904. [PMID: 35450410 PMCID: PMC9017558 DOI: 10.1155/2022/5100904] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Accepted: 03/24/2022] [Indexed: 02/07/2023]
Abstract
Alzheimer's disease (AD) is a common neurodegenerative brain disorder that causes cellular response alterations, such as impaired cholinergic mechanism, amyloid-beta (Aβ) AD aggregation, neuroinflammation, and several other pathways. AD is still the most prevalent form of dementia and affects many individuals across the globe. The exact cause of the disorder is obscure. There are yet no effective medications for halting, preventing, or curing AD's progress. Plenty of natural products are isolated from several sources and analyzed in preclinical and clinical settings for neuroprotective effects in preventing and treating AD. In addition, natural products and their derivatives have been promising in treating and preventing AD. Natural bioactive compounds play an active modulatory role in the pathological molecular mechanisms of AD development. This review focuses on natural products from plant sources and their derivatives that have demonstrated neuroprotective activities and maybe promising to treat and prevent AD. In addition, this article summarizes the literature pertaining to natural products as agents in the treatment of AD. Rapid metabolism, nonspecific targeting, low solubility, lack of BBB permeability, and limited bioavailability are shortcomings of most bioactive molecules in treating AD. We can use nanotechnology and nanocarriers based on different types of approaches.
Collapse
Affiliation(s)
- Fahadul Islam
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Dhaka 1207, Bangladesh
| | - Jannatul Fardous Khadija
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Dhaka 1207, Bangladesh
| | - Md. Harun-Or-Rashid
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Dhaka 1207, Bangladesh
| | - Md. Saidur Rahaman
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Dhaka 1207, Bangladesh
| | - Mohamed H. Nafady
- Faculty of Applied Health Science Technology, Misr University for Science and Technology, Giza 12568, Egypt
| | - Md. Rezaul Islam
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Dhaka 1207, Bangladesh
| | - Aklima Akter
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Dhaka 1207, Bangladesh
| | - Talha Bin Emran
- Department of Pharmacy, BGC Trust University Bangladesh, Chittagong 4381, Bangladesh
| | - Polrat Wilairatana
- Department of Clinical Tropical Medicine, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | | |
Collapse
|