1
|
Zhang Y, Tan BY, Peng HZ, Duan Y, Wen X, Li XY, Wu XR, Zhao YL, Luo XD. 10-Methoxy-leonurine accelerated wound healing through ErbB4/PI3K-AKT pathway. JOURNAL OF ETHNOPHARMACOLOGY 2025; 346:119641. [PMID: 40118194 DOI: 10.1016/j.jep.2025.119641] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2025] [Revised: 03/13/2025] [Accepted: 03/14/2025] [Indexed: 03/23/2025]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Leonurusjaponicus Houtt., commonly known as motherwort, has been used in traditional Chinese medicine to treat trauma and wound infections historically. However, the main compounds responsible for promoting wound healing need to be identified and explained fully. AIM OF THE STUDY To investigate the wound healing effect of 10-methoxy-leonurine (MN) and explore its mechanism. MATERIALS AND METHODS Following the UHPLC/Q-TOF-MS analysis of L. japonicus, the phytochemical isolation was carried out, and then the effect of isolated compounds in promoting the proliferation of human skin fibroblasts (HSF) was screened. Additionally, scratch and 5-ethynyl-2'-deoxyuridine assay in HSF were further adopted to support the effects of MN in vitro. A rat model with full-thickness skin wounds was used to verify in vivo by hematoxylin and eosin staining, Masson's trichrome and immunohistochemistry. Furthermore, network pharmacology and molecular docking were performed to predict the potential pathway, which were subsequently validated by cell cycle and RT-qPCR. RESULTS A total 11 compounds were isolated, in which MN exhibited the most significant bioactivity in promoting HSF proliferation and migration. Moreover, the wound healing rates in low (10 μg/mL) and high dose (50 μg/mL) of MN groups reached 93.9 % and 94.5 %, respectively, which was better than basic fibroblast growth factor (bFGF) 89.4 %. Additionally, the epithelial thickness, collagen Ⅰ deposition and α-smooth muscle actin expression were enhanced and the proportion of HSF cells in the S phase of the cell cycle was increased. Network pharmacological and molecular docking analysis suggested ErbB pathway was involved in the regulation of wound healing by MN, which was further supported by the up-regulation of Erbb4, Stat5, Pi3k, Akt and mTOR mRNA levels. CONCLUSION MN showed potent effect on wound healing by regulating ErbB4/PI3K-AKT pathway, even better than bFGF.
Collapse
Affiliation(s)
- Yue Zhang
- Yunnan Characteristic Plant Extraction Laboratory Co. Ltd, Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education, Yunnan Key Laboratory of Research and Development for Natural Products, School of Pharmacy, School of Chemical Science and Technology, Yunnan University, Kunming, 650091, PR China
| | - Bang-Yin Tan
- Yunnan Characteristic Plant Extraction Laboratory Co. Ltd, Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education, Yunnan Key Laboratory of Research and Development for Natural Products, School of Pharmacy, School of Chemical Science and Technology, Yunnan University, Kunming, 650091, PR China; State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, PR China
| | - Hui-Zhen Peng
- School of Chinese Materia Medica and Yunnan Key Laboratory of Southern Medicinal Resource, School of Basic Medicine, Yunnan University of Chinese Medicine, Southwest United Graduate School, Kunming, 650500, PR China
| | - Yu Duan
- Yunnan Characteristic Plant Extraction Laboratory Co. Ltd, Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education, Yunnan Key Laboratory of Research and Development for Natural Products, School of Pharmacy, School of Chemical Science and Technology, Yunnan University, Kunming, 650091, PR China
| | - Xi Wen
- Key Laboratory of Natural Drug Pharmacology, School of Pharmacy, Kunming Medical University, Kunming, 650500, PR China
| | - Xin-Yao Li
- Yunnan Characteristic Plant Extraction Laboratory Co. Ltd, Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education, Yunnan Key Laboratory of Research and Development for Natural Products, School of Pharmacy, School of Chemical Science and Technology, Yunnan University, Kunming, 650091, PR China
| | - Xian-Run Wu
- Yunnan Characteristic Plant Extraction Laboratory Co. Ltd, Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education, Yunnan Key Laboratory of Research and Development for Natural Products, School of Pharmacy, School of Chemical Science and Technology, Yunnan University, Kunming, 650091, PR China
| | - Yun-Li Zhao
- Yunnan Characteristic Plant Extraction Laboratory Co. Ltd, Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education, Yunnan Key Laboratory of Research and Development for Natural Products, School of Pharmacy, School of Chemical Science and Technology, Yunnan University, Kunming, 650091, PR China.
| | - Xiao-Dong Luo
- Yunnan Characteristic Plant Extraction Laboratory Co. Ltd, Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education, Yunnan Key Laboratory of Research and Development for Natural Products, School of Pharmacy, School of Chemical Science and Technology, Yunnan University, Kunming, 650091, PR China; State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, PR China.
| |
Collapse
|
2
|
Dai O, Fan Y, Zhou Q, Liu J, Zuo J, Wang F, Li L, Wang F, Xiong L. Effect of Leonurus japonicus alkaloids on endometrial inflammation and its mechanisms. JOURNAL OF ETHNOPHARMACOLOGY 2025; 342:119432. [PMID: 39904422 DOI: 10.1016/j.jep.2025.119432] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Revised: 01/25/2025] [Accepted: 01/30/2025] [Indexed: 02/06/2025]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE The aerial parts of Leonurus japonicus Houtt. (Chinese motherwort) are famous for their efficacy in treating obstetrical and gynecological diseases in traditional Chinese medicine (TCM). Alkaloids are the major bioactive components of motherwort and have gained extensive attention for alleviating several symptoms of obstetrical and gynecological diseases such as postpartum hemorrhage, postpartum rehabilitation, irregular menstruation, and dysmenorrhea. However, the effects of motherwort alkaloids on endometritis remain unclear. AIM OF THE STUDY The aim of this study was to investigate the effect of motherwort total alkaloids (MTAs) on endometritis and explore the molecular mechanisms using an integrating network analysis and in vitro experimental verification. MATERIALS AND METHODS Ultra-high performance liquid chromatography-tandem quadrupole-orbitrap high-resolution mass spectrometry (UPLC-Q-Orbitrap HRMS) was used to analyze and identify the components in the MTAs. The effects of MTAs were evaluated using bacteria-induced endometritis in rats. Network pharmacology was conducted to predict possible mechanism pathways of MTAs in endometritis. Finally, lipopolysaccharide-stimulated mouse mononuclear macrophage (RAW 264.7) cells and human endometrial epithelial cells were used to identify signaling pathways through which MTAs exert their effects. RESULTS Thirty-nine alkaloids were identified in MTAs using the UPLC-Q-Orbitrap HRMS analysis. Their corresponding putative targets were then predicted. The MTAs exerted pharmacological effects on endometritis through a multi-ingredient and multi-target pattern. Network pharmacology showed that the MTAs had 152 candidate targets in treating endometritis. According to the KEGG analysis, the MTAs were found to potentially affect the PI3K-AKT and NF-κB signaling pathways. The following experiments showed that the MTAs exhibited significant effects on endometritis in vivo, significantly reduced the overproduction of inflammatory mediators, and promoted endometrial cell repair via the PI3K/AKT/NF-κB signaling pathway. CONCLUSIONS Motherwort alkaloids can be used to treat endometrial inflammation by regulating the PI3K/AKT/NF-κB pathway. This study provides a scientific basis for the use of MTAs for treating endometritis.
Collapse
Affiliation(s)
- Ou Dai
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, Sichuan, China
| | - Yunqiu Fan
- State Key Laboratory of Southwestern Chinese Medicine Resources, College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, Sichuan, China; Department of Clinical Medicine, Luzhou People's Hospital, Luzhou, 646000, Sichuan, China
| | - Qinmei Zhou
- Institute of Traditional Chinese Medicine Innovation, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, Sichuan, China.
| | - Juanru Liu
- College of Medical Technology, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, Sichuan, China
| | - Jing Zuo
- State Key Laboratory of Southwestern Chinese Medicine Resources, College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, Sichuan, China
| | - Fang Wang
- Shandong Academy of Pharmaceutical Sciences, Jinan, 250101, China
| | - Lei Li
- State Key Laboratory of Southwestern Chinese Medicine Resources, College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, Sichuan, China
| | - Fei Wang
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, Sichuan, China.
| | - Liang Xiong
- State Key Laboratory of Southwestern Chinese Medicine Resources, College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, Sichuan, China; College of Medical Technology, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, Sichuan, China.
| |
Collapse
|
3
|
Xu Q, Shi MF, Han YF, Liu MY, Liu XB, Ma XN, Feng W, Lin CS, Liu QP. Kunduan Yimu Decoction affected Th17/Treg balance through microRNA-124 to improve rheumatoid arthritis pathology. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 135:156129. [PMID: 39427523 DOI: 10.1016/j.phymed.2024.156129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2024] [Revised: 09/20/2024] [Accepted: 10/03/2024] [Indexed: 10/22/2024]
Abstract
BACKGROUND Rheumatoid arthritis (RA) is an autoimmune condition characterized by inflammation and the deterioration of joints. Current treatments often have side effects, highlighting the need for safer options. This study investigates the therapeutic effects of Kunduan Yimu Decoction (KDYMD) on RA, focusing on the role of miR-124 in regulating Th17/Treg differentiation. METHODS PBMCs from RA patients were analyzed before and after KDYMD treatment. RT-qPCR was used to measure the miR-124 expressions. Flow cytometry was used to assess the ratios of Th17 to Treg cells. ELISA was used to quantify the cytokine concentrations. The effects of KDYMD on JAK2/STAT3 signaling were evaluated by western blot analysis. A CIA mouse model was used to validate the in vivo effects of KDYMD. RESULTS MiR-124 expression was significantly upregulated in PBMCs of RA patients after KDYMD treatment. This upregulation was associated with increased Tip60 and Foxp3 expression and decreased RORγt expression. In the cytokine analysis, IL-1, IL-6, and IL-17A were decreased, and IL-10 and TGF- were increased after treatment. Flow cytometry showed a restoration of the Th17/Treg balance, with a decrease in Th17 and an increase in Treg cells. In vivo, KDYMD treatment ameliorated ankle swelling and arthritis index in CIA mice, comparable to methotrexate (MTX). In addition, KDYMD modulated JAK2/STAT3 signaling and enhanced anti-inflammatory responses. CONCLUSIONS KDYMD exerts significant anti-inflammatory effects in RA by upregulating miR-124, which in turn regulates Th17/Treg differentiation and modulates JAK2/STAT3 signaling. A novel mechanism involving miR-124 and immune cell balance suggests KDYMD could be a promising therapeutic agent for RA.
Collapse
Affiliation(s)
- Qiang Xu
- State Key Laboratory of Traditional Chinese Medicine Syndrome, The First Clinical Medical College of Guangzhou University of Chinese Medicine, Guangzhou, China; Department of Rheumatology, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China; Guangdong Clinical Research Academy of Chinese Medicine, Guangzhou, China.
| | - Mei-Feng Shi
- State Key Laboratory of Traditional Chinese Medicine Syndrome, The First Clinical Medical College of Guangzhou University of Chinese Medicine, Guangzhou, China; Department of Rheumatology, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Yu-Feng Han
- State Key Laboratory of Traditional Chinese Medicine Syndrome, The First Clinical Medical College of Guangzhou University of Chinese Medicine, Guangzhou, China; Department of Rheumatology, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China; Guangdong Clinical Research Academy of Chinese Medicine, Guangzhou, China
| | - Min-Ying Liu
- State Key Laboratory of Traditional Chinese Medicine Syndrome, The First Clinical Medical College of Guangzhou University of Chinese Medicine, Guangzhou, China; Department of Rheumatology, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China; Guangdong Clinical Research Academy of Chinese Medicine, Guangzhou, China
| | - Xiao-Bao Liu
- State Key Laboratory of Traditional Chinese Medicine Syndrome, The First Clinical Medical College of Guangzhou University of Chinese Medicine, Guangzhou, China; Department of Rheumatology, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China; Guangdong Clinical Research Academy of Chinese Medicine, Guangzhou, China
| | - Xiao-Na Ma
- State Key Laboratory of Traditional Chinese Medicine Syndrome, The First Clinical Medical College of Guangzhou University of Chinese Medicine, Guangzhou, China; Department of Rheumatology, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Wei Feng
- State Key Laboratory of Traditional Chinese Medicine Syndrome, The First Clinical Medical College of Guangzhou University of Chinese Medicine, Guangzhou, China; Department of Rheumatology, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Chang-Song Lin
- State Key Laboratory of Traditional Chinese Medicine Syndrome, The First Clinical Medical College of Guangzhou University of Chinese Medicine, Guangzhou, China; Department of Rheumatology, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China; Guangdong Clinical Research Academy of Chinese Medicine, Guangzhou, China.
| | - Qing-Ping Liu
- State Key Laboratory of Traditional Chinese Medicine Syndrome, The First Clinical Medical College of Guangzhou University of Chinese Medicine, Guangzhou, China; Department of Rheumatology, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China; Guangdong Clinical Research Academy of Chinese Medicine, Guangzhou, China.
| |
Collapse
|
4
|
Fiorino E, Rossin D, Vanni R, Aubry M, Giachino C, Rastaldo R. Recent Insights into Endogenous Mammalian Cardiac Regeneration Post-Myocardial Infarction. Int J Mol Sci 2024; 25:11747. [PMID: 39519298 PMCID: PMC11546116 DOI: 10.3390/ijms252111747] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2024] [Revised: 10/29/2024] [Accepted: 10/30/2024] [Indexed: 11/16/2024] Open
Abstract
Myocardial infarction (MI) is a critical global health issue and a leading cause of heart failure. Indeed, while neonatal mammals can regenerate cardiac tissue mainly through cardiomyocyte proliferation, this ability is lost shortly after birth, resulting in the adult heart's inability to regenerate after injury effectively. In adult mammals, the adverse cardiac remodelling, which compensates for the loss of cardiac cells, impairs cardiac function due to the non-contractile nature of fibrotic tissue. Moreover, the neovascularisation after MI is inadequate to restore blood flow to the infarcted myocardium. This review aims to synthesise the most recent insights into the molecular and cellular players involved in endogenous myocardial and vascular regeneration, facilitating the identification of mechanisms that could be targeted to trigger cardiac regeneration, reduce fibrosis, and improve functional recovery post-MI. Reprogramming adult cardiomyocytes to regain their proliferative potential, along with the modulation of target cells responsible for neovascularisation, represents promising therapeutic strategies. An updated overview of endogenous mechanisms that regulate both myocardial and coronary vasculature regeneration-including stem and progenitor cells, growth factors, cell cycle regulators, and key signalling pathways-could help identify new critical intervention points for therapeutic applications.
Collapse
Affiliation(s)
| | | | | | | | | | - Raffaella Rastaldo
- Department of Clinical and Biological Sciences, University of Turin, Regione Gonzole 10, 10043 Orbassano, Italy; (E.F.); (D.R.); (R.V.); (M.A.); (C.G.)
| |
Collapse
|
5
|
Wei W, Xu D, Hu F, Jiang T, Liu H. Platelet-rich plasma promotes wound repair in diabetic foot ulcer mice via the VEGFA/VEGFR2/ERK pathway. Growth Factors 2024; 42:161-170. [PMID: 39543829 DOI: 10.1080/08977194.2024.2422014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Accepted: 09/18/2024] [Indexed: 11/17/2024]
Abstract
Diabetic foot ulcers (DFUs) are a severe microvascular complication. Platelet-rich plasma (PRP) pitches in DFU treatment. This study explored the mechanism of PRP facilitating wound repair in DFU mice via vascular endothelial growth factor A (VEGFA)/VEGF receptor 2 (VEGFR2)/extracellular signal-regulated kinase (ERK) pathway. The DFU mouse model was established, with wound skin injected with PRP, followed by the detections of wound area, histopathological changes, and CD31-positive cells. IL-6/TNF-α/VEGFA/VEGFR2/p-VEGFR2/(ERK1/2)/(p-ERK1/2) levels in wound tissue homogenates were assessed. VEGFA-VEGFR2 interaction was evaluated. PRP-treated DFU mice were simultaneously treated with fruquintinib/PD98059. PRP reduced wound area, IL-6 and TNF-α levels, elevated epidermal dermal thickness, CD31-positive cell number, and aligned tissue structure, which were mitigated by fruquintinib/PD98059. PRP promoted VEGFR2 phosphorylation. PRP and fruquintinib/PD98059 abated p-VEGFR2/VEGFR2 or p-ERK1/2/ERK1/2 levels in DFU mice. PRP activated the ERK pathway through VEGFA/VEGFR2. Collectively, PRP promoted VEGFR2 phosphorylation and activated the ERK pathway, thereby facilitating wound repair in DFU mice.
Collapse
Affiliation(s)
- Weiqiang Wei
- Department of Orthopaedics, The Fourth Hospital of Changsha, Changsha, China
| | - Di Xu
- Department of Orthopaedics, The Fourth Hospital of Changsha, Changsha, China
| | - Fan Hu
- Department of Orthopaedics, The Fourth Hospital of Changsha, Changsha, China
| | - Tenglong Jiang
- Department of Orthopaedics, The Fourth Hospital of Changsha, Changsha, China
| | - Hong Liu
- Department of Orthopaedics, The Fourth Hospital of Changsha, Changsha, China
| |
Collapse
|
6
|
Choudhary S, Khan S, Rustagi S, Rajpal VR, Khan NS, Kumar N, Thomas G, Pandey A, Hamurcu M, Gezgin S, Zargar SM, Khan MK. Immunomodulatory Effect of Phytoactive Compounds on Human Health: A Narrative Review Integrated with Bioinformatics Approach. Curr Top Med Chem 2024; 24:1075-1100. [PMID: 38551050 DOI: 10.2174/0115680266274272240321065039] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 02/08/2024] [Accepted: 02/16/2024] [Indexed: 07/16/2024]
Abstract
BACKGROUND Immunomodulation is the modification of immune responses to control disease progression. While the synthetic immunomodulators have proven efficacy, they are coupled with toxicity and other adverse effects, and hence, the efforts were to identify natural phytochemicals with immunomodulatory potential. OBJECTIVE To understand the immunomodulatory properties of various phytochemicals and investigate them in Echinacea species extracts using an in silico approach. METHODOLOGY Several scientific database repositories were searched using different keywords: "Phytochemicals," "Alkaloids," "Polyphenols," "Flavonoids," "Lectins," "Glycosides," "Tannins," "Terpenoids," "Sterols," "Immunomodulators," and "Human Immune System" without any language restriction. Additionally, the study specifically investigated the immunomodulatory properties of Echinacea species extracts using gene expression analysis of GSE12259 from NCBI-GEO through the Bioconductor package GEOquery and limma. RESULTS A total of 182 studies were comprehensively analyzed to understand immunomodulatory phytochemicals. The in silico analysis highlighted key biological processes (positive regulation of cytokine production, response to tumor necrosis factor) and molecular functions (cytokine receptor binding, receptor-ligand activity, and cytokine activity) among Echinacea species extracts contributing to immune responses. Further, it also indicated the association of various metabolic pathways, i.e., pathways in cancer, cytokine-cytokine receptor interaction, NF-kappa B, PI3K-Akt, TNF, MAPK, and NOD-like receptor signaling pathways, with immune responses. The study revealed various hub targets, including CCL20, CCL4, GCH1, SLC7A11, SOD2, EPB41L3, TNFAIP6, GCLM, EGR1, and FOS. CONCLUSION The present study presents a cumulative picture of phytochemicals with therapeutic benefits. Additionally, the study also reported a few novel genes and pathways in Echinacea extracts by re-analyzing GSE 12259 indicating its anti-inflammatory, anti-viral, and immunomodulatory properties.
Collapse
Affiliation(s)
| | - Sheeba Khan
- Department of Food Technology, Sam Higginbottom University of Agriculture Technology and Sciences, Prayagraj, 21107, India
| | - Shivani Rustagi
- Department of Food Processing and Technology, Gautam Buddha University, Greater Noida, 201312, India
| | - Vijay Rani Rajpal
- Department of Botany, Hansraj College, University of Delhi, Delhi, 110007, India
| | - Noor Saba Khan
- ICMR-National Institute of Pathology, New Delhi, 110091, India
| | - Neeraj Kumar
- ICMR-National Institute of Pathology, New Delhi, 110091, India
| | - George Thomas
- Department of Molecular and Cellular Engineering, Sam Higginbottom University of Agriculture Technology and Sciences, Prayagraj, 21107, India
| | - Anamika Pandey
- Department of Soil Science and Plant Nutrition, Faculty of Agriculture, Selcuk University, Konya, 42079, Turkey
| | - Mehmet Hamurcu
- Department of Soil Science and Plant Nutrition, Faculty of Agriculture, Selcuk University, Konya, 42079, Turkey
| | - Sait Gezgin
- Department of Soil Science and Plant Nutrition, Faculty of Agriculture, Selcuk University, Konya, 42079, Turkey
| | - Sajad Majeed Zargar
- Proteomics Laboratory, Division of Plant Biotechnology, Sher-e-Kashmir University of Agricultural Sciences and Technology of Kashmir (SKUAST-K), Srinagar, 190025, India
| | - Mohd Kamran Khan
- Department of Soil Science and Plant Nutrition, Faculty of Agriculture, Selcuk University, Konya, 42079, Turkey
| |
Collapse
|
7
|
Dou Y, Shu L, Jia X, Yao Y, Chen S, Xu Y, Li Y. Rapid classification and identification of chemical constituents in Leonurus japonicus Houtt based on UPLC-Q-Orbitrap-MS combined with data post-processing techniques. JOURNAL OF MASS SPECTROMETRY : JMS 2023; 58:e4978. [PMID: 37946617 DOI: 10.1002/jms.4978] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 09/25/2023] [Accepted: 09/26/2023] [Indexed: 11/12/2023]
Abstract
Leonurus japonicus Houtt (LJH) is a bulk medicinal material commonly used in clinical practice, but its complex constituents have not been completely understood, posing challenges to pharmacology, pharmacokinetic research, and scientific and rational drug use. As a result, it is critical to develop an efficient and accurate method for classifying and identifying the chemical composition of LJH. In this study, ultra-performance liquid chromatography-quadrupole electrostatic field-orbital trap high resolution mass spectrometry (UPLC-Q-Orbitrap-MS) was successfully established, along with two data post-processing techniques, characteristic fragmentations (CFs) and neutral losses (NLs), to quickly classify and identify the chemical constituents in LJH. As a result, 44 constituents of LJH were identified, including four alkaloids, 20 flavonoids, two phenylpropanoids, 17 organic acids, and one amino acid. The method in this paper enables classification and identification of chemical compositions rapidly, providing a scientific foundation for further research on the effective and toxic substances of LJH.
Collapse
Affiliation(s)
- Yajie Dou
- School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Lexin Shu
- School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Xuchen Jia
- School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Yaqi Yao
- School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Siyue Chen
- School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Yanyan Xu
- School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Yubo Li
- School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| |
Collapse
|
8
|
Cao Q, Wang Q, Wu X, Zhang Q, Huang J, Chen Y, You Y, Qiang Y, Huang X, Qin R, Cao G. A literature review: mechanisms of antitumor pharmacological action of leonurine alkaloid. Front Pharmacol 2023; 14:1272546. [PMID: 37818195 PMCID: PMC10560730 DOI: 10.3389/fphar.2023.1272546] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Accepted: 09/08/2023] [Indexed: 10/12/2023] Open
Abstract
Leonurine refers to the desiccated aerial portion of a plant in the Labiatae family. The primary bioactive constituent of Leonurine is an alkaloid, Leonurine alkaloid (Leo), renowned for its substantial therapeutic efficacy in the treatment of gynecological disorders, in addition to its broad-spectrum antineoplastic capabilities. Over recent years, the pharmacodynamic mechanisms of Leo have garnered escalating scholarly interest. Leo exhibits its anticancer potential by means of an array of mechanisms, encompassing the inhibition of neoplastic cell proliferation, induction of both apoptosis and autophagy, and the containment of oncogenic cell invasion and migration. The key signal transduction pathways implicated in these processes include the Tumor Necrosis Factor-Related Apoptosis-Inducing Ligand (TRAIL), the Phosphoinositide3-Kinase/Serine/Threonine Protein Kinase (PI3K/AKT), the Signal Transducer and Activator of Transcription 3 (STAT3), and the Mitogen-Activated Protein/Extracellular Signal-Regulated Kinase (MAP/ERK). This paper commences with an exploration of the principal oncogenic cellular behaviors influenced by Leo and the associated signal transduction pathways, thereby scrutinizing the mechanisms of Leo in the antineoplastic sequence of events. The intention is to offer theoretical reinforcement for the elucidation of more profound mechanisms underpinning Leo's anticancer potential and correlating pharmaceutical development.
Collapse
Affiliation(s)
- Qiang Cao
- Department of Earth Sciences, Kunming University of Science and Technology, Kunming, China
- School of Medicine, Macau University of Science and Technology, Taipa, China
| | - Qi Wang
- Department of Gastroenterology, Affiliated Hospital of Jiangsu University, Jiangsu University, Zhenjiang, China
| | - Xinyan Wu
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Qi Zhang
- Undergraduate Department, Taishan University, Taian, China
| | - Jinghan Huang
- Undergraduate Department, Sichuan Conservatory of Music, Chengdu, China
| | - Yuquan Chen
- Institute of Medical Information/Library, Chinese Academy of Medical Sciences, Beijing, China
| | - Yanwei You
- Division of Sports Science and Physical Education, Tsinghua University, Beijing, China
| | - Yi Qiang
- Department of Earth Sciences, Kunming University of Science and Technology, Kunming, China
| | - Xufeng Huang
- Faculty of Dentistry, University of Debrecen, Debrecen, Hungary
| | - Ronggao Qin
- Department of Earth Sciences, Kunming University of Science and Technology, Kunming, China
| | - Guangzhu Cao
- Department of Earth Sciences, Kunming University of Science and Technology, Kunming, China
| |
Collapse
|
9
|
Yu J, Ke L, Zhou J, Ding C, Yang H, Yan D, Yu C. Stachydrine Relieved the Inflammation and Promoted the Autophagy in Diabetes Retinopathy Through Activating the AMPK/SIRT1 Signaling Pathway. Diabetes Metab Syndr Obes 2023; 16:2593-2604. [PMID: 37649589 PMCID: PMC10464895 DOI: 10.2147/dmso.s420253] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/06/2023] [Accepted: 08/10/2023] [Indexed: 09/01/2023] Open
Abstract
Background Diabetes retinopathy (DR) is a chronic, progressive, and potentially harmful retinal disease associated with persistent hyperglycemia. Autophagy is a lysosome-dependent degradation pathway that widely exists in eukaryotic cells, which has recently been demonstrated to participate in the DR development. Stachydrine (STA) is a water-soluble alkaloid extracted from Leonurus heterophyllus. This study aimed to explore the effects of STA on the autophagy in DR progression in vivo and in vitro. Methods High glucose-treated human retinal microvascular endothelial cells (HRMECs) and STA-treated rats were used to establish DR model. The reactive oxygen species (ROS) and inflammatory factor levels (TNF-α, IL-1β, and IL-6) were determined using corresponding kits. Additionally, the cell growth was analyzed using CCK-8 and EdU assays. Besides, LC3BII, p62, p-AMPKα, AMPKα, and SIRT1 protein levels were measured using Western blot. The LC3BII and SIRT1 expressions were also determined using immunofluorescence. Results The results showed that STZ decreased the ROS and inflammatory factor levels in the HG-treated HRMECs. Besides, after STA treatment, the beclin-1, LC3BII, p-AMPKα, and SIRT1 levels were increased, and p62 was decreased in the HG-treated HRMECs and the retinal tissue of STZ-treated rats. Conclusion In conclusion, this study demonstrated that STA effectively relieved the inflammation and promoted the autophagy in DR progression in vivo and in vitro through activating the AMPK/SIRT1 signaling pathway.
Collapse
Affiliation(s)
- Jiewei Yu
- Department of Ophthalmology, Jiujiang Hospital of Traditional Chinese Medicine, Jiujiang, Jiangxi, 332000, People’s Republic of China
| | - Lingling Ke
- Department of Ophthalmology, Jiujiang Hospital of Traditional Chinese Medicine, Jiujiang, Jiangxi, 332000, People’s Republic of China
| | - Jingjing Zhou
- Image Center, Jiujiang Hospital of Traditional Chinese Medicine, Jiujiang, Jiangxi, 332000, People’s Republic of China
| | - Chunyan Ding
- Department of Ophthalmology, Jiujiang Hospital of Traditional Chinese Medicine, Jiujiang, Jiangxi, 332000, People’s Republic of China
| | - Hui Yang
- Department of Ophthalmology, Jiujiang Hospital of Traditional Chinese Medicine, Jiujiang, Jiangxi, 332000, People’s Republic of China
| | - Dongbiao Yan
- Department of Endocrinology, Jiujiang Hospital of Traditional Chinese Medicine, Jiujiang, Jiangxi, 332000, People’s Republic of China
| | - Chengbi Yu
- Department of Endocrinology, Jiujiang Hospital of Traditional Chinese Medicine, Jiujiang, Jiangxi, 332000, People’s Republic of China
| |
Collapse
|
10
|
Song YY, Liang D, Liu DK, Lin L, Zhang L, Yang WQ. The role of the ERK signaling pathway in promoting angiogenesis for treating ischemic diseases. Front Cell Dev Biol 2023; 11:1164166. [PMID: 37427386 PMCID: PMC10325625 DOI: 10.3389/fcell.2023.1164166] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2023] [Accepted: 06/12/2023] [Indexed: 07/11/2023] Open
Abstract
The main treatment strategy for ischemic diseases caused by conditions such as poor blood vessel formation or abnormal blood vessels involves repairing vascular damage and encouraging angiogenesis. One of the mitogen-activated protein kinase (MAPK) signaling pathways, the extracellular signal-regulated kinase (ERK) pathway, is followed by a tertiary enzymatic cascade of MAPKs that promotes angiogenesis, cell growth, and proliferation through a phosphorylation response. The mechanism by which ERK alleviates the ischemic state is not fully understood. Significant evidence suggests that the ERK signaling pathway plays a critical role in the occurrence and development of ischemic diseases. This review briefly describes the mechanisms underlying ERK-mediated angiogenesis in the treatment of ischemic diseases. Studies have shown that many drugs treat ischemic diseases by regulating the ERK signaling pathway to promote angiogenesis. The prospect of regulating the ERK signaling pathway in ischemic disorders is promising, and the development of drugs that specifically act on the ERK pathway may be a key target for promoting angiogenesis in the treatment of ischemic diseases.
Collapse
Affiliation(s)
- Yue-Yue Song
- Innovation Institute of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Dan Liang
- Innovation Institute of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - De-Kun Liu
- College of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Lin Lin
- Innovation Institute of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Lei Zhang
- College of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Wen-Qing Yang
- Innovation Institute of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
- Shandong Province Cardiovascular Disease Chinese Medicine Precision Diagnosis Engineering Laboratory, Shandong University of Traditional Chinese Medicine, Jinan, China
| |
Collapse
|
11
|
Tan JQ, Zhang L, Xu HX. Garcinia oligantha: A comprehensive overview of ethnomedicine, phytochemistry and pharmacology. JOURNAL OF ETHNOPHARMACOLOGY 2023; 306:116130. [PMID: 36621661 DOI: 10.1016/j.jep.2022.116130] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 12/10/2022] [Accepted: 12/30/2022] [Indexed: 06/17/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Garcinia oligantha Merr. is an ethnomedicine plant mainly distributed in Guangdong and Hainan, China. It has the effects of heat-clearing and detoxicating, which has been used by local ethnic minorities to treat a variety of diseases, including inflammation, internal heat, toothache and scald. THE AIM OF THE REVIEW This review summarizes and discusses the progress of the chemical compounds and biological activities of G. oligantha that have been studied in recent years to provide the direction for the prospective research and applications of G. oligantha. MATERIALS AND METHODS The relevant literature about G. oligantha was accessible from ancient Chinese medical books and records, theses, as well as major scientific databases such as Google Scholar, PubMed, Web of Science, ScienceDirect, SciFinder, Baidu Scholar and China National Knowledge Infrastructure (CNKI). RESULTS To date, more than 150 chemical compounds were isolated from this plant, including xanthones, volatile oil, fatty acid, benzofurane derivative and biphenyl compounds. Xanthones are the main bioactive compounds that exhibit diverse biological effects, such as antitumor, analgesic, anti-inflammatory, antioxidative, neuroprotective, antimalarial and antibacterial effects, which are consistent with its traditional uses as a folk medicine. Modern pharmacological studies show that these compounds participate in a variety of signaling pathways underlying different pathophysiologies, making them a valuable medicinal resource. CONCLUSION G. oligantha is an ethnomedicine with a long history. However, due to regional and cultural constraints, the popularisation and use of ethnomedicine are still limited. Modern pharmacological and chemical research suggest that G. oligantha contains a variety of bioactive compounds and showed diverse biological functions, which is worthy of comprehensive and in-depth research. This review summarizes and discusses the recent progress in studies on G. oligantha, looking forward to promote further research and sustainable development of folk medicinal plants.
Collapse
Affiliation(s)
- Jia-Qi Tan
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China; Engineering Research Center of Shanghai Colleges for TCM New Drug Discovery, Shanghai, 201203, China
| | - Li Zhang
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China; Engineering Research Center of Shanghai Colleges for TCM New Drug Discovery, Shanghai, 201203, China.
| | - Hong-Xi Xu
- Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China.
| |
Collapse
|
12
|
Luan X, Zhang WD, Ge GB. Interdisciplinary strategies for deciphering the mechanisms of Chinese medicines. JOURNAL OF ETHNOPHARMACOLOGY 2023; 306:116170. [PMID: 36646155 DOI: 10.1016/j.jep.2023.116170] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Affiliation(s)
- Xin Luan
- Shanghai Frontiers Science Center of TCM Chemical Biology, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China.
| | - Wei-Dong Zhang
- Shanghai Frontiers Science Center of TCM Chemical Biology, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China.
| | - Guang-Bo Ge
- Shanghai Frontiers Science Center of TCM Chemical Biology, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China.
| |
Collapse
|
13
|
Budiawan A, Purwanto A, Puradewa L, Cahyani ED, Purwaningsih CE. Wound healing activity and flavonoid contents of purslane ( Portulaca grandiflora) of various varieties. RSC Adv 2023; 13:9871-9877. [PMID: 36998519 PMCID: PMC10043994 DOI: 10.1039/d3ra00868a] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Accepted: 03/17/2023] [Indexed: 03/30/2023] Open
Abstract
Purslane has various varieties with different active metabolite contents that need to be explored further to find each variety's activity in wound healing. Different purslane herbs showed different antioxidant activities, suggesting they will have different flavonoid content and wound healing activity. This research aimed to evaluate purslane's total flavonoid content and wound-healing activity. The wounds induced on the rabbit back skin were divided into 6 treatment groups such as negative control, positive control, 10 and 20% purslane herbs extract varieties A, and 10 and 20% purslane herbs extract varieties C. Wounds were treated twice daily for 2 weeks, and measured on day 0, 7, 11, and 14. Total flavonoid content was measured with the AlCl3 colorimetric method. The wounds treated with 10 and 20% purslane herbs extract varieties A (Portulaca grandiflora magenta flower) have 0.32 ± 0.55 and 1.63 ± 1.96 mm wound diameters on day 7 and healed on day 11. The wounds treated with 10 and 20% purslane herbs extract varieties C (Portulaca grandiflora pink flower) showed 2.88 ± 0.51 and 0.84 ± 1.45 mm diameter and healed on day 11. The purslane herb A showed the highest wound healing activity, and purslane varieties A and C total flavonoid contents were 0.55 ± 0.02 and 1.58 ± 0.02% w/w, respectively.
Collapse
Affiliation(s)
- Antonius Budiawan
- Pharmacy Diploma III Department, Widya Mandala Surabaya Catholic University Manggis 15-17 Madiun City 63131 East Java Indonesia
| | - Agus Purwanto
- Biology Department, Widya Mandala Surabaya Catholic University Manggis 15-17 Madiun City 63131 East Java Indonesia
| | - Levi Puradewa
- Pharmacy Diploma III Department, Widya Mandala Surabaya Catholic University Manggis 15-17 Madiun City 63131 East Java Indonesia
| | - Erlien Dwi Cahyani
- Pharmacy Diploma III Department, Widya Mandala Surabaya Catholic University Manggis 15-17 Madiun City 63131 East Java Indonesia
| | | |
Collapse
|
14
|
Zhang S, Nie H, Yang Y, Yang L, He J. Activating Blood Circulation, Anti-Inflammatory and Diuretic Effects of Leonurus japonicus Extract on a Rat Model of Trauma Blood Stasis and Its Phytochemical Profiling. Chem Biodivers 2023; 20:e202201176. [PMID: 36746759 DOI: 10.1002/cbdv.202201176] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2022] [Revised: 02/05/2023] [Accepted: 02/06/2023] [Indexed: 02/08/2023]
Abstract
Leonurus japonicus Houtt. has been traditionally used to treat many ailments. This study evaluated the activating blood circulation, anti-inflammatory, and diuretic effects of L. japonicus extract (LJ) and identified its phytochemicals. In this work, the phytochemicals in LJ were identified using liquid chromatography mass spectrometry. Rats were randomly assigned to three groups (n=8): Control group was treated with saline, while the Model group (saline) and LJ group (426 mg/kg) had induced traumatic injury. All rats were treated with once by daily oral gavage for one week. The biochemical indices and protein expression were measured. Herein, 79 constituents were identified in LJ, which were effective in elevating body weight, food consumption, water intake, and urinary excretion volume, as well as in ameliorating traumatic muscle tissues in model rats. In addition, LJ prominently decreased the contents of plasma viscosity, platelet aggregation rate, thrombin time, prothrombin time, activated partial thromboplastin time, fibrinogen, thromboxane B2 (TXB2), TXB2/6-keto-prostaglandin F1α (6-keto-PGF1α), urokinase-type plasminogen activator (u-PA), plasminogen activator inhibitor 1 (PAI-1), PAI-1/tissue-type PA (t-PA), and PAI-1/u-PA, while significantly increasing antithrombin III, 6-keto-PGF1α, and t-PA contents. Furthermore, LJ notably inhibited tumor necrosis factor alpha, interleukin 6 (IL-6), IL-8, angiotensin II, antidiuretic hormone, aldosterone, aquaporin 1 (AQP1), AQP2, and AQP3 levels, and markedly elevating IL-10 and natriuretic peptide levels. Finally, LJ markedly reduced the protein expression of AQP1, AQP2, and AQP3 compared to the model group. Collectively, LJ possessed prominent activating blood circulation, anti-inflammatory, and diuretic effects, thus supporting the clinical application of L. japonicus.
Collapse
Affiliation(s)
- Shengyuan Zhang
- Guangdong Provincial Key Laboratory of Conservation and Precision Utilization of Characteristic Agricultural Resources in Mountainous Aeras, Jiaying University, Meizhou, 514015, P. R. China
| | - Hua Nie
- Guangdong Provincial Key Laboratory of Conservation and Precision Utilization of Characteristic Agricultural Resources in Mountainous Aeras, Jiaying University, Meizhou, 514015, P. R. China
| | - Yali Yang
- Guangdong Provincial Key Laboratory of Conservation and Precision Utilization of Characteristic Agricultural Resources in Mountainous Aeras, Jiaying University, Meizhou, 514015, P. R. China
| | - Li Yang
- Jiangxi University of Chinese Medicine, Nanchang, 330004, P. R. China
| | - Junwei He
- Jiangxi University of Chinese Medicine, Nanchang, 330004, P. R. China
| |
Collapse
|
15
|
Zhu S, Qin W, Liu T, Liu T, Ma H, Hu C, Yue X, Yan Y, Lv Y, Wang Z, Zhao Z, Wang X, Liu Y, Xia Q, Zhang H, Li N. Modified Qing’e Formula protects against UV-induced skin oxidative damage via the activation of Nrf2/ARE defensive pathway. Front Pharmacol 2022; 13:976473. [PMID: 36386207 PMCID: PMC9650274 DOI: 10.3389/fphar.2022.976473] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Accepted: 10/12/2022] [Indexed: 11/24/2022] Open
Abstract
Exposure to ultraviolet (UV) light triggers the rapid generation and accumulation of reactive oxygen species (ROS) in skin cells, which increases oxidative stress damage and leads to photoaging. Nuclear factor E2-related factor 2 (Nrf2) modulates the antioxidant defense of skin cells against environmental factors, especially ultraviolet radiation. Natural products that target Nrf2-regulated antioxidant reactions are promising candidates for anti-photoaging. The aim of this study was to investigate the protective effect of Modified Qing’e Formula (MQEF) on UV-induced skin oxidative damage and its molecular mechanisms. In this study, the photoaging models of human keratinocytes (HaCaT) and ICR mice were established by UV irradiation. In vitro models showed that MQEF displayed potent antioxidant activity, significantly increased cell viability and reduced apoptosis and excess ROS levels. Meanwhile, the knockdown of Nrf2 reversed the antioxidant and anti-apoptotic effects of MQEF. In vivo experiments indicated that MQEF could protect the skin against UV-exposed injury which manifested by water loss, sensitivity, tanning, wrinkling, and breakage of collagen and elastic fibers. The application of MQEF effectively increased the activity of antioxidant enzymes and reduced the content of malondialdehyde (MDA) in mice. In addition, MQEF was able to activate Nrf2 nuclear translocation in mouse skin tissue. In summary, MQEF may attenuate UV-induced photoaging by upregulating Nrf2 expression and enhancing antioxidant damage capacity. MQEF may be a potential candidate to prevent UV-induced photoaging by restoring redox homeostasis.
Collapse
Affiliation(s)
- Shan Zhu
- State Key Laboratory of Component Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
- State Key Laboratory of Formulation, Ministry of Education, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Wenxiao Qin
- State Key Laboratory of Component Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
- State Key Laboratory of Formulation, Ministry of Education, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Tao Liu
- State Key Laboratory of Component Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
- State Key Laboratory of Formulation, Ministry of Education, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Tao Liu
- State Key Laboratory of Component Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
- State Key Laboratory of Formulation, Ministry of Education, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Hongfei Ma
- State Key Laboratory of Component Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
- State Key Laboratory of Formulation, Ministry of Education, Tianjin University of Traditional Chinese Medicine, Tianjin, China
- Engineering Research Center of Modern Chinese Medicine Discovery and Preparation Technique, Ministry of Education, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Cunyu Hu
- State Key Laboratory of Component Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
- State Key Laboratory of Formulation, Ministry of Education, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Xiaofeng Yue
- State Key Laboratory of Component Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
- State Key Laboratory of Formulation, Ministry of Education, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Yiqi Yan
- State Key Laboratory of Component Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
- State Key Laboratory of Formulation, Ministry of Education, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Yingshuang Lv
- State Key Laboratory of Component Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
- State Key Laboratory of Formulation, Ministry of Education, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Zijing Wang
- State Key Laboratory of Component Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
- State Key Laboratory of Formulation, Ministry of Education, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Zhiyue Zhao
- State Key Laboratory of Component Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
- State Key Laboratory of Formulation, Ministry of Education, Tianjin University of Traditional Chinese Medicine, Tianjin, China
- Engineering Research Center of Modern Chinese Medicine Discovery and Preparation Technique, Ministry of Education, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Xiang Wang
- State Key Laboratory of Component Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
- State Key Laboratory of Formulation, Ministry of Education, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Yan Liu
- Tianjin University of Technology, Tianjin, China
| | - Qingmei Xia
- State Key Laboratory of Component Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
- State Key Laboratory of Formulation, Ministry of Education, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Han Zhang
- State Key Laboratory of Component Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
- State Key Laboratory of Formulation, Ministry of Education, Tianjin University of Traditional Chinese Medicine, Tianjin, China
- *Correspondence: Han Zhang, ; Nan Li,
| | - Nan Li
- State Key Laboratory of Component Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
- State Key Laboratory of Formulation, Ministry of Education, Tianjin University of Traditional Chinese Medicine, Tianjin, China
- Engineering Research Center of Modern Chinese Medicine Discovery and Preparation Technique, Ministry of Education, Tianjin University of Traditional Chinese Medicine, Tianjin, China
- *Correspondence: Han Zhang, ; Nan Li,
| |
Collapse
|
16
|
Autologous Bioactive Compound Concentrated Growth Factor Ameliorates Fistula Healing of Anal Fistula in a Pig Model and Promotes Proliferation and Migration of Human Skin Fibroblasts via Regulating the MEK/ERK Pathway. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:7660118. [PMID: 36281422 PMCID: PMC9587676 DOI: 10.1155/2022/7660118] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Revised: 08/20/2022] [Accepted: 08/23/2022] [Indexed: 11/18/2022]
Abstract
Recent evidence suggested that autologous concentrated growth factor (CGF), a new bioactive compound from autologous blood is used widely as an ingenious biomaterial in tissue regeneration with anti-inflammatory properties. This study investigated whether CGF could be involved in the treatment of fistula healing in the anal fistula. For this purpose, the porcine anal fistula model was conducted using the rubber band ligation method and collected pig autogenic CGF to treat the fistulas. CGF treatment promoted fistula healing, which was reflected in the downregulation of inflammatory factors, upregulation of growth factors, and promoted epithelial-mesenchymal transition with increased collagen synthesis. Besides, 16S rRNA gene sequencing analysis of fistula tissues between the control and CGF groups showed that the microbial populations exhibiting significant differences were VadinCA02, Blastomonas, Deinococcus, Devosia, Sphingomonas, Rubrobacteria, and GW_34. CGF of volunteers were collected to process small interfering RNA- (siRNA-) ERK or siRNA-negative control transfected human skin fibroblasts (HSF). The results showed that CGF also promoted the proliferation and extracellular matrix-related functions in HSF, as well as activated the MEK/ERK pathway in vitro and in vivo. Finally, knockdown ERK reversed the effects of CGF in promoting wound healing in HSF. Collectively, our results suggest that the CGF as the bioactive compound from autologous blood exhibited great potential for repairing fistulas as well as promoting the proliferation and migration of human skin fibroblasts by triggering MEK/ERK signaling. These findings provided a fresh perspective for understanding the role of CGF in the management of fistulas.
Collapse
|