1
|
Ding J, Xue Q, Guo W, Cheng G, Zhang L, Huang T, Wu D, Tong J, Yang C, Gao Y, Li Z. Mechanism of astragaloside A against lung adenocarcinoma based on network pharmacology combined with molecular dynamics simulation technique. Sci Rep 2025; 15:12033. [PMID: 40200025 PMCID: PMC11978951 DOI: 10.1038/s41598-025-94793-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2024] [Accepted: 03/17/2025] [Indexed: 04/10/2025] Open
Abstract
This study explores the mechanisms of Astragaloside A (AS-A), a significant active ingredient in Astragalus, This traditional Chinese medicine is both a medication and a food, combating lung adenocarcinoma using network pharmacology, molecular docking, molecular dynamics, and experimental validation. A protein-protein interaction (PPI) network was developed, identifying 10 key targets, including STAT3 and AKT1. GO and KEGG enrichment analyses indicated that these targets primarily participated in biological processes and pathways, including oxidative stress and the PI3K-Akt signalling pathway. Molecular docking and dynamic simulation evaluated AS-A's binding mode and stability with key targets. In molecular docking, 14 key targets of the HIF-1 signalling pathway had different binding energies with AS-A, such as the binding energy of PIK3R1 being -9.3. Kinetic simulations indicated the stability of the protein-ligand complex, as evidenced by RMSD values ranging from 0.2 to 0.4 nm. RMSF analysis showed that the protein residue flexibility characteristics were stable, the Rg values were stable, the number of hydrogen bonds was 10-20, and the solvent-accessible surface area was stable. Cell experiments showed that AS-A could regulate the expression of key signalling molecules such as STAT3 and AKT in lung adenocarcinoma models. This study provides insights into the mechanism of AS-A in treating lung adenocarcinoma. It proposes a new direction for anticancer research in traditional Chinese medicines, especially medications and foods.
Collapse
Affiliation(s)
- Jian Ding
- Department of First Affiliated Hospital of Anhui University of Chinese Medicine, Hefei, 230031, China
- Anhui University of Chinese Medicine, Hefei, 230038, China
| | - Qian Xue
- Department of First Affiliated Hospital of Anhui University of Chinese Medicine, Hefei, 230031, China
- Anhui University of Chinese Medicine, Hefei, 230038, China
| | - Weizhen Guo
- Department of First Affiliated Hospital of Anhui University of Chinese Medicine, Hefei, 230031, China
- Anhui University of Chinese Medicine, Hefei, 230038, China
| | - Gang Cheng
- Department of First Affiliated Hospital of Anhui University of Chinese Medicine, Hefei, 230031, China
- Anhui University of Chinese Medicine, Hefei, 230038, China
| | - Lu Zhang
- Department of First Affiliated Hospital of Anhui University of Chinese Medicine, Hefei, 230031, China
- Anhui University of Chinese Medicine, Hefei, 230038, China
| | - Tantan Huang
- Department of First Affiliated Hospital of Anhui University of Chinese Medicine, Hefei, 230031, China
- Anhui University of Chinese Medicine, Hefei, 230038, China
| | - Di Wu
- Department of First Affiliated Hospital of Anhui University of Chinese Medicine, Hefei, 230031, China
- Institute of Respiratory Disease Prevention and Treatment, Anhui Academy of Chinese Medicine, Hefei, 230031, China
| | - Jiabing Tong
- Department of First Affiliated Hospital of Anhui University of Chinese Medicine, Hefei, 230031, China
- Anhui University of Chinese Medicine, Hefei, 230038, China
| | - Cheng Yang
- Department of First Affiliated Hospital of Anhui University of Chinese Medicine, Hefei, 230031, China
| | - Yating Gao
- Department of First Affiliated Hospital of Anhui University of Chinese Medicine, Hefei, 230031, China.
| | - Zegeng Li
- Department of First Affiliated Hospital of Anhui University of Chinese Medicine, Hefei, 230031, China.
- Institute of Respiratory Disease Prevention and Treatment, Anhui Academy of Chinese Medicine, Hefei, 230031, China.
| |
Collapse
|
2
|
Kotoulas SC, Spyratos D, Porpodis K, Domvri K, Boutou A, Kaimakamis E, Mouratidou C, Alevroudis I, Dourliou V, Tsakiri K, Sakkou A, Marneri A, Angeloudi E, Papagiouvanni I, Michailidou A, Malandris K, Mourelatos C, Tsantos A, Pataka A. A Thorough Review of the Clinical Applications of Artificial Intelligence in Lung Cancer. Cancers (Basel) 2025; 17:882. [PMID: 40075729 PMCID: PMC11898928 DOI: 10.3390/cancers17050882] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2024] [Revised: 02/06/2025] [Accepted: 02/25/2025] [Indexed: 03/14/2025] Open
Abstract
According to data from the World Health Organization (WHO), lung cancer is becoming a global epidemic. It is particularly high in the list of the leading causes of death not only in developed countries, but also worldwide; furthermore, it holds the leading place in terms of cancer-related mortality. Nevertheless, many breakthroughs have been made the last two decades regarding its management, with one of the most prominent being the implementation of artificial intelligence (AI) in various aspects of disease management. We included 473 papers in this thorough review, most of which have been published during the last 5-10 years, in order to describe these breakthroughs. In screening programs, AI is capable of not only detecting suspicious lung nodules in different imaging modalities-such as chest X-rays, computed tomography (CT), and positron emission tomography (PET) scans-but also discriminating between benign and malignant nodules as well, with success rates comparable to or even better than those of experienced radiologists. Furthermore, AI seems to be able to recognize biomarkers that appear in patients who may develop lung cancer, even years before this event. Moreover, it can also assist pathologists and cytologists in recognizing the type of lung tumor, as well as specific histologic or genetic markers that play a key role in treating the disease. Finally, in the treatment field, AI can guide in the development of personalized options for lung cancer patients, possibly improving their prognosis.
Collapse
Affiliation(s)
- Serafeim-Chrysovalantis Kotoulas
- Adult ICU, General Hospital of Thessaloniki “Ippokrateio”, Konstantinoupoleos 49, 54642 Thessaloniki, Greece; (C.M.); (I.A.); (V.D.); (K.T.); (A.S.); (A.M.); (E.A.)
| | - Dionysios Spyratos
- Pulmonary Department, Unit of thoracic Malignancies Research, General Hospital of Thessaloniki “G. Papanikolaou”, Aristotle’s University of Thessaloniki, Leoforos Papanikolaou Municipality of Chortiatis, 57010 Thessaloniki, Greece; (D.S.); (K.P.); (K.D.)
| | - Konstantinos Porpodis
- Pulmonary Department, Unit of thoracic Malignancies Research, General Hospital of Thessaloniki “G. Papanikolaou”, Aristotle’s University of Thessaloniki, Leoforos Papanikolaou Municipality of Chortiatis, 57010 Thessaloniki, Greece; (D.S.); (K.P.); (K.D.)
| | - Kalliopi Domvri
- Pulmonary Department, Unit of thoracic Malignancies Research, General Hospital of Thessaloniki “G. Papanikolaou”, Aristotle’s University of Thessaloniki, Leoforos Papanikolaou Municipality of Chortiatis, 57010 Thessaloniki, Greece; (D.S.); (K.P.); (K.D.)
| | - Afroditi Boutou
- Pulmonary Department General, Hospital of Thessaloniki “Ippokrateio”, Konstantinoupoleos 49, 54642 Thessaloniki, Greece; (A.B.); (A.T.)
| | - Evangelos Kaimakamis
- 1st ICU, Medical Informatics Laboratory, General Hospital of Thessaloniki “G. Papanikolaou”, Aristotle’s University of Thessaloniki, Leoforos Papanikolaou Municipality of Chortiatis, 57010 Thessaloniki, Greece;
| | - Christina Mouratidou
- Adult ICU, General Hospital of Thessaloniki “Ippokrateio”, Konstantinoupoleos 49, 54642 Thessaloniki, Greece; (C.M.); (I.A.); (V.D.); (K.T.); (A.S.); (A.M.); (E.A.)
| | - Ioannis Alevroudis
- Adult ICU, General Hospital of Thessaloniki “Ippokrateio”, Konstantinoupoleos 49, 54642 Thessaloniki, Greece; (C.M.); (I.A.); (V.D.); (K.T.); (A.S.); (A.M.); (E.A.)
| | - Vasiliki Dourliou
- Adult ICU, General Hospital of Thessaloniki “Ippokrateio”, Konstantinoupoleos 49, 54642 Thessaloniki, Greece; (C.M.); (I.A.); (V.D.); (K.T.); (A.S.); (A.M.); (E.A.)
| | - Kalliopi Tsakiri
- Adult ICU, General Hospital of Thessaloniki “Ippokrateio”, Konstantinoupoleos 49, 54642 Thessaloniki, Greece; (C.M.); (I.A.); (V.D.); (K.T.); (A.S.); (A.M.); (E.A.)
| | - Agni Sakkou
- Adult ICU, General Hospital of Thessaloniki “Ippokrateio”, Konstantinoupoleos 49, 54642 Thessaloniki, Greece; (C.M.); (I.A.); (V.D.); (K.T.); (A.S.); (A.M.); (E.A.)
| | - Alexandra Marneri
- Adult ICU, General Hospital of Thessaloniki “Ippokrateio”, Konstantinoupoleos 49, 54642 Thessaloniki, Greece; (C.M.); (I.A.); (V.D.); (K.T.); (A.S.); (A.M.); (E.A.)
| | - Elena Angeloudi
- Adult ICU, General Hospital of Thessaloniki “Ippokrateio”, Konstantinoupoleos 49, 54642 Thessaloniki, Greece; (C.M.); (I.A.); (V.D.); (K.T.); (A.S.); (A.M.); (E.A.)
| | - Ioanna Papagiouvanni
- 4th Internal Medicine Department, General Hospital of Thessaloniki “Ippokrateio”, Aristotle’s University of Thessaloniki, Konstantinoupoleos 49, 54642 Thessaloniki, Greece;
| | - Anastasia Michailidou
- 2nd Propaedeutic Internal Medicine Department, General Hospital of Thessaloniki “Ippokrateio”, Aristotle’s University of Thessaloniki, Konstantinoupoleos 49, 54642 Thessaloniki, Greece;
| | - Konstantinos Malandris
- 2nd Internal Medicine Department, General Hospital of Thessaloniki “Ippokrateio”, Aristotle’s University of Thessaloniki, Konstantinoupoleos 49, 54642 Thessaloniki, Greece;
| | - Constantinos Mourelatos
- Biology and Genetics Laboratory, Aristotle’s University of Thessaloniki, 54624 Thessaloniki, Greece;
| | - Alexandros Tsantos
- Pulmonary Department General, Hospital of Thessaloniki “Ippokrateio”, Konstantinoupoleos 49, 54642 Thessaloniki, Greece; (A.B.); (A.T.)
| | - Athanasia Pataka
- Respiratory Failure Clinic and Sleep Laboratory, General Hospital of Thessaloniki “G. Papanikolaou”, Aristotle’s University of Thessaloniki, Leoforos Papanikolaou Municipality of Chortiatis, 57010 Thessaloniki, Greece;
| |
Collapse
|
3
|
Hashemi M, Khosroshahi EM, Daneii P, Hassanpoor A, Eslami M, Koohpar ZK, Asadi S, Zabihi A, Jamali B, Ghorbani A, Nabavi N, Memarkashani MR, Salimimoghadam S, Taheriazam A, Tan SC, Entezari M, Farahani N, Hushmandi K. Emerging roles of CircRNA-miRNA networks in cancer development and therapeutic response. Noncoding RNA Res 2025; 10:98-115. [PMID: 39351450 PMCID: PMC11440256 DOI: 10.1016/j.ncrna.2024.09.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Revised: 07/18/2024] [Accepted: 09/03/2024] [Indexed: 10/04/2024] Open
Abstract
The complex interplay of epigenetic factors is essential in regulating the hallmarks of cancer and orchestrating intricate molecular interactions during tumor progression. Circular RNAs (circRNAs), known for their covalently closed loop structures, are non-coding RNA molecules exceptionally resistant to enzymatic degradation, which enhances their stability and regulatory functions in cancer. Similarly, microRNAs (miRNAs) are endogenous non-coding RNAs with linear structures that regulate cellular biological processes akin to circRNAs. Both miRNAs and circRNAs exhibit aberrant expressions in various cancers. Notably, circRNAs can function as sponges for miRNAs, influencing their activity. The circRNA/miRNA interaction plays a pivotal role in the regulation of cancer progression, including in brain, gastrointestinal, gynecological, and urological cancers, influencing key processes such as proliferation, apoptosis, invasion, autophagy, epithelial-mesenchymal transition (EMT), and more. Additionally, this interaction impacts the response of tumor cells to radiotherapy and chemotherapy and contributes to immune evasion, a significant challenge in cancer therapy. Both circRNAs and miRNAs hold potential as biomarkers for cancer prognosis and diagnosis. In this review, we delve into the circRNA-miRNA circuit within human cancers, emphasizing their role in regulating cancer hallmarks and treatment responses. This discussion aims to provide insights for future research to better understand their functions and potentially guide targeted treatments for cancer patients using circRNA/miRNA-based strategies.
Collapse
Affiliation(s)
- Mehrdad Hashemi
- Department of Genetics, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Elaheh Mohandesi Khosroshahi
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Pouria Daneii
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Aria Hassanpoor
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Maedeh Eslami
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Zeinab Khazaei Koohpar
- Department of Cell and Molecular Biology, Faculty of Biological Sciences, Tonekabon Branch, Islamic Azad University, Tonekabon, Iran
| | - Saba Asadi
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Abbas Zabihi
- Department of Biology, Faculty of Basic Sciences, Islamic Azad University, Hamedan Branch, Hamedan, Iran
| | - Behdokht Jamali
- Department of Microbiology and Genetics, Kherad Institute of Higher Education, Bushehr, Iran
| | - Amin Ghorbani
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Noushin Nabavi
- Independent Researcher, Victoria, British Columbia, V8V 1P7, Canada
| | | | - Shokooh Salimimoghadam
- Department of Biochemistry and Molecular Biology, Faculty of Veterinary Medicine, Shahid Chamran University of Ahvaz, Ahvaz, Iran
| | - Afshin Taheriazam
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
- Department of Orthopedics, Faculty of Medicine, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Shing Cheng Tan
- UKM Medical Molecular Biology Institute, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia
| | - Maliheh Entezari
- Department of Genetics, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Najma Farahani
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Kiavash Hushmandi
- Department of Epidemiology, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran
| |
Collapse
|
4
|
Lu K, He L, Guo Z, Li M, Cheng X, Liu S, Zhang T, Chen Q, Zhao R, Yang L, Wu X, Cheng K, Cao P, Wu L, Shahzad M, Zheng M, Jiao L, Wu Y, Li D. PDCD4 deficiency in hepatocytes exacerbates nonalcoholic steatohepatitis through enhanced MHC class II transactivator expression. Metabolism 2024; 161:156036. [PMID: 39342987 DOI: 10.1016/j.metabol.2024.156036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/06/2024] [Revised: 09/01/2024] [Accepted: 09/17/2024] [Indexed: 10/01/2024]
Abstract
Nonalcoholic steatohepatitis (NASH) is a primary cause of liver cirrhosis and hepatocellular carcinoma, presenting a significant and unmet medical challenge. The necessity to investigate the molecular mechanisms underlying NASH is highlighted by the observed decrease in programmed cell death 4 (PDCD4) expression in NASH patients, suggesting that PDCD4 may play a protective role in maintaining liver health. In this study, we identify PDCD4 as a natural inhibitor of NASH development in mice. The absence of PDCD4 leads to the spontaneous progression of NASH. Notably, PDCD4-deficient hepatocytes display elevated major histocompatibility complex class II (MHCII) expression due to CIITA activation, indicating that PCDC4 prevents the abnormal transformation of hepatocytes into antigen-presenting cells (APCs). Cell co-culture experiments reveal that hepatocytes lacking PDCD4, which resemble APCs, can directly activate CD4+ T cells by presenting multiple peptides, resulting in the release of inflammatory factors. Additionally, both cellular and animal studies show that CIITA promotes lipid accumulation in hepatocytes and exacerbates NASH progression. In summary, our findings reveal a novel role of PDCD4 in regulating CIITA and MHCII expression during NASH development, offering new therapeutic approaches for NASH treatment.
Collapse
Affiliation(s)
- Kaikai Lu
- Department of Biochemistry and Molecular Biology, School of Basic Medical Science, Xi'an Jiaotong University, Xi'an, Shaan Xi 710061, China; Key Laboratory of Environment and Genes Related to Diseases, Xi'an Jiaotong University, Ministry of Education of China, Xi'an, Shaan Xi, 710061, China
| | - Lei He
- Department of Biochemistry and Molecular Biology, School of Basic Medical Science, Xi'an Jiaotong University, Xi'an, Shaan Xi 710061, China; Department of Urology, Peking University First Hospital, Institute of Urology, Peking University, National Urological Cancer Center of China, Beijing 100034, China
| | - Zizhen Guo
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, China
| | - Mengda Li
- Department of Biochemistry and Molecular Biology, School of Basic Medical Science, Xi'an Jiaotong University, Xi'an, Shaan Xi 710061, China; Department of Immunology and Microbiology, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Xiaona Cheng
- Department of Biochemistry and Molecular Biology, School of Basic Medical Science, Xi'an Jiaotong University, Xi'an, Shaan Xi 710061, China; Key Laboratory of Environment and Genes Related to Diseases, Xi'an Jiaotong University, Ministry of Education of China, Xi'an, Shaan Xi, 710061, China
| | - Sitong Liu
- Department of Biochemistry and Molecular Biology, School of Basic Medical Science, Xi'an Jiaotong University, Xi'an, Shaan Xi 710061, China; Key Laboratory of Environment and Genes Related to Diseases, Xi'an Jiaotong University, Ministry of Education of China, Xi'an, Shaan Xi, 710061, China
| | - Tianyun Zhang
- Department of Biochemistry and Molecular Biology, School of Basic Medical Science, Xi'an Jiaotong University, Xi'an, Shaan Xi 710061, China; Key Laboratory of Environment and Genes Related to Diseases, Xi'an Jiaotong University, Ministry of Education of China, Xi'an, Shaan Xi, 710061, China; School of Software Engineering, Xi'an Jiaotong University Faculty of Electronic and Information Engineering, Xi'an, Shaan Xi 710049, China
| | - Qian Chen
- Department of Biochemistry and Molecular Biology, School of Basic Medical Science, Xi'an Jiaotong University, Xi'an, Shaan Xi 710061, China; Key Laboratory of Environment and Genes Related to Diseases, Xi'an Jiaotong University, Ministry of Education of China, Xi'an, Shaan Xi, 710061, China
| | - Rong Zhao
- Department of Biochemistry and Molecular Biology, School of Basic Medical Science, Xi'an Jiaotong University, Xi'an, Shaan Xi 710061, China; Key Laboratory of Environment and Genes Related to Diseases, Xi'an Jiaotong University, Ministry of Education of China, Xi'an, Shaan Xi, 710061, China
| | - Luyun Yang
- Department of Biochemistry and Molecular Biology, School of Basic Medical Science, Xi'an Jiaotong University, Xi'an, Shaan Xi 710061, China; Key Laboratory of Environment and Genes Related to Diseases, Xi'an Jiaotong University, Ministry of Education of China, Xi'an, Shaan Xi, 710061, China
| | - Xiaodan Wu
- Department of Biochemistry and Molecular Biology, School of Basic Medical Science, Xi'an Jiaotong University, Xi'an, Shaan Xi 710061, China; Key Laboratory of Environment and Genes Related to Diseases, Xi'an Jiaotong University, Ministry of Education of China, Xi'an, Shaan Xi, 710061, China
| | - Kexin Cheng
- Department of Biochemistry and Molecular Biology, School of Basic Medical Science, Xi'an Jiaotong University, Xi'an, Shaan Xi 710061, China; Key Laboratory of Environment and Genes Related to Diseases, Xi'an Jiaotong University, Ministry of Education of China, Xi'an, Shaan Xi, 710061, China
| | - Peihai Cao
- Department of Pathogenic Microbiology and Immunology, School of Basic Medical Sciences, Xi'an Jiaotong University, Xi'an, Shaan Xi 710061, China
| | - Litao Wu
- Department of Biochemistry and Molecular Biology, School of Basic Medical Science, Xi'an Jiaotong University, Xi'an, Shaan Xi 710061, China; Key Laboratory of Environment and Genes Related to Diseases, Xi'an Jiaotong University, Ministry of Education of China, Xi'an, Shaan Xi, 710061, China
| | - Muhammad Shahzad
- Department of Pharmacology, University of Health Sciences, Lahore 54600, Pakistan
| | - Minghua Zheng
- MAFLD Research Center, Department of Hepatology, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, China; Key Laboratory of Diagnosis and Treatment for the Development of Chronic Liver Disease in Zhejiang Province, Wenzhou 325000, China
| | - Lianying Jiao
- Department of Biochemistry and Molecular Biology, School of Basic Medical Science, Xi'an Jiaotong University, Xi'an, Shaan Xi 710061, China; Key Laboratory of Environment and Genes Related to Diseases, Xi'an Jiaotong University, Ministry of Education of China, Xi'an, Shaan Xi, 710061, China
| | - Yue Wu
- Department of Cardiology, Cardiometabolic Innovation Center of Ministry of Education, First Affiliated Hospital, Xi'an, Shaan Xi 710061, China
| | - Dongmin Li
- Department of Biochemistry and Molecular Biology, School of Basic Medical Science, Xi'an Jiaotong University, Xi'an, Shaan Xi 710061, China; Key Laboratory of Environment and Genes Related to Diseases, Xi'an Jiaotong University, Ministry of Education of China, Xi'an, Shaan Xi, 710061, China; Department of Cardiology, Cardiometabolic Innovation Center of Ministry of Education, First Affiliated Hospital, Xi'an, Shaan Xi 710061, China.
| |
Collapse
|
5
|
Jiang J, Zhou X, Chen H, Wang X, Ruan Y, Liu X, Ma J. 18β-Glycyrrhetinic acid protects against deoxynivalenol-induced liver injury via modulating ferritinophagy and mitochondrial quality control. JOURNAL OF HAZARDOUS MATERIALS 2024; 471:134319. [PMID: 38657511 DOI: 10.1016/j.jhazmat.2024.134319] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Revised: 04/02/2024] [Accepted: 04/14/2024] [Indexed: 04/26/2024]
Abstract
Deoxynivalenol (DON), a widespread mycotoxin, represents a substantial public health hazard due to its propensity to contaminate agricultural produce, leading to both acute and chronic health issues in humans and animals upon consumption. The role of ferroptosis in DON-induced hepatic damage remains largely unexplored. This study investigates the impact of 18β-glycyrrhetinic acid (GA), a prominent constituent of glycyrrhiza, on DON hepatotoxicity and elucidates the underlying mechanisms. Our results indicate that GA effectively attenuates liver injury inflicted by DON. This was achieved by inhibiting nuclear receptor coactivator 4 (NCOA4)-mediated ferritinophagy and ferroptosis, as well as by adjusting mitochondrial quality control (MQC). Specifically, GA curtails ferritinophagy by diminishing NCOA4 expression without affecting the autophagic flux. At a molecular level, GA binds to and stabilizes programmed cell death protein 4 (PDCD4), thereby inhibiting its ubiquitination and subsequent degradation. This stabilization of PDCD4 leads to the downregulation of NCOA4 via the JNK-Jun-NCOA4 axis. Knockdown of PDCD4 weakened GA's protective action against DON exposure. Furthermore, GA improved mitochondrial function and limited excessive mitophagy and mitochondrial division induced by DON. Disrupting GA's modulation of MQC nullified its anti-ferroptosis effects. Overall, GA offers protection against DON-induced ferroptosis by blocking ferritinophagy and managing MQC. ENVIRONMENTAL IMPLICATION: Food contamination from mycotoxins, is a problem for agricultural and food industries worldwide. Deoxynivalenol (DON), the most common mycotoxins in cereal commodities. A survey in 2023 showed that the positivity rate for DON contamination in food reached more than 70% globally. DON can damage the health of humans whether exposed to high doses for short periods of time or low doses for long periods of time. We have discovered 18β-Glycyrrhetinic acid (GA), a prominent constituent of glycyrrhiza. Liver damage caused by low-dose DON can be successfully treated with GA. This study will support the means of DON control, including antidotes.
Collapse
Affiliation(s)
- Junze Jiang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, PR China
| | - Xintong Zhou
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, PR China
| | - Hao Chen
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, PR China
| | - Xin Wang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, PR China
| | - Yongbao Ruan
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, PR China
| | - Xiaohui Liu
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, PR China
| | - Jun Ma
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, PR China; Heilongjiang Provincial Key Laboratory of Pathogenic Mechanism for Animal Disease and Comparative Medicine, Harbin 150030, PR China.
| |
Collapse
|
6
|
Zhang Y, Zhang H, Wang C, Cao S, Cheng X, Jin L, Ren R, Zhou F. circRNA6448-14/miR-455-3p/OTUB2 axis stimulates glycolysis and stemness of esophageal squamous cell carcinoma. Aging (Albany NY) 2024; 16:9485-9497. [PMID: 38819228 PMCID: PMC11210236 DOI: 10.18632/aging.205879] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Accepted: 03/28/2024] [Indexed: 06/01/2024]
Abstract
BACKGROUND Esophageal squamous cell carcinoma (ESCC) is a gastrointestinal malignancy with high incidence. This study aimed to reveal the complete circRNA-miRNA-mRNA regulatory network in ESCC and validate its function mechanism. METHOD Expression of OTU Domain-Containing Ubiquitin Aldehyde-Binding Protein 2 (OTUB2) in ESCC was analyzed by bioinformatics to find the binding sites between circRNA6448-14 and miR-455-3p, as well as miR-455-3p and OTUB2. The binding relationships were verified by RNA Immunoprecipitation (RIP) and dual-luciferase assay. The expressions of circRNA6448-14, miR-455-3p, and OTUB2 were detected by quantitative real-time polymerase chain reaction (qRT-PCR). MTT assay measured cell viability, and the spheroid formation assay assessed the ability of stem cell sphere formation. Western blot (WB) determined the expression of marker proteins of stem cell surface and rate-limiting enzyme of glycolysis. The Seahorse XFe96 extracellular flux analyzer measured the rate of extracellular acidification rate and cellular oxygen consumption. Corresponding assay kits assessed cellular glucose consumption, lactate production, and adenosine triphosphate (ATP) generation. RESULTS In ESCC, circRNA6448-14 and OTUB2 were highly expressed in contrast to miR-455-3p. Knocking down circRNA6448-14 could prevent the glycolysis and stemness of ESCC cells. Additionally, circRNA6448-14 enhanced the expression of OTUB2 by sponging miR-455-3p. Overexpression of OTUB2 or silencing miR-455-3p reversed the inhibitory effect of knockdown of circRNA6448-14 on ESCC glycolysis and stemness. CONCLUSION This research demonstrated that the circRNA6448-14/miR-455-3p/OTUB2 axis induced the glycolysis and stemness of ESCC cells. Our study revealed a novel function of circRNA6448-14, which may serve as a potential therapeutic target for ESCC.
Collapse
Affiliation(s)
- Yaowen Zhang
- Department of Radiation Oncology, Anyang Tumor Hospital, The Affiliated Anyang Tumor Hospital of Henan University of Science and Technology, Henan Medical key Laboratory of Precise Prevention and Treatment of Esophageal Cancer, Anyang 455000, China
| | - Heming Zhang
- Department of Radiation Oncology, Anyang Tumor Hospital, The Affiliated Anyang Tumor Hospital of Henan University of Science and Technology, Henan Medical key Laboratory of Precise Prevention and Treatment of Esophageal Cancer, Anyang 455000, China
| | - Chenyu Wang
- Department of Radiation Oncology, Anyang Tumor Hospital, The Affiliated Anyang Tumor Hospital of Henan University of Science and Technology, Henan Medical key Laboratory of Precise Prevention and Treatment of Esophageal Cancer, Anyang 455000, China
| | - Shasha Cao
- Department of Radiation Oncology, Anyang Tumor Hospital, The Affiliated Anyang Tumor Hospital of Henan University of Science and Technology, Henan Medical key Laboratory of Precise Prevention and Treatment of Esophageal Cancer, Anyang 455000, China
| | - Xinyu Cheng
- Department of Radiation Oncology, Anyang Tumor Hospital, The Affiliated Anyang Tumor Hospital of Henan University of Science and Technology, Henan Medical key Laboratory of Precise Prevention and Treatment of Esophageal Cancer, Anyang 455000, China
| | - Linzhi Jin
- Department of Radiation Oncology, Anyang Tumor Hospital, The Affiliated Anyang Tumor Hospital of Henan University of Science and Technology, Henan Medical key Laboratory of Precise Prevention and Treatment of Esophageal Cancer, Anyang 455000, China
| | - Runchuan Ren
- Department of Radiation Oncology, Anyang Tumor Hospital, The Affiliated Anyang Tumor Hospital of Henan University of Science and Technology, Henan Medical key Laboratory of Precise Prevention and Treatment of Esophageal Cancer, Anyang 455000, China
| | - Fuyou Zhou
- Department of Radiation Oncology, Anyang Tumor Hospital, The Affiliated Anyang Tumor Hospital of Henan University of Science and Technology, Henan Medical key Laboratory of Precise Prevention and Treatment of Esophageal Cancer, Anyang 455000, China
| |
Collapse
|
7
|
Tian J, Wen M, Gao P, Feng M, Wei G. RUVBL1 ubiquitination by DTL promotes RUVBL1/2-β-catenin-mediated transcriptional regulation of NHEJ pathway and enhances radiation resistance in breast cancer. Cell Death Dis 2024; 15:259. [PMID: 38609375 PMCID: PMC11015013 DOI: 10.1038/s41419-024-06651-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 02/04/2024] [Accepted: 04/05/2024] [Indexed: 04/14/2024]
Abstract
Radiotherapy effectiveness in breast cancer is limited by radioresistance. Nevertheless, the mechanisms behind radioresistance are not yet fully understood. RUVBL1 and RUVBL2, referred to as RUVBL1/2, are crucial AAA+ ATPases that act as co-chaperones and are connected to cancer. Our research revealed that RUVBL1, also known as pontin/TIP49, is excessively expressed in MMTV-PyMT mouse models undergoing radiotherapy, which is considered a murine spontaneous breast-tumor model. Our findings suggest that RUVBL1 enhances DNA damage repair and radioresistance in breast cancer cells both in vitro and in vivo. Mechanistically, we discovered that DTL, also known as CDT2 or DCAF2, which is a substrate adapter protein of CRL4, promotes the ubiquitination of RUVBL1 and facilitates its binding to RUVBL2 and transcription cofactor β-catenin. This interaction, in turn, attenuates its binding to acetyltransferase Tat-interacting protein 60 (TIP60), a comodulator of nuclear receptors. Subsequently, ubiquitinated RUVBL1 promotes the transcriptional regulation of RUVBL1/2-β-catenin on genes associated with the non-homologous end-joining (NHEJ) repair pathway. This process also attenuates TIP60-mediated H4K16 acetylation and the homologous recombination (HR) repair process. Expanding upon the prior study's discoveries, we exhibited that the ubiquitination of RUVBL1 by DTL advances the interosculation of RUVBL1/2-β-catenin. And, it then regulates the transcription of NHEJ repair pathway protein. Resulting in an elevated resistance of breast cancer cells to radiation therapy. From the aforementioned, it is evident that targeting DTL-RUVBL1/2-β-catenin provides a potential radiosensitization approach when treating breast cancer.
Collapse
Affiliation(s)
- Jie Tian
- Key Laboratory for Experimental Teratology of the Ministry of Education, Department of Cell Biology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, China
| | - Mingxin Wen
- Key Laboratory for Experimental Teratology of the Ministry of Education, Department of Human Anatomy, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, China
| | - Peng Gao
- Key Laboratory for Experimental Teratology of Ministry of Education, Department of Pathology, School of Basic Medical Sciences and Qilu Hospital, Shandong University, Jinan, Shandong, 250012, China
| | - Maoxiao Feng
- Department of Clinical Laboratory, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China.
| | - Guangwei Wei
- Key Laboratory for Experimental Teratology of the Ministry of Education, Department of Cell Biology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, China.
| |
Collapse
|
8
|
Zhang YM, Miao ZM, Chen YP, Song ZB, Li YY, Liu ZW, Zhou GC, Li J, Shi LL, Chen Y, Zhang SZ, Xu X, He JP, Wang JF, Zhang LY, Liu YQ. Ononin promotes radiosensitivity in lung cancer by inhibiting HIF-1α/VEGF pathway. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 125:155290. [PMID: 38308918 DOI: 10.1016/j.phymed.2023.155290] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Revised: 11/12/2023] [Accepted: 12/16/2023] [Indexed: 02/05/2024]
Abstract
BACKGROUND In our previous study, we provided evidence that Astragalus mongholicus Bunge(AM) and its extracts possess a protective capability against radiation-induced damage, potentially mediated through the reduction of reactive oxygen species (ROS) and nitric oxide (NO). However, we were pleasantly surprised to discover during our experimentation that AM not only offers protection against radiation damage but also exhibits a radiation sensitization effect. This effect may be attributed to a specific small molecule present in AM known as ononin. Currently, radiation sensitizers are predominantly found in nitrazole drugs and nanomaterials, with no existing reports on the radiation sensitization properties of ononin, nor its underlying mechanism. PURPOSE This study aims to investigate the sensitization effect of the small molecule ononin derived from AM on lung cancer radiotherapy, elucidating its specific molecular mechanism of action. Additionally, the safety profile of combining astragalus small molecule ononin with radiation therapy will be evaluated. METHODS The effective concentration of ononin was determined through cell survival experiments, and the impact of ononin combined with varying doses of radiation on lung cancer cells was observed using CCK-8 and cell cloning experiments. The apoptotic effect of ononin combined with radiation on lung cancer cells was assessed using Hochester staining, flow cytometry, and WB assay. Additionally, WB and immunofluorescence analysis were conducted to investigate the influence of ononin on HIF-1α/VEGF pathway. Furthermore, Molecular Dynamics Simulation was employed to validate the targeted binding ability of ononin and HIF-1α. A lung cancer cell line was established to investigate the effects of knockdown and overexpression of HIF-1α. Subsequently, the experiment was repeated using tumor bearing nude mice and C57BL/6 mouse models in an in vivo study. Tumor volume was measured using a vernier caliper, while HE, immunohistochemistry, and immunofluorescence techniques were employed to observe the effects of ononin combined with radiation on tumor morphology, proliferation, and apoptosis. Additionally, Immunofluorescence was employed to examine the impact of ononin on HIF-1α/VEGF pathway in vivo, and its effect on liver function in mice was assessed through biochemistry analysis. RESULTS At a concentration of 25 μM, ononin did not affect the proliferation of lung epithelial cells but inhibited the survival of lung cancer cells. In vitro experiments demonstrated that the combination of ononin and radiation could effectively inhibit the growth of lung cancer cells, induce apoptosis, and suppress the excessive activation of the Hypoxia inducible factor 1 alpha/Vascular endothelial growth factor pathway. In vivo experiments showed that the combination of ononin and radiation reduced the size and proliferation of lung cancer tumors, promoted cancer cell apoptosis, mitigated abnormal activation of the Hypoxia inducible factor 1 alpha pathway, and protected against liver function damage. CONCLUSION This study provides evidence that the combination of AM and its small molecule ononin can enhance the sensitivity of lung cancer to radiation. Additionally, it has been observed that this combination can specifically target HIF-1α and exert its effects. Notably, ononin exhibits the unique ability to protect liver function from damage while simultaneously enhancing the tumor-killing effects of radiation, thereby demonstrating a synergistic and detoxifying role in tumor radiotherapy. These findings contribute to the establishment of a solid basis for the development of novel radiation sensitizers derived from traditional Chinese medicine.
Collapse
Affiliation(s)
- Yi-Ming Zhang
- Provincial-Level Key Laboratory for Molecular Medicine of Major Diseases and the Prevention and Treatment with Traditional Chinese, Medicine Research in Gansu Colleges and Universities, Gansu University of Chinese Medicine, Lanzhou, PR China
| | - Zhi-Ming Miao
- Provincial-Level Key Laboratory for Molecular Medicine of Major Diseases and the Prevention and Treatment with Traditional Chinese, Medicine Research in Gansu Colleges and Universities, Gansu University of Chinese Medicine, Lanzhou, PR China
| | - Ya-Ping Chen
- Provincial-Level Key Laboratory for Molecular Medicine of Major Diseases and the Prevention and Treatment with Traditional Chinese, Medicine Research in Gansu Colleges and Universities, Gansu University of Chinese Medicine, Lanzhou, PR China
| | - Zhang-Bo Song
- Provincial-Level Key Laboratory for Molecular Medicine of Major Diseases and the Prevention and Treatment with Traditional Chinese, Medicine Research in Gansu Colleges and Universities, Gansu University of Chinese Medicine, Lanzhou, PR China
| | - Yang-Yang Li
- Provincial-Level Key Laboratory for Molecular Medicine of Major Diseases and the Prevention and Treatment with Traditional Chinese, Medicine Research in Gansu Colleges and Universities, Gansu University of Chinese Medicine, Lanzhou, PR China
| | - Zhi-Wei Liu
- Provincial-Level Key Laboratory for Molecular Medicine of Major Diseases and the Prevention and Treatment with Traditional Chinese, Medicine Research in Gansu Colleges and Universities, Gansu University of Chinese Medicine, Lanzhou, PR China
| | - Gu-Cheng Zhou
- Provincial-Level Key Laboratory for Molecular Medicine of Major Diseases and the Prevention and Treatment with Traditional Chinese, Medicine Research in Gansu Colleges and Universities, Gansu University of Chinese Medicine, Lanzhou, PR China
| | - Jing Li
- Provincial-Level Key Laboratory for Molecular Medicine of Major Diseases and the Prevention and Treatment with Traditional Chinese, Medicine Research in Gansu Colleges and Universities, Gansu University of Chinese Medicine, Lanzhou, PR China
| | - Liang-Liang Shi
- Provincial-Level Key Laboratory for Molecular Medicine of Major Diseases and the Prevention and Treatment with Traditional Chinese, Medicine Research in Gansu Colleges and Universities, Gansu University of Chinese Medicine, Lanzhou, PR China
| | - Yan Chen
- Provincial-Level Key Laboratory for Molecular Medicine of Major Diseases and the Prevention and Treatment with Traditional Chinese, Medicine Research in Gansu Colleges and Universities, Gansu University of Chinese Medicine, Lanzhou, PR China
| | - Shang-Zu Zhang
- Provincial-Level Key Laboratory for Molecular Medicine of Major Diseases and the Prevention and Treatment with Traditional Chinese, Medicine Research in Gansu Colleges and Universities, Gansu University of Chinese Medicine, Lanzhou, PR China
| | - Xiaohui Xu
- Department of Genetics and Cell Biology, Basic Medical College, Qingdao University, PR China
| | - Jin-Peng He
- Key Laboratory of Space Radiobiology of Gansu Province & Key Laboratory of Heavy Ion Radiation Biology and Medicine of Chinese Academy of Sciences, Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, PR China
| | - Ju-Fang Wang
- Key Laboratory of Space Radiobiology of Gansu Province & Key Laboratory of Heavy Ion Radiation Biology and Medicine of Chinese Academy of Sciences, Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, PR China
| | - Li-Ying Zhang
- Provincial-Level Key Laboratory for Molecular Medicine of Major Diseases and the Prevention and Treatment with Traditional Chinese, Medicine Research in Gansu Colleges and Universities, Gansu University of Chinese Medicine, Lanzhou, PR China.
| | - Yong-Qi Liu
- Provincial-Level Key Laboratory for Molecular Medicine of Major Diseases and the Prevention and Treatment with Traditional Chinese, Medicine Research in Gansu Colleges and Universities, Gansu University of Chinese Medicine, Lanzhou, PR China.
| |
Collapse
|
9
|
Xu H, Guo NN, Zhu CY, Ye LY, Yan XY, Liu YQ, Zhang ZY, Zhang G, Hussain L. Diterpenoid Tanshinones Can Inhibit Lung Cancer Progression by Improving the Tumor Microenvironment and Downregulation of NF-κB Expression. ACS OMEGA 2024; 9:7230-7238. [PMID: 38371808 PMCID: PMC10870295 DOI: 10.1021/acsomega.3c09667] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 01/10/2024] [Accepted: 01/23/2024] [Indexed: 02/20/2024]
Abstract
Diterpenoid tanshinones (DTs) are a bioactive fraction extracted from Salvia miltiorrhiza. High-performance liquid chromatography analysis revealed the presence of four compounds, namely, tanshinone IIA, tanshinone I, cryptotanshinone, and dihydrotanshinone. In this study, we aimed to propose a possible mechanism for the anti-lung cancer effect of DT. To do so, we utilized a lung cancer nude mice model and a lung cancer cell line (PC9) to investigate the effect of DT on lung cancer. We employed immunohistochemistry, enzyme-linked immunosorbent assay, hematoxylin and eosin staining, and immunofluorescence to analyze the pharmacological role of DT in the inhibition of lung cancer growth. The results showed that DT inhibited tumor growth, induced apoptosis in the nude mice model, and reduced inflammatory cell infiltration. Additionally, DT inhibited PC9 lung cancer cells, growth, proliferation, and migration. The mechanism of action of DT involves not only directly inhibiting cell proliferation and migration but also improving the tumor microenvironment. DT significantly increased the expression of important intestinal gap junction proteins, such as zonula occludens 1 (ZO-1) and occludin I. This upregulation contributes to the reinforcement of the intestinal mucosal barrier, thereby reducing the paracellular transport of lipopolysaccharides (LPS) through the intestine. Consequently, the decreased LPS levels lead to the inhibition of NF-κB expression and downregulation of macrophage polarization, as indicated by the decreased expression of CD68. In conclusion, this study has confirmed that DT has anti-lung cancer properties by improving the inflammatory tumor microenvironment via regulating macrophage polarization and inhibiting LPS-associated immune response. These results provide new insights into the mechanism of DT action against lung cancer.
Collapse
Affiliation(s)
- Hao Xu
- College
of Basic Medical Sciences, Zhejiang Chinese
Medical University, Hangzhou 310053, P. R. China
| | - Ning Ning Guo
- Inner
Mongolia Medical University, Inner Mongolia, Hohhot 010110, P. R. China
| | - Chen Ying Zhu
- Department
of Public Health, Zhejiang University School
of Medicine, Hangzhou 310058, P. R. China
| | - Lin Yan Ye
- Department
of Public Health, Zhejiang University School
of Medicine, Hangzhou 310058, P. R. China
| | - Xing Yi Yan
- Department
of Public Health, Zhejiang University School
of Medicine, Hangzhou 310058, P. R. China
| | - Yong Qin Liu
- Department
of Public Health, Zhejiang University School
of Medicine, Hangzhou 310058, P. R. China
| | - Ze Yan Zhang
- Department
of Public Health, Zhejiang University School
of Medicine, Hangzhou 310058, P. R. China
| | - Guangji Zhang
- College
of Basic Medical Sciences, Zhejiang Chinese
Medical University, Hangzhou 310053, P. R. China
| | - Liaqat Hussain
- Department
of Pharmacology, Faculty of Pharmaceutical Science, Government College University, Faisalabad 38000, Pakistan
| |
Collapse
|
10
|
Zhao T, Sun S, Gao Y, Rong Y, Wang H, Qi S, Li Y. Luteolin and triptolide: Potential therapeutic compounds for post-stroke depression via protein STAT. Heliyon 2023; 9:e18622. [PMID: 37600392 PMCID: PMC10432979 DOI: 10.1016/j.heliyon.2023.e18622] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 07/18/2023] [Accepted: 07/24/2023] [Indexed: 08/22/2023] Open
Abstract
Post stroke depression (PSD) is a common neuropsychiatric complication following stroke closely associated with the immune system. The development of medications for PSD remains to be a considerable challenge due to the unclear mechanism of PSD. Multiple researches agree that the functions of gene ontology (GO) are efficient for the investigation of disease mechanisms, and DeepPurpose (DP) is extremely valuable for the mining of new drugs. However, GO terms and DP have not yet been applied to explore the pathogenesis and drug treatment of PSD. This study aimed to interpret the mechanism of PSD and discover important drug candidates targeting risk proteins, based on immune-related risk GO functions and informatics algorithms. According to the risk genes of PSD, we identified 335 immune-related risk GO functions and 37 compounds. Based on the construction of the GO function network, we found that STAT protein may be a pivot protein in underlying the mechanism of PSD. Additionally, we also established networks of Protein-Protein Interaction as well as Gene-GO function to facilitate the evaluation of key genes. Based on DP, a total of 37 candidate compounds targeting 7 key proteins were identified with a potential for the therapy of PSD. Furthermore, we noted that the mechanisms by which luteolin and triptolide acting on STAT-related GO function might involve three crucial pathways, including specifically hsa04010 (MAPK signaling pathway), hsa04151 (PI3K-Akt signaling pathway) and hsa04060 (Cytokine-cytokine receptor interaction). Thus, this study provided fresh and powerful information for the mechanism and therapeutic strategies of PSD.
Collapse
Affiliation(s)
- Tianyang Zhao
- Department of Anesthesiology, The Fourth Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Siqi Sun
- Department of Anesthesiology, The Fourth Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Yueyue Gao
- Department of Anesthesiology, The Fourth Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Yuting Rong
- Department of Anesthesiology, The Fourth Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Hanwenchen Wang
- The Fourth Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Sihua Qi
- Department of Anesthesiology, The Fourth Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Yan Li
- Department of Anesthesiology, The Fourth Affiliated Hospital of Harbin Medical University, Harbin, China
| |
Collapse
|
11
|
Liu P, Zhang M, Gao H, Han S, Liu J, Sun X, Zhao L. Regulation of whole-transcriptome sequencing expression in COPD after personalized precise exercise training: a pilot study. Respir Res 2023; 24:156. [PMID: 37312153 DOI: 10.1186/s12931-023-02461-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Accepted: 05/23/2023] [Indexed: 06/15/2023] Open
Abstract
BACKGROUND Chronic obstructive pulmonary disease (COPD) is one of the world's leading causes of death and a major chronic respiratory disease. Aerobic exercise, the cornerstone of pulmonary rehabilitation, improves prognosis of COPD patients; however, few studies have comprehensively examined the changes in RNA transcript levels and the crosstalk between various transcripts in this context. This study identified the expression of RNA transcripts in COPD patients who engaged in aerobic exercise training for 12 weeks, and further constructions of the possible RNAs networks were made. METHODS Peripheral blood samples for all four COPD patients who benefited from 12 weeks of PR were collected pre- and post-aerobic exercises and evaluated for the expression of mRNA, miRNA, lncRNA, and circRNA with high-throughput RNA sequencing followed by GEO date validation. In addition, enrichment analyses were conducted on different expressed mRNAs. LncRNA-mRNA and circRNA-mRNA coexpression networks, as well as lncRNA-miRNA-mRNA and circRNA-miRNA-mRNA competing expression networks (ceRNAs) in COPD were constructed. RESULTS We identified and analyzed the differentially expressed mRNAs and noncoding RNAs in the peripheral blood of COPD patients' post-exercise. Eighty-six mRNAs, 570 lncRNAs, 8 miRNAs, and 2087 circRNAs were differentially expressed. Direct function enrichment analysis and Gene Set Variation Analysis showed that differentially expressed RNAs(DE-RNAs) correlated with several critical biological processes such as chemotaxis, DNA replication, anti-infection humoral response, oxidative phosphorylation, and immunometabolism, which might affect the progression of COPD. Some DE-RNAs were validated by Geo databases and RT-PCR, and the results were highly correlated with RNA sequencing. We constructed ceRNA networks of DE-RNAs in COPD. CONCLUSIONS The systematic understanding of the impact of aerobic exercise on COPD was achieved using transcriptomic profiling. This research offers a number of potential candidates for clarifying the regulatory mechanisms that exercise has on COPD, which could ultimately help in understanding the pathophysiology of COPD.
Collapse
Affiliation(s)
- Panpan Liu
- Department of Pulmonary and Critical Care Medicine, Shanghai Pudong New Area Gongli Hospital, 219 MiaoPu Road, Shanghai, 200315, People's Republic of China
| | - Meilan Zhang
- Department of Pulmonary and Critical Care Medicine, Shanghai Pudong New Area Gongli Hospital, 219 MiaoPu Road, Shanghai, 200315, People's Republic of China
| | - Hongchang Gao
- Department of Pulmonary and Critical Care Medicine, Shanghai Pudong New Area Gongli Hospital, 219 MiaoPu Road, Shanghai, 200315, People's Republic of China
| | - Shaojun Han
- Department of Pulmonary and Critical Care Medicine, Shanghai Pudong New Area Gongli Hospital, 219 MiaoPu Road, Shanghai, 200315, People's Republic of China
| | - Jinming Liu
- Department of Pulmonary and Critical Care Medicine, Shanghai Pulmonary Hospital Affiliated to TongJi University, Shanghai, China
| | - Xingguo Sun
- Department of Physiology and Medicine, Fuwai Hospital, Chinese Academy of Medical Sciences National Center of Cardiovascular Diseases, Beijing, People's Republic of China.
| | - Lei Zhao
- Department of Pulmonary and Critical Care Medicine, Shanghai Pudong New Area Gongli Hospital, 219 MiaoPu Road, Shanghai, 200315, People's Republic of China.
| |
Collapse
|
12
|
Panossian A, Abdelfatah S, Efferth T. Network Pharmacology of Ginseng (Part III): Antitumor Potential of a Fixed Combination of Red Ginseng and Red Sage as Determined by Transcriptomics. Pharmaceuticals (Basel) 2022; 15:ph15111345. [PMID: 36355517 PMCID: PMC9696821 DOI: 10.3390/ph15111345] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 10/25/2022] [Accepted: 10/28/2022] [Indexed: 11/30/2022] Open
Abstract
Background: This study aimed to assess the effect of a fixed combination of Red Ginseng and Red Sage (RG–RS) on the gene expression of neuronal cells to evaluate the potential impacts on cellular functions and predict its relevance in the treatment of stress and aging-related diseases and disorders. Methods: Gene expression profiling was conducted by transcriptome-wide mRNA microarray analyses of murine HT22 hippocampal cell culture after treatment with RG–RS preparation. Ingenuity pathway analysis (IPA) was performed with datasets of significantly upregulated or downregulated genes and the expected effects on the physiological and cellular function and the diseases were identified. Results: RG–RS deregulates 1028 genes associated with cancer and 139 with metastasis, suggesting a predicted decrease in tumorigenesis, the proliferation of tumor cells, tumor growth, metastasis, and an increase in apoptosis and autophagy by their effects on the various signaling and metabolic pathways, including the inhibition of Warburg’s aerobic glycolysis, estrogen-mediated S-phase entry signaling, osteoarthritis signaling, and the super-pathway of cholesterol biosynthesis. Conclusion: The results of this study provide evidence of the potential efficacy of the fixed combination of Red Ginseng (Panax ginseng C.A. Mey.) and Red Sage/Danshen (Salvia miltiorrhiza Bunge) in cancer. Further clinical and experimental studies are required to assess the efficacy and safety of RG–RS in preventing the progression of cancer, osteoarthritis, and other aging-related diseases.
Collapse
Affiliation(s)
- Alexander Panossian
- EuroPharma USA Inc., Green Bay, WI 54311, USA
- Phytomed AB, 58344 Vastervick, Sweden
- Correspondence: (A.P.); (T.E.)
| | - Sara Abdelfatah
- Department of Pharmaceutical Biology, Institute of Pharmaceutical and Biomedical Sciences, Johannes Gutenberg University, 55131 Mainz, Germany
| | - Thomas Efferth
- Department of Pharmaceutical Biology, Institute of Pharmaceutical and Biomedical Sciences, Johannes Gutenberg University, 55131 Mainz, Germany
- Correspondence: (A.P.); (T.E.)
| |
Collapse
|