1
|
Wang X, Xia X, Song X, Zhou Y, Ma M, Ren Y, Chen X, Xia Z, Guo Y, Song C. Therapeutic potential of rutin in premenstrual depression: evidence from in vivo and in vitro studies. Front Pharmacol 2025; 15:1525753. [PMID: 39877393 PMCID: PMC11772486 DOI: 10.3389/fphar.2024.1525753] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2024] [Accepted: 12/23/2024] [Indexed: 01/31/2025] Open
Abstract
Introduction Premenstrual dysphoric disorder (PMDD) is a cyclical mood disorder that severely affects the daily life of women of reproductive age. Most of the medications being used clinically have limitations such as low efficacy, side effects, and high cost, so there is an urgent need to discover safer and more effective medications. Rutin is a natural flavonol glycoside with various pharmacological properties including antidepressant. The study of the efficacy and mechanism of action of rutin in PMDD-depressed subtype model rats plays an important role in the discovery of new drugs for the treatment of PMDD. Methods Binding of rutin to gamma-aminobutyric acid type A receptors (GABAA receptors) was probed using molecular docking, microscale thermophoresis, radioactive receptor ligand binding assay and cell membrane clamp experiment. Behavioral tests in mice were performed to screen the optimal dose of rutin. Behavioral tests were performed to evaluate the effects of rutin on depressed mood, memory impairment, and social impairment in PMDD-depressed subtype model rats. HE staining and Golgi staining were performed to observe the neuronal damage in rat hippocampus. UHPLC-MS/MS targeted metabolomics was performed to detect the changes of neurotransmitter content in rat hippocampus. PCR array to detect the effect of rutin on mRNA expression of GABAA receptor partial subunits in rat hippocampus. Results The docking score of rutin with the GABAA receptor benzodiazepine site was -11.442 and the gliding score was -11.470. The Kd of rutin with the GABAA receptor (α1β2γ2) was 1.17 ± 0.89 μM. Rutin competed with [H3]-flunitrazepam for the GABAA receptor benzodiazepine site and inhibited the inward flow of chloride ions (P < 0.05). In PMDD-depressed subtype rats, rutin alleviated depressed mood, memory impairment and social impairment, ameliorated hippocampal neuronal damage and reduces gamma-aminobutyric acid (GABA) and acetylcholine (ACh) levels (P < 0.05). Moreover, we found that rutin did not affect the relative mRNA expression of GABAA receptor subunits in rat hippocampus. Discussion Overall, rutin alleviated depressed mood, memory impairment and social impairment in PMDD-depressed subtype rats, which may be related to binding to GABAA receptor benzodiazepine sites, inhibiting chloride ions inward flow, ameliorating hippocampal neuronal damage and reducing GABA and ACh levels. The results of this study provide an experimental basis and scientific evidence for the development of new drugs for the treatment of PMDD.
Collapse
Affiliation(s)
- Xiangjun Wang
- Laboratory of Traditional Chinese Medicine and Stress Injury of Shandong Province, Laboratory Animal Center, Central Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Xiaowen Xia
- Laboratory of Traditional Chinese Medicine and Stress Injury of Shandong Province, Laboratory Animal Center, Central Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Xianliang Song
- The Affiliated Taian City Central Hospital of Qingdao University, Taian, China
| | - Yi Zhou
- Department of Pharmacy, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Mingyu Ma
- School of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Yashuang Ren
- School of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Xitai Chen
- School of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Zenghui Xia
- Laboratory of Traditional Chinese Medicine and Stress Injury of Shandong Province, Laboratory Animal Center, Central Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Yinghui Guo
- Laboratory of Liver Viscera-State and Syndrome of Emotional Disease, College of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Chunhong Song
- Laboratory of Traditional Chinese Medicine and Stress Injury of Shandong Province, Laboratory Animal Center, Central Hospital Affiliated to Shandong First Medical University, Jinan, China
| |
Collapse
|
2
|
Li CG, Xu LS, Sun L, Xu YH, Cao X, Zhao CC, Xia SN, Zhang QX, Xu Y. Xiangshao Granules Ameliorate Post-stroke Depression by Inhibiting Activation of Microglia and IDO1 Expression in Hippocampus and Prefrontal Cortex. Chin J Integr Med 2025; 31:28-38. [PMID: 39356429 DOI: 10.1007/s11655-024-3903-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/07/2023] [Indexed: 10/03/2024]
Abstract
OBJECTIVE To investigate the therapeutic effect of Xiangshao Granules (XSG) on post-stroke depression (PSD) and explore the underlying mechanisms. METHODS Forty-three C57BL/6J mice were divided into 3 groups: sham (n=15), PSD+vehicle (n=14), and PSD+XSG (n=14) groups according to a random number table. The PSD models were constructed using chronic unpredictable mild stress (CUMS) after middle cerebral artery occlusion (MCAO). The sham group only experienced the same surgical operation, but without MACO and CUMS stimulation. The XSG group received XSG (60 mg/kg per day) by gavage for 4 weeks. The mice in the sham and vehicle groups were given the same volume of 0.9% saline at the same time. The body weight and behavior tests including open field test, sucrose preference test, tail suspension test, and elevated plus-maze test, were used to validate the PSD mouse model. Real-time fluorescence quantitative polymerase chain reaction (RT-qPCR), enzyme-linked immunosorbent assay (ELISA), and immunofluorescence staining were used to evaluate the anti-inflammatory effects of XSG. The potential molecular mechanisms were explored and verified through network pharmacology analysis, Nissl staining, Western blot, ELISA, and RT-qPCR, respectively. RESULTS The body weight and behavior tests showed that MCAO combined with CUMS successfully established the PSD models. XSG alleviated neuronal damage, reduced the expressions of pro-apoptotic proteins Caspase-3 and B-cell lymphoma-2 (BCL-2)-associated X (BAX), and increased the expression of anti-apoptotic protein BCL-2 in PSD mice (P<0.05 or P<0.01). XSG inhibited microglial activation and the expressions of pro-inflammatory cytokines including tumor necrosis factor-α, interleukin (IL)-1 β, and IL-6 via the toll-like receptor 4/nuclear factor kappa-B signaling pathway in PSD mice (P<0.05 or P<0.01). Furthermore, XSG decreased the expression of indoleamine 2,3-dioxygenase1 (IDO1) and increased the concentration of 5-hydroxytryptamine in PSD mice (P<0.05 or P<0.01). CONCLUSION XSG could reverse the anxiety/depressionlike behaviors and reduce the neuronal injury in the hippocampus and prefrontal cortex of PSD mice, which may be a potential therapeutic agent for PSD.
Collapse
Affiliation(s)
- Cheng-Gang Li
- Department of Neurology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, 210008, China
- State Key Laboratory of Pharmaceutical Biotechnology and Institute of Translational Medicine for Brain Critical Diseases, Nanjing University, Nanjing, 210008, China
| | - Lu-Shan Xu
- Department of Neurology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, 210008, China
- State Key Laboratory of Pharmaceutical Biotechnology and Institute of Translational Medicine for Brain Critical Diseases, Nanjing University, Nanjing, 210008, China
| | - Liang Sun
- Department of Neurology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, 210008, China
- State Key Laboratory of Pharmaceutical Biotechnology and Institute of Translational Medicine for Brain Critical Diseases, Nanjing University, Nanjing, 210008, China
| | - Yu-Hao Xu
- State Key Laboratory of Pharmaceutical Biotechnology and Institute of Translational Medicine for Brain Critical Diseases, Nanjing University, Nanjing, 210008, China
| | - Xiang Cao
- State Key Laboratory of Pharmaceutical Biotechnology and Institute of Translational Medicine for Brain Critical Diseases, Nanjing University, Nanjing, 210008, China
- Jiangsu Key Laboratory for Molecular Medicine, Medical School of Nanjing University, Nanjing, 210008, China
- Nanjing Neurology Medical Center, Nanjing, 210008, China
| | - Chen-Chen Zhao
- Department of Neurology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, 210008, China
- State Key Laboratory of Pharmaceutical Biotechnology and Institute of Translational Medicine for Brain Critical Diseases, Nanjing University, Nanjing, 210008, China
| | - Sheng-Nan Xia
- State Key Laboratory of Pharmaceutical Biotechnology and Institute of Translational Medicine for Brain Critical Diseases, Nanjing University, Nanjing, 210008, China
- Jiangsu Key Laboratory for Molecular Medicine, Medical School of Nanjing University, Nanjing, 210008, China
| | - Qing-Xiu Zhang
- State Key Laboratory of Pharmaceutical Biotechnology and Institute of Translational Medicine for Brain Critical Diseases, Nanjing University, Nanjing, 210008, China
- Jiangsu Key Laboratory for Molecular Medicine, Medical School of Nanjing University, Nanjing, 210008, China
- Nanjing Neurology Medical Center, Nanjing, 210008, China
| | - Yun Xu
- Department of Neurology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, 210008, China.
- State Key Laboratory of Pharmaceutical Biotechnology and Institute of Translational Medicine for Brain Critical Diseases, Nanjing University, Nanjing, 210008, China.
- Jiangsu Key Laboratory for Molecular Medicine, Medical School of Nanjing University, Nanjing, 210008, China.
- Nanjing Neurology Medical Center, Nanjing, 210008, China.
| |
Collapse
|
3
|
Cheng J, Sun J, Niu R, Wang X, Hu G, Li F, Gu K, Wu H, Pu Y, Shen F, Hu H, Shen Z. Chronic exposure to PM 10 induces anxiety-like behavior via exacerbating hippocampal oxidative stress. Free Radic Biol Med 2024; 216:12-22. [PMID: 38458393 DOI: 10.1016/j.freeradbiomed.2024.02.025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 02/26/2024] [Accepted: 02/28/2024] [Indexed: 03/10/2024]
Abstract
As one of the most environmental concerns, inhaled particulate matter (PM10) causes numerous health problems. However, the associations between anxiety behavior and toxicity caused by PM10 have rarely been reported so far. To investigate the changes of behavior after PM10 exposure and to identify the potential mechanisms of toxicity, PM10 samples (with doses of 15 mg/kg and 30 mg/kg) were intratracheally instilled into rats to simulate inhalation of polluted air by the lungs. After instillation for eight weeks, anxiety-like behavior was evaluated, levels of oxidative stress and morphological changes of hippocampus were measured. The behavioral results indicated that PM10 exposure induced obvious anxiety-like behavior in the open field and elevated plus maze tests. Both PM10 concentrations tested could increase whole blood viscosity and trigger hippocampal neuronal damage and oxidative stress by increasing superoxide dismutase (SOD) activities and malondialdehyde levels, and decreasing the expressions of antioxidant-related proteins (e.g., nuclear factor erythroid 2-related factor 2 (Nrf2), SOD1 and heme oxygenase 1). Furthermore, through collecting and analyzing questionnaires, the data showed that the participants experienced obvious anxiety-related emotions and negative somatic responses under heavily polluted environments, especially PM10 being the main pollutant. These results show that PM10 exposure induces anxiety-like behavior, which may be related to suppressing the Nrf2/Keap1-SOD1 pathway.
Collapse
Affiliation(s)
- Jie Cheng
- Department of Pharmacology, School of Basic Medical Sciences, Health Science Center, Xi'an Jiaotong University, Xi'an, 710061, China
| | - Jian Sun
- Department of Environmental Science and Engineering, Xi'an Jiaotong University, Xi'an, 710061, China
| | - Rui Niu
- Department of Pharmacology, School of Basic Medical Sciences, Health Science Center, Xi'an Jiaotong University, Xi'an, 710061, China; Medical College, Xi'an Peihua University, Xi'an, 710125, China
| | - Xiaoqing Wang
- Department of Biochemistry and Molecular Biology, Cell Signal Transduction Laboratory, School of Basic Medicine, Bioinformatics Center, Henan University, Kaifeng, 475004, China; Henan Provincial Engineering Center for Tumor Molecular Medicine, Kaifeng Key Laboratory of Cell Signal Transduction, Kaifeng, 475004, China
| | - Guilin Hu
- Grade 2016, Health Science Center, Xi'an Jiaotong University, Xi'an, 710061, China
| | - Fan Li
- Basic Medical Experiment Teaching Center, Health Science Center, Xi'an Jiaotong University, Xi'an, 710061, China
| | - Kunrong Gu
- Grade 2016, Health Science Center, Xi'an Jiaotong University, Xi'an, 710061, China
| | - Hao Wu
- Grade 2016, Health Science Center, Xi'an Jiaotong University, Xi'an, 710061, China
| | - Yuanchun Pu
- Grade 2016, Health Science Center, Xi'an Jiaotong University, Xi'an, 710061, China
| | - Fanqi Shen
- Department of Pharmacology, School of Basic Medical Sciences, Health Science Center, Xi'an Jiaotong University, Xi'an, 710061, China
| | - Hao Hu
- Department of Pharmacology, School of Basic Medical Sciences, Health Science Center, Xi'an Jiaotong University, Xi'an, 710061, China; Key Laboratory of Environment and Genes Related to Diseases, Xi'an Jiaotong University, Ministry of Education of China, Xi'an, 710049, China.
| | - Zhenxing Shen
- Department of Environmental Science and Engineering, Xi'an Jiaotong University, Xi'an, 710061, China.
| |
Collapse
|
4
|
Wei E, Gao A, Mu X, Qu S, Yang C, Li F, Li S, Liu X, Song C, Guo Y. Paeonol ameliorates hippocampal neuronal damage by inhibiting GRM5/GABBR2/β-arrestin2 and activating the cAMP-PKA signaling pathway in premenstrual irritability rats. Brain Res Bull 2023; 205:110830. [PMID: 38036272 DOI: 10.1016/j.brainresbull.2023.110830] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 11/20/2023] [Accepted: 11/26/2023] [Indexed: 12/02/2023]
Abstract
Premenstrual dysphoric disorder (PMDD) is a periodic psychiatric disorder with high prevalence in women of childbearing age, seriously affecting patients' work and life. Currently, the international first-line drugs for PMDD have low efficiency and increased side effects. Paeonol, a major component of the traditional Chinese medicine Cortex Moutan, has been applied in treating PMDD in China with satisfactory results, but the therapeutic mechanism is not fully understood. This study aims to evaluate the therapeutic effects and pharmacological mechanisms of paeonol on the main psychiatric symptoms and hippocampal damage in PMDD. We established a premenstrual irritability rat model by the resident-intruder paradigm and performed elevated plus maze and social interactions. And we employed the HE and Nissl staining techniques to observe the therapeutic effect of paeonol on hippocampal damage in PMDD rats. Subsequently, Elisa, qRT-PCR Array, Western Blotting, and cell models were utilized to elucidate the underlying molecular mechanisms through which paeonol intervenes in treating PMDD. In this study, we demonstrated the therapeutic effects of paeonol on irritability, anxiety, and social withdrawal behaviors in rats. In addition, we found that paeonol significantly reduced the serum corticosterone (CORT) level, improved hippocampal morphological structure and neuron number, and reduced hippocampal neuron apoptosis in PMDD rats. Paeonol reduced GRM5, GABBR2, β-arrestin2, and GRK3 expression levels in hippocampal brain regions of PMDD rats and activated the cAMP/PKA signaling pathway. Inhibitor cell experiments showed that paeonol specifically ameliorated hippocampal injury by modulating the β-arrestin2/PDE4-cAMP/PKA signaling pathway. The present study demonstrates, for the first time, that paeonol exerts a therapeutic effect on periodic psychotic symptoms and hippocampal injury in PMDD through inhibiting GRM5/GABBR2/β-arrestin2 and activating cAMP-PKA signaling pathway. These findings enhance our understanding of the pharmacological mechanism underlying paeonol and provide a solid scientific foundation for its future clinical application.
Collapse
Affiliation(s)
- Enhua Wei
- College of traditional Chinese medicine, Shandong University of Traditional Chinese Medicine, Jinan 250355, China
| | - Aiying Gao
- Taian Institute for Food and Drug Control (Taian Fiber Inspection Institute), Taian 271000, China
| | - Xiaofei Mu
- Department of Pharmacy, Rizhao Central Hospital, Rizhao 276800, China
| | - Songlin Qu
- College of traditional Chinese medicine, Shandong University of Traditional Chinese Medicine, Jinan 250355, China
| | - Caixing Yang
- College of traditional Chinese medicine, Shandong University of Traditional Chinese Medicine, Jinan 250355, China
| | - Fengling Li
- Taian Institute for Food and Drug Control (Taian Fiber Inspection Institute), Taian 271000, China
| | - Shujing Li
- College of traditional Chinese medicine, Shandong University of Traditional Chinese Medicine, Jinan 250355, China
| | - Xuehuan Liu
- Experimental Center, Shandong University of Traditional Chinese Medicine, Jinan 250355, China
| | - Chunhong Song
- Shandong Key Laboratory of Traditional Chinese Medicine and Stress Injury, Department of Laboratory Animal Center, Central Hospital Affiliated to Shandong First Medical University, Jinan 250013, China.
| | - Yinghui Guo
- College of traditional Chinese medicine, Shandong University of Traditional Chinese Medicine, Jinan 250355, China.
| |
Collapse
|