1
|
Li H, Ye Z, Zheng G, Su Z. Polysaccharides targeting autophagy to alleviate metabolic syndrome. Int J Biol Macromol 2024; 283:137393. [PMID: 39521230 DOI: 10.1016/j.ijbiomac.2024.137393] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 10/25/2024] [Accepted: 11/06/2024] [Indexed: 11/16/2024]
Abstract
Metabolic syndrome is a prevalent non-communicable disease characterized by central obesity, insulin resistance, hypertension, hyperglycemia, and hyperlipidemia. Epidemiological statistics indicate that one-third of the world's population is affected by metabolic syndrome. Unfortunately, owing to complicated pathogenesis and limited pharmacological options, the growing prevalence of metabolic syndrome threatens human health worldwide. Autophagy is an intracellular degradation mechanism that involves the degradation of unfolded or aggregated proteins and damaged cellular organelles, thereby maintaining metabolic homeostasis. Increasing evidence indicates that dysfunctional autophagy is closely associated with the development of metabolic syndrome, making it an attractive therapeutic target. Furthermore, a growing number of plant-derived polysaccharides have been shown to regulate autophagy, thereby alleviating metabolic syndrome, such as Astragalus polysaccharides, Laminaria japonica polysaccharides, Ganoderma lucidum polysaccharides and Lycium barbarum polysaccharides. In this review, we summarize recent advances in the discovery of autophagy modulators of plant polysaccharides for the treatment of metabolic syndrome, with the aim of providing precursor compounds for the development of new therapeutic agents. Additionally, we look forward to seeing more diseases being treated with plant polysaccharides by regulating autophagy, as well as the discovery of more intricate mechanisms that govern autophagy.
Collapse
Affiliation(s)
- Hongxia Li
- State Key Laboratory of Traditional Chinese Medicine Syndrome, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China; Department of Pharmacology of Traditional Chinese Medicine, The Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, China; Guangdong Provincial Key Laboratory of Chinese Medicine for Prevention and Treatment of Refractory Chronic Diseases, The Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Zeting Ye
- State Key Laboratory of Traditional Chinese Medicine Syndrome, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China; Department of Pharmacology of Traditional Chinese Medicine, The Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, China; Guangdong Provincial Key Laboratory of Chinese Medicine for Prevention and Treatment of Refractory Chronic Diseases, The Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Guangjuan Zheng
- State Key Laboratory of Dampness Syndrome of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China; Department of Pharmacology of Traditional Chinese Medicine, The Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, China; Guangdong Provincial Key Laboratory of Chinese Medicine for Prevention and Treatment of Refractory Chronic Diseases, The Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, China.
| | - Zuqing Su
- State Key Laboratory of Traditional Chinese Medicine Syndrome, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China; Department of Pharmacology of Traditional Chinese Medicine, The Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, China; Guangdong Provincial Key Laboratory of Chinese Medicine for Prevention and Treatment of Refractory Chronic Diseases, The Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, China.
| |
Collapse
|
2
|
Li W, Zhang Y, Cao Y, Zhao X, Xie J. Protective effects and regulatory mechanisms of Platycodin D against LPS-Induced inflammatory injury in BEAS-2B cells. Int Immunopharmacol 2024; 139:112782. [PMID: 39074416 DOI: 10.1016/j.intimp.2024.112782] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 06/10/2024] [Accepted: 07/23/2024] [Indexed: 07/31/2024]
Abstract
Platycodin D (PLD), a major bioactive component of triterpene saponins found in Platycodon grandiflora, is renowned for its anti-inflammatory and antioxidant properties. This study aims to explore the protective effects and regulatory mechanisms of PLD in an LPS-induced inflammation injury model of BEAS-2B cells. Initially, PLD was identified from Platycodon grandiflora extracts utilizing UPLC-Q-TOF-MS/MS technology. The effects of PLD on the viability, morphology, ROS levels, and inflammatory factors of LPS-induced BEAS-2B cells were then investigated. The results showed that PLD significantly alleviated LPS-induced oxidative stress and inflammatory injury. Further analysis revealed that PLD positively influenced apoptosis levels, mitochondrial morphology, and related gene expression, indicating its potential to mitigate LPS-induced apoptosis and alleviate mitochondrial dysfunction. Using molecular docking technology, we predicted the binding sites of PLD with mitochondrial autophagy protein. Gene expression levels of autophagy-related proteins were measured to determine the impact of PLD on mitochondrial autophagy. Additionally, the study examined whether the mitochondrial autophagy agonists rapamycin (RAPA) could modulate the upregulation of inflammasome-related factors NLRP3 and Caspase-1 in LPS-induced BEAS-2B cells. This was done to evaluate the regulator mechanisms of PLD in pulmonary inflammatory injury. Our findings suggest that PLD's mechanism of action involves the regulation of mitochondrial autophagy, which in turn modulates inflammatory responses.
Collapse
Affiliation(s)
- Wei Li
- School of Biotechnology and Food Science, Tianjin University of Commerce, Tianjin 300134, China; School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Yanqing Zhang
- School of Biotechnology and Food Science, Tianjin University of Commerce, Tianjin 300134, China.
| | - Yuxin Cao
- School of Biotechnology and Food Science, Tianjin University of Commerce, Tianjin 300134, China
| | - Xiaotong Zhao
- Department of Chemistry, Cleveland State University, Cleveland, OH 44115, USA
| | - Junbo Xie
- School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China.
| |
Collapse
|
3
|
Chen X, Hou Y, Liao A, Pan L, Yang S, Liu Y, Wang J, Xue Y, Zhang M, Zhu Z, Huang J. Integrated Analysis of Gut Microbiome and Adipose Transcriptome Reveals Beneficial Effects of Resistant Dextrin from Wheat Starch on Insulin Resistance in Kunming Mice. Biomolecules 2024; 14:186. [PMID: 38397423 PMCID: PMC10886926 DOI: 10.3390/biom14020186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2023] [Revised: 01/14/2024] [Accepted: 01/26/2024] [Indexed: 02/25/2024] Open
Abstract
Systemic chronic inflammation is recognized as a significant contributor to the development of obesity-related insulin resistance. Previous studies have revealed the physiological benefits of resistant dextrin (RD), including obesity reduction, lower fasting glucose levels, and anti-inflammation. The present study investigated the effects of RD intervention on insulin resistance (IR) in Kunming mice, expounding the mechanisms through the gut microbiome and transcriptome of white adipose. In this eight-week study, we investigated changes in tissue weight, glucose-lipid metabolism levels, serum inflammation levels, and lesions of epididymal white adipose tissue (eWAT) evaluated via Hematoxylin and Eosin (H&E) staining. Moreover, we analyzed the gut microbiota composition and transcriptome of eWAT to assess the potential protective effects of RD intervention. Compared with a high-fat, high-sugar diet (HFHSD) group, the RD intervention significantly enhanced glucose homeostasis (e.g., AUC-OGTT, HOMA-IR, p < 0.001), and reduced lipid metabolism (e.g., TG, LDL-C, p < 0.001) and serum inflammation levels (e.g., IL-1β, IL-6, p < 0.001). The RD intervention also led to changes in the gut microbiota composition, with an increase in the abundance of probiotics (e.g., Parabacteroides, Faecalibaculum, and Muribaculum, p < 0.05) and a decrease in harmful bacteria (Colidextribacter, p < 0.05). Moreover, the RD intervention had a noticeable effect on the gene transcription profile of eWAT, and KEGG enrichment analysis revealed that differential genes were enriched in PI3K/AKT, AMPK, in glucose-lipid metabolism, and in the regulation of lipolysis in adipocytes signaling pathways. The findings demonstrated that RD not only ameliorated IR, but also remodeled the gut microbiota and modified the transcriptome profile of eWAT.
Collapse
Affiliation(s)
- Xinyang Chen
- Food Laboratory of Zhongyuan, Luohe 462300, China; (X.C.); (Y.H.); (A.L.); (L.P.); (Y.L.); (J.W.); (Y.X.); (M.Z.); (Z.Z.)
- School of Biological Engineering, Henan University of Technology, Zhengzhou 450001, China
| | - Yinchen Hou
- Food Laboratory of Zhongyuan, Luohe 462300, China; (X.C.); (Y.H.); (A.L.); (L.P.); (Y.L.); (J.W.); (Y.X.); (M.Z.); (Z.Z.)
- College of Food and Biological Engineering, Henan University of Animal Husbandry and Economy, Zhengzhou 450046, China;
| | - Aimei Liao
- Food Laboratory of Zhongyuan, Luohe 462300, China; (X.C.); (Y.H.); (A.L.); (L.P.); (Y.L.); (J.W.); (Y.X.); (M.Z.); (Z.Z.)
- School of Biological Engineering, Henan University of Technology, Zhengzhou 450001, China
| | - Long Pan
- Food Laboratory of Zhongyuan, Luohe 462300, China; (X.C.); (Y.H.); (A.L.); (L.P.); (Y.L.); (J.W.); (Y.X.); (M.Z.); (Z.Z.)
- School of Biological Engineering, Henan University of Technology, Zhengzhou 450001, China
| | - Shengru Yang
- College of Food and Biological Engineering, Henan University of Animal Husbandry and Economy, Zhengzhou 450046, China;
| | - Yingying Liu
- Food Laboratory of Zhongyuan, Luohe 462300, China; (X.C.); (Y.H.); (A.L.); (L.P.); (Y.L.); (J.W.); (Y.X.); (M.Z.); (Z.Z.)
- School of Biological Engineering, Henan University of Technology, Zhengzhou 450001, China
| | - Jingjing Wang
- Food Laboratory of Zhongyuan, Luohe 462300, China; (X.C.); (Y.H.); (A.L.); (L.P.); (Y.L.); (J.W.); (Y.X.); (M.Z.); (Z.Z.)
- School of Biological Engineering, Henan University of Technology, Zhengzhou 450001, China
| | - Yingchun Xue
- Food Laboratory of Zhongyuan, Luohe 462300, China; (X.C.); (Y.H.); (A.L.); (L.P.); (Y.L.); (J.W.); (Y.X.); (M.Z.); (Z.Z.)
- School of Biological Engineering, Henan University of Technology, Zhengzhou 450001, China
| | - Mingyi Zhang
- Food Laboratory of Zhongyuan, Luohe 462300, China; (X.C.); (Y.H.); (A.L.); (L.P.); (Y.L.); (J.W.); (Y.X.); (M.Z.); (Z.Z.)
- School of Biological Engineering, Henan University of Technology, Zhengzhou 450001, China
| | - Zhitong Zhu
- Food Laboratory of Zhongyuan, Luohe 462300, China; (X.C.); (Y.H.); (A.L.); (L.P.); (Y.L.); (J.W.); (Y.X.); (M.Z.); (Z.Z.)
- School of Biological Engineering, Henan University of Technology, Zhengzhou 450001, China
| | - Jihong Huang
- Food Laboratory of Zhongyuan, Luohe 462300, China; (X.C.); (Y.H.); (A.L.); (L.P.); (Y.L.); (J.W.); (Y.X.); (M.Z.); (Z.Z.)
- School of Biological Engineering, Henan University of Technology, Zhengzhou 450001, China
- State Key Laboratory of Crop Stress Adaptation and Improvement, College of Agriculture, Henan University, Kaifeng 475004, China
- School of Food and Pharmacy, Xuchang University, Xuchang 461000, China
| |
Collapse
|
4
|
Wang S, Long H, Hou L, Feng B, Ma Z, Wu Y, Zeng Y, Cai J, Zhang DW, Zhao G. The mitophagy pathway and its implications in human diseases. Signal Transduct Target Ther 2023; 8:304. [PMID: 37582956 PMCID: PMC10427715 DOI: 10.1038/s41392-023-01503-7] [Citation(s) in RCA: 175] [Impact Index Per Article: 87.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 05/03/2023] [Accepted: 05/16/2023] [Indexed: 08/17/2023] Open
Abstract
Mitochondria are dynamic organelles with multiple functions. They participate in necrotic cell death and programmed apoptotic, and are crucial for cell metabolism and survival. Mitophagy serves as a cytoprotective mechanism to remove superfluous or dysfunctional mitochondria and maintain mitochondrial fine-tuning numbers to balance intracellular homeostasis. Growing evidences show that mitophagy, as an acute tissue stress response, plays an important role in maintaining the health of the mitochondrial network. Since the timely removal of abnormal mitochondria is essential for cell survival, cells have evolved a variety of mitophagy pathways to ensure that mitophagy can be activated in time under various environments. A better understanding of the mechanism of mitophagy in various diseases is crucial for the treatment of diseases and therapeutic target design. In this review, we summarize the molecular mechanisms of mitophagy-mediated mitochondrial elimination, how mitophagy maintains mitochondrial homeostasis at the system levels and organ, and what alterations in mitophagy are related to the development of diseases, including neurological, cardiovascular, pulmonary, hepatic, renal disease, etc., in recent advances. Finally, we summarize the potential clinical applications and outline the conditions for mitophagy regulators to enter clinical trials. Research advances in signaling transduction of mitophagy will have an important role in developing new therapeutic strategies for precision medicine.
Collapse
Affiliation(s)
- Shouliang Wang
- The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan City People's Hospital, Qingyuan, Guangdong, China
| | - Haijiao Long
- The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan City People's Hospital, Qingyuan, Guangdong, China
- Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Lianjie Hou
- The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan City People's Hospital, Qingyuan, Guangdong, China
| | - Baorong Feng
- The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan City People's Hospital, Qingyuan, Guangdong, China
| | - Zihong Ma
- The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan City People's Hospital, Qingyuan, Guangdong, China
| | - Ying Wu
- The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan City People's Hospital, Qingyuan, Guangdong, China
| | - Yu Zeng
- The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan City People's Hospital, Qingyuan, Guangdong, China
| | - Jiahao Cai
- The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan City People's Hospital, Qingyuan, Guangdong, China
| | - Da-Wei Zhang
- Group on the Molecular and Cell Biology of Lipids and Department of Pediatrics, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta, Canada.
| | - Guojun Zhao
- The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan City People's Hospital, Qingyuan, Guangdong, China.
| |
Collapse
|