1
|
Yang C, Hu Z, Drolkar G, Jia K, Zhu C, Wang C, Li Q, Wang L, Zhang G, Jokyab T, Hu X, Li H, Xu L, Wang J, Liu C, Lin N. Tibetan medicine Ruyi Zhenbao Pill ameliorates neuropathic pain by inhibiting the CXCL10-CXCR3 pathway in spinal cord of spinal nerve ligation model. JOURNAL OF ETHNOPHARMACOLOGY 2024; 323:117653. [PMID: 38163561 DOI: 10.1016/j.jep.2023.117653] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/26/2023] [Revised: 12/18/2023] [Accepted: 12/20/2023] [Indexed: 01/03/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Ruyi Zhenbao Pill (RYZBP) is a traditional Tibetan medicine that has been used for over 300 years in China to treat neurological diseases, specifically neuropathic pain (NP). However, its characteristics and mechanism of action in treating NP remains unclear. AIM OF THE STUDY Based on animal experiments and transcriptomics to evaluate the characteristics and mechanism of RYZBP in treating NP. METHODS Mice were divided into six groups using random assignment: sham-operation group, spinal nerve ligation (SNL) group, RYZBP low (0.65 g kg-1), medium (1.30 g kg-1), high (2.60 g kg-1) doses groups, and positive drug pregabalin (PGB, 0.05 g kg-1) group. Mice received intragastrical administered for 14 consecutive days. SNL and intrathecal injection models were employed. The analgesic effects were assessed using the Von Frey test, Acetone test, and Hot Plate test. L5 spinal dorsal horns were collected for transcriptomics on day 15. The potential signaling pathways and Hub genes of RYZBP to ameliorate NP were obtained through transcriptomics and network pharmacology. Molecular docking was utilized to evaluate the binding ability of candidate active ingredients with the Hub genes. Finally, western blot (WB) and immunofluorescence (IF) were used to validate the predicted targets. RESULTS RYZBP demonstrated a dose-dependent alleviation of mechanical allodynia, cold and heat stimulus-induced pain in SNL mice. Transcriptomics analysis identified 24 differentially expressed genes, and pathway enrichment analysis revealed that the CXCL10-CXCR3 signal axis may be the primary biological pathway through which RYZBP relieve NP. Molecular docking test indicated that the active ingredient in RYZBP exhibit a strong affinity for the target protein CXCL10. WB and IF tests showed that RYZBP can significantly inhibit CXCL10 and CXCR3 and its downstream molecules expression in the spinal dorsal horn of SNL mice. Additionally, intrathecal injection of rmCXCL10 worsened pain hypersensitivity, while RYZBP was able to suppress the pain hypersensitivity response induced by rmCXCL10 and reduce the expression levels of CXCL10 and CXCR3 and its downstream molecules. CONCLUSION RYZBP had a significant analgesic effect on NP model, and this effect may be related to inhibiting the CXCL10-CXCR3 pathway in the spinal dorsal horn.
Collapse
Affiliation(s)
- Chao Yang
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, No. 16, Nanxiaojie, Dongzhimennei, Beijing, 100700, PR China; Jiangxi University of Chinese Medicine, No.1688 Meiling Avenue, Wanli District, Nanchang, 330004, PR China
| | - Zhixing Hu
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, No. 16, Nanxiaojie, Dongzhimennei, Beijing, 100700, PR China
| | - Gyap Drolkar
- Beijing Tibetan Hospital, Beijing Tibetology Reserch Center, No.218, Xiaoguan Beili, Anwai, Beijing, 100029, PR China
| | - Kexin Jia
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, No. 16, Nanxiaojie, Dongzhimennei, Beijing, 100700, PR China
| | - Chunyan Zhu
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, No. 16, Nanxiaojie, Dongzhimennei, Beijing, 100700, PR China
| | - Chao Wang
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, No. 16, Nanxiaojie, Dongzhimennei, Beijing, 100700, PR China
| | - Qun Li
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, No. 16, Nanxiaojie, Dongzhimennei, Beijing, 100700, PR China
| | - Lili Wang
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, No. 16, Nanxiaojie, Dongzhimennei, Beijing, 100700, PR China
| | - Guoxin Zhang
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, No. 16, Nanxiaojie, Dongzhimennei, Beijing, 100700, PR China
| | - Tsering Jokyab
- Beijing Tibetan Hospital, Beijing Tibetology Reserch Center, No.218, Xiaoguan Beili, Anwai, Beijing, 100029, PR China
| | - Xianda Hu
- Beijing Tibetan Hospital, Beijing Tibetology Reserch Center, No.218, Xiaoguan Beili, Anwai, Beijing, 100029, PR China
| | - Honghong Li
- Beijing Tibetan Hospital, Beijing Tibetology Reserch Center, No.218, Xiaoguan Beili, Anwai, Beijing, 100029, PR China
| | - Liting Xu
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, No. 16, Nanxiaojie, Dongzhimennei, Beijing, 100700, PR China
| | - Jialing Wang
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, No. 16, Nanxiaojie, Dongzhimennei, Beijing, 100700, PR China
| | - Chunfang Liu
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, No. 16, Nanxiaojie, Dongzhimennei, Beijing, 100700, PR China.
| | - Na Lin
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, No. 16, Nanxiaojie, Dongzhimennei, Beijing, 100700, PR China.
| |
Collapse
|
2
|
Wang X, Tang X, Zhu P, Hua D, Xie Z, Guo M, Que M, Yan J, Li X, Xia Q, Luo X, Bi J, Zhao Y, Zhou Z, Li S, Luo A. CircAKT3 alleviates postoperative cognitive dysfunction by stabilizing the feedback cycle of miR-106a-5p/HDAC4/MEF2C axis in hippocampi of aged mice. Cell Mol Life Sci 2024; 81:138. [PMID: 38478029 PMCID: PMC10937803 DOI: 10.1007/s00018-024-05156-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2023] [Revised: 01/10/2024] [Accepted: 02/05/2024] [Indexed: 03/17/2024]
Abstract
Circular RNAs (circRNAs) have garnered significant attention in the field of neurodegenerative diseases including Alzheimer's diseases due to their covalently closed loop structure. However, the involvement of circRNAs in postoperative cognitive dysfunction (POCD) is still largely unexplored. To identify the genes differentially expressed between non-POCD (NPOCD) and POCD mice, we conducted the whole transcriptome sequencing initially in this study. According to the expression profiles, we observed that circAKT3 was associated with hippocampal neuronal apoptosis in POCD mice. Moreover, we found that circAKT3 overexpression reduced apoptosis of hippocampal neurons and alleviated POCD. Subsequently, through bioinformatics analysis, our data showed that circAKT3 overexpression in vitro and in vivo elevated the abundance of miR-106a-5p significantly, resulting in a decrease of HDAC4 protein and an increase of MEF2C protein. Additionally, this effect of circAKT3 was blocked by miR-106a-5p inhibitor. Interestingly, MEF2C could activate the transcription of miR-106a-5p promoter and form a positive feedback loop. Therefore, our findings revealed more potential modulation ways between circRNA-miRNA and miRNA-mRNA, providing different directions and targets for preclinical studies of POCD.
Collapse
Affiliation(s)
- Xuan Wang
- Department of Anesthesiology and Pain Medicine, Hubei Key Laboratory of Geriatric Anesthesia and Perioperative Brain Health, and Wuhan Clinical Research Center for Geriatric Anesthesia, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan, 430030, Hubei, China
| | - Xiaole Tang
- State Key Laboratory of Oncology in Southern China, Department of Anesthesiology, Sun Yat-Sen University Cancer Center, Guangzhou, 510060, Guangdong, China
| | - Pengfei Zhu
- Department of Anesthesiology and Pain Medicine, Hubei Key Laboratory of Geriatric Anesthesia and Perioperative Brain Health, and Wuhan Clinical Research Center for Geriatric Anesthesia, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan, 430030, Hubei, China
| | - Dongyu Hua
- Department of Anesthesiology and Pain Medicine, Hubei Key Laboratory of Geriatric Anesthesia and Perioperative Brain Health, and Wuhan Clinical Research Center for Geriatric Anesthesia, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan, 430030, Hubei, China
| | - Zheng Xie
- Department of Anesthesiology and Pain Medicine, Hubei Key Laboratory of Geriatric Anesthesia and Perioperative Brain Health, and Wuhan Clinical Research Center for Geriatric Anesthesia, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan, 430030, Hubei, China
| | - Mingke Guo
- Department of Anesthesiology and Pain Medicine, Hubei Key Laboratory of Geriatric Anesthesia and Perioperative Brain Health, and Wuhan Clinical Research Center for Geriatric Anesthesia, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan, 430030, Hubei, China
| | - Mengxin Que
- Department of Anesthesiology and Pain Medicine, Hubei Key Laboratory of Geriatric Anesthesia and Perioperative Brain Health, and Wuhan Clinical Research Center for Geriatric Anesthesia, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan, 430030, Hubei, China
| | - Jing Yan
- Department of Anesthesiology and Pain Medicine, Hubei Key Laboratory of Geriatric Anesthesia and Perioperative Brain Health, and Wuhan Clinical Research Center for Geriatric Anesthesia, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan, 430030, Hubei, China
| | - Xing Li
- Department of Anesthesiology and Pain Medicine, Hubei Key Laboratory of Geriatric Anesthesia and Perioperative Brain Health, and Wuhan Clinical Research Center for Geriatric Anesthesia, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan, 430030, Hubei, China
| | - Qian Xia
- Department of Anesthesiology and Pain Medicine, Hubei Key Laboratory of Geriatric Anesthesia and Perioperative Brain Health, and Wuhan Clinical Research Center for Geriatric Anesthesia, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan, 430030, Hubei, China
| | - Xiaoxiao Luo
- Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Jiangjiang Bi
- Department of Anesthesiology and Pain Medicine, Hubei Key Laboratory of Geriatric Anesthesia and Perioperative Brain Health, and Wuhan Clinical Research Center for Geriatric Anesthesia, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan, 430030, Hubei, China
| | - Yilin Zhao
- Department of Anesthesiology and Pain Medicine, Hubei Key Laboratory of Geriatric Anesthesia and Perioperative Brain Health, and Wuhan Clinical Research Center for Geriatric Anesthesia, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan, 430030, Hubei, China
| | - Zhiqiang Zhou
- Department of Anesthesiology and Pain Medicine, Hubei Key Laboratory of Geriatric Anesthesia and Perioperative Brain Health, and Wuhan Clinical Research Center for Geriatric Anesthesia, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan, 430030, Hubei, China
| | - Shiyong Li
- Department of Anesthesiology and Pain Medicine, Hubei Key Laboratory of Geriatric Anesthesia and Perioperative Brain Health, and Wuhan Clinical Research Center for Geriatric Anesthesia, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan, 430030, Hubei, China.
| | - Ailin Luo
- Department of Anesthesiology and Pain Medicine, Hubei Key Laboratory of Geriatric Anesthesia and Perioperative Brain Health, and Wuhan Clinical Research Center for Geriatric Anesthesia, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan, 430030, Hubei, China.
| |
Collapse
|
3
|
Bai F, Huang L, Long Z, Zhang M, Deng Q, Huang J, Bao X, Hao X, Li H. Depletion of PIEZO1 expression is accompanied by upregulating p53 signaling in mice with perioperative neurocognitive disorder. Funct Integr Genomics 2023; 23:327. [PMID: 37889347 DOI: 10.1007/s10142-023-01258-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Revised: 10/11/2023] [Accepted: 10/16/2023] [Indexed: 10/28/2023]
Abstract
As the common complications observed in surgical elder patients, perioperative neurocognitive disorders (PND) cause a series of serious perioperative health problems. However, there are no effective treatments, and the exact mechanisms are still largely unknown. In this study, transcriptome sequencing was performed to investigate the differentially expressed genes (DEGs) in the hippocampus of C57BL/6J aged mice with or without PND. Compared with the Mock group, the expression of 352, 395, and 772 genes changed significantly in the PND group at days 1, 7, and 21 after surgery, respectively. Gene ontology (GO) and gene set enrichment analysis (GSEA) showed that DEGs were mainly associated with p53 signaling. Moreover, GSEA revealed potentially p53-related DEGs such as leucine-rich repeat serine/threonine-protein kinase 1 (LRRK1), monooxygenase DBH-like 1 (MOXD1), and piezo type mechanosensitive ion channel component 1 (PIEZO1). Furthermore, we confirmed the decreased interaction of PIEZO1 with p53 in PND, and upregulation of PIEZO1 resulted in a decrease in p53 protein levels through increased ubiquitination of p53. In conclusion, this study contributes to the knowledge of global changes in gene expression and mechanisms during PND.
Collapse
Affiliation(s)
- Fuhai Bai
- Department of Anesthesiology, Xinqiao Hospital, Army Medical University, Chongqing, 400037, China
| | - Lu Huang
- Department of Anesthesiology, Xinqiao Hospital, Army Medical University, Chongqing, 400037, China
| | - Zonghong Long
- Department of Anesthesiology, Xinqiao Hospital, Army Medical University, Chongqing, 400037, China
| | - Min Zhang
- Department of Anesthesiology, Xinqiao Hospital, Army Medical University, Chongqing, 400037, China
| | - Qiangting Deng
- Editorial Office of Journal of Army Medical University, Chongqing, 400038, China
| | - Jing Huang
- Department of Anesthesiology, Xinqiao Hospital, Army Medical University, Chongqing, 400037, China
| | - Xiaohang Bao
- Department of Anesthesiology, Xinqiao Hospital, Army Medical University, Chongqing, 400037, China
| | - Xianglin Hao
- Department of Pathology, Xinqiao Hospital, Army Medical University, Chongqing, 400037, People's Republic of China
| | - Hong Li
- Department of Anesthesiology, Xinqiao Hospital, Army Medical University, Chongqing, 400037, China.
| |
Collapse
|
4
|
Zhang Z, Liu C, Zhou X, Zhang X. The Critical Role of Sirt1 in Subarachnoid Hemorrhages: Mechanism and Therapeutic Considerations. Brain Sci 2023; 13:brainsci13040674. [PMID: 37190639 DOI: 10.3390/brainsci13040674] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Revised: 03/28/2023] [Accepted: 04/13/2023] [Indexed: 05/17/2023] Open
Abstract
The subarachnoid hemorrhage (SAH) is an important cause of death and long-term disability worldwide. As a nicotinamide adenine dinucleotide-dependent deacetylase, silent information regulator 1 (Sirt1) is a multipotent molecule involved in many pathophysiological processes. A growing number of studies have demonstrated that Sirt1 activation may exert positive effects on SAHs by regulating inflammation, oxidative stress, apoptosis, autophagy, and ferroptosis. Thus, Sirt1 agonists may serve as potential therapeutic drugs for SAHs. In this review, we summarized the current state of our knowledge on the relationship between Sirt1 and SAHs and provided an updated overview of the downstream molecules of Sirt1 in SAHs.
Collapse
Affiliation(s)
- Zhonghua Zhang
- Department of Neurosurgery, Jinling Hospital, Jinling School of Clinical Medicine, Nanjing Medical University, Nanjing 210029, China
| | - Cong Liu
- Department of Ophthalmology, Jinling Hospital, Jinling School of Clinical Medicine, Nanjing Medical University, Nanjing 210029, China
| | - Xiaoming Zhou
- Department of Neurosurgery, Jinling Hospital, Jinling School of Clinical Medicine, Nanjing Medical University, Nanjing 210029, China
| | - Xin Zhang
- Department of Neurosurgery, Jinling Hospital, Jinling School of Clinical Medicine, Nanjing Medical University, Nanjing 210029, China
| |
Collapse
|