1
|
Li D, Jiang M, Song Y, Liang X, Lv J, Zhang L, Li Z, Fan L, Du H. Preventive vs. therapeutic effects of Shoutai Wan: Maintaining an acidic microenvironment at the maternal-fetal interface to promote angiogenesis and minimize pregnancy loss in RSA mice. JOURNAL OF ETHNOPHARMACOLOGY 2025; 342:119345. [PMID: 39824268 DOI: 10.1016/j.jep.2025.119345] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2024] [Revised: 01/07/2025] [Accepted: 01/08/2025] [Indexed: 01/20/2025]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE The classic TCM prescription, Shoutai Wan (STW), is extensively used in clinical settings to manage threatened miscarriage and Recurrent spontaneous abortion (RSA). The complexity of pregnancy physiology, coupled with diverse etiologies, and the specificity of energy metabolism for normal embryo attachment and development, pose challenges to clinical diagnosis and treatment. The specific molecular mechanisms of how STW regulates these biological processes and contributes to the treatment of RSA remain to be elucidated. AIM OF THE STUDY This study aims to investigate the causes of early pregnancy loss in RSA mice and explore how STW mitigates this loss. MATERIALS AND METHODS An RSA mouse model will be established and treated with STW and Dydrogesterone (DYD). Embryo loss will be quantified on the 14th day of pregnancy, and embryos will be collected on the 6th and 10th days to observe the embryonic condition and assess pathological changes. The study will analyze aerobic glycolysis and angiogenesis at the maternal-fetal interface (MFI). Additionally, STW on a knockdown LDHA mouse model and Human Endometrial Microvascular Endothelial Cells (HEMECs) in vitro will also be examined to verify the mechanism. RESULTS Compared with the control group, the RSA group exhibited significant embryo loss, and reduced levels of aerobic glycolysis at the MFI, the precarious acidic microenvironment (AME), and the PI3K/AKT/mTOR signaling axis downregulated, leading to impaired angiogenesis, which ameliorated following STW treatment. STW treatment enhanced key aerobic glycolysis enzymes-HK2, PKM2, LDHA-and lactate levels, thereby maintaining the AME and upregulating the PI3K/AKT/mTOR axis. This, in turn, promoted the expression of angiogenesis-related factors (VEGFA and VEGFR2) at the MFI, thereby improving angiogenesis, and the same was seen in sh-LDHA mice. In vitro studies confirmed that STW could counteract the glycolysis decline caused by increased oxygen levels, a recovery that was impaired after LDHA knockdown or PI3K inhibition. CONCLUSIONS In RSA mice, disturbances in aerobic glycolysis at the MFI prevent the maintenance of a stable AME, thus impairing angiogenesis and leading to embryo loss, and STW effectively improve early pregnancy outcomes, and laying the foundation for uterine spiral artery remodeling.
Collapse
Affiliation(s)
- Dandan Li
- College of Integrated Traditional Chinese and Western Medicine, Hebei University of Chinese Medicine, Shijiazhuang, 050091, China; Collaborative Innovation Center of Integrated Chinese and Western Medicine on Reproductive Disease, Shijiazhuang, 050091, China
| | - Min Jiang
- College of Integrated Traditional Chinese and Western Medicine, Hebei University of Chinese Medicine, Shijiazhuang, 050091, China; Collaborative Innovation Center of Integrated Chinese and Western Medicine on Reproductive Disease, Shijiazhuang, 050091, China
| | - Yajing Song
- College of Integrated Traditional Chinese and Western Medicine, Hebei University of Chinese Medicine, Shijiazhuang, 050091, China; Collaborative Innovation Center of Integrated Chinese and Western Medicine on Reproductive Disease, Shijiazhuang, 050091, China
| | - Xiao Liang
- College of Integrated Traditional Chinese and Western Medicine, Hebei University of Chinese Medicine, Shijiazhuang, 050091, China; Collaborative Innovation Center of Integrated Chinese and Western Medicine on Reproductive Disease, Shijiazhuang, 050091, China; Institute of Integrative Medicine, College of Integrative Medicine, Hebei University of Chinese Medicine, Shijiazhuang, 050091, China
| | - Jingfang Lv
- College of Integrated Traditional Chinese and Western Medicine, Hebei University of Chinese Medicine, Shijiazhuang, 050091, China; Collaborative Innovation Center of Integrated Chinese and Western Medicine on Reproductive Disease, Shijiazhuang, 050091, China
| | - Li Zhang
- College of Integrated Traditional Chinese and Western Medicine, Hebei University of Chinese Medicine, Shijiazhuang, 050091, China; First College of Clinical Medicine, Shaanxi University of Chinese Medicine, Xianyang, 712046, China
| | - Zhichao Li
- First College of Clinical Medicine, Shandong University of Traditional Chinese Medicine, Jinan, 250014, China
| | - Lijie Fan
- College of Integrated Traditional Chinese and Western Medicine, Hebei University of Chinese Medicine, Shijiazhuang, 050091, China; Collaborative Innovation Center of Integrated Chinese and Western Medicine on Reproductive Disease, Shijiazhuang, 050091, China; Hebei Key Laboratory of Integrative Medicine on Liver-kidney Patterns, Shijiazhuang, 050091, China
| | - Huilan Du
- College of Integrated Traditional Chinese and Western Medicine, Hebei University of Chinese Medicine, Shijiazhuang, 050091, China; Collaborative Innovation Center of Integrated Chinese and Western Medicine on Reproductive Disease, Shijiazhuang, 050091, China; Hebei Key Laboratory of Integrative Medicine on Liver-kidney Patterns, Shijiazhuang, 050091, China.
| |
Collapse
|
2
|
Chen Y, Gan B, Zheng S, Zhao X, Jin L, Wei J. AMPK-mTOR pathway modulates glycolysis reprogramming in unexplained recurrent spontaneous abortion. BMC Pregnancy Childbirth 2024; 24:840. [PMID: 39707242 DOI: 10.1186/s12884-024-07054-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Accepted: 12/09/2024] [Indexed: 12/23/2024] Open
Abstract
BACKGROUND Recurrent spontaneous abortion (RSA), whose underlying cause has yet to be fully elucidated, is often classified as unexplained recurrent spontaneous abortion (URSA). Promoting the differentiation of CD4+ T cells into Tregs may be the key to prevent URSA. The differentiation of CD4+ T cells was controlled by mTOR, but the regulatory mechanism is still unclear. This study aims to explore the regulatory role of mTOR on CD4+ T cells and evaluate the feasibility of metformin (Met) and 2-Deoxy-D-glucose (2-DG) treatment for URSA. METHODS To elucidate the mechanism of mTOR regulating Th17/Treg, transcriptome sequencing was used to analyze gene differences in clinical decidua tissue, the AMPK, mTOR and glycolytic activity in URSA mice were evaluated by RT-qPCR and WB. In addition, FCM and ELISA were also used to measure the differentiation of CD4+ T cells. RESULTS Compared to the Control group, significant differences in gene expressions of female pregnancy and Th17 cell differentiation were observed in URSA group. Activation of AMPK and inhibition of glycolysis reduced the abortion rate in URSA mice (p = 0.0013), and inhibited CD4+ T cells differentiation to Th17 cells, which increased Treg/Th17 ratio (p < 0.001) and improved the pregnancy outcomes of URSA mice. CONCLUSIONS Our research had illustrated that AMPK-mTOR pathway regulated glycolysis reprogramming and improved the pregnancy outcomes of URSA. Furthormore, Met and 2-DG promoted the differentiation of CD4+ T cells into Treg cells, providing theoretical basis for clinical prevention of URSA.
Collapse
Affiliation(s)
- Yihong Chen
- Department of Obstetrics and Gynecology, The First Affiliated Hospital, Fujian Medical University, 20 Chazhong Road, Fuzhou, Fujian, 350005, P.R. China
| | - Bei Gan
- Department of Obstetrics and Gynecology, The First Affiliated Hospital, Fujian Medical University, 20 Chazhong Road, Fuzhou, Fujian, 350005, P.R. China
| | - Shan Zheng
- Department of Obstetrics and Gynecology, The First Affiliated Hospital, Fujian Medical University, 20 Chazhong Road, Fuzhou, Fujian, 350005, P.R. China
| | - Xiumei Zhao
- Department of Obstetrics and Gynecology, The First Affiliated Hospital, Fujian Medical University, 20 Chazhong Road, Fuzhou, Fujian, 350005, P.R. China
| | - Leiyi Jin
- Department of Obstetrics and Gynecology, The First Affiliated Hospital, Fujian Medical University, 20 Chazhong Road, Fuzhou, Fujian, 350005, P.R. China
| | - Juanbing Wei
- Department of Obstetrics and Gynecology, The First Affiliated Hospital, Fujian Medical University, 20 Chazhong Road, Fuzhou, Fujian, 350005, P.R. China.
| |
Collapse
|
3
|
Lei D, Chen T, Fan C, Xie Q. Exposure to BaA inhibits trophoblast cell invasion and induces miscarriage by regulating the DEC1/ARHGAP5 axis and promoting ubiquitination-mediated degradation of MMP2. JOURNAL OF HAZARDOUS MATERIALS 2024; 479:135594. [PMID: 39191013 DOI: 10.1016/j.jhazmat.2024.135594] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 08/10/2024] [Accepted: 08/19/2024] [Indexed: 08/29/2024]
Abstract
Benz[a]anthracene (BaA), a hazardous polycyclic aromatic hydrocarbon classified by the EPA, is a probable reproductive toxicant. Epidemiological studies suggest that BaA exposure may be a risk factor for recurrent miscarriage (RM). However, the underlying mechanisms are not well understood. This study identified DEC1 as a key gene through RNA-seq and single-cell RNA sequencing analysis. DEC1 expression was found to be downregulated in villous tissues from women with RM and in primary extravillous trophoblasts (EVTs) exposed to BaA. BaA suppressed DEC1 expression by promoting abnormal methylation patterns. Further analysis revealed that ARHGAP5 is a direct target of DEC1 in EVTs, where DEC1 inhibits trophoblast invasion by directly regulating ARHGAP5 transcription. Additionally, BaA destabilized matrix metalloproteinase 2 (MMP2) by activating the aryl hydrocarbon receptor (AhR) and promoting E3 ubiquitin ligase MID1-mediated degradation. In a mouse model, BaA induced miscarriage by modulating the DEC1/ARHGAP5 and MID1/MMP2 axes. Notably, BaA-induced miscarriage in mice was prevented by DEC1 overexpression or MID1 knockdown. These findings indicate that BaA exposure leads to miscarriage by suppressing the DEC1/ARHGAP5 pathway and enhancing the MID1/MMP2 pathway in human EVTs.
Collapse
Affiliation(s)
- Di Lei
- Centre for Reproductive Medicine, Renmin Hospital of Wuhan University, Wuhan 430000, China; Department of Obstetrics, Renmin Hospital of Wuhan University, Wuhan 430000, China
| | - Tingting Chen
- Department of Obstetrics, Renmin Hospital of Wuhan University, Wuhan 430000, China
| | - Cuifang Fan
- Department of Obstetrics, Renmin Hospital of Wuhan University, Wuhan 430000, China
| | - Qingzhen Xie
- Centre for Reproductive Medicine, Renmin Hospital of Wuhan University, Wuhan 430000, China.
| |
Collapse
|
4
|
Du L, Pan D, Huang H, Liu Q, Yang Y, Jiang G. Shoutai Wan treatment upregulates the expression of TNFAIP3 and improves T cell immune tolerance at maternal-fetal interface. J Reprod Immunol 2024; 165:104301. [PMID: 39146884 DOI: 10.1016/j.jri.2024.104301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Revised: 07/05/2024] [Accepted: 07/11/2024] [Indexed: 08/17/2024]
Abstract
Shoutai Wan (STW) is a traditional Chinese medicine formula used to treat various conditions. The objective of this study was to evaluate the impact of STW on the abortion rate in the URSA mouse model and elucidate its underlying molecular mechanisms. Female CBA/J mice were mated with male DBA/2 mice to establish the URSA model. Network pharmacological analysis was employed to investigate the potential molecular mechanisms of STW. Hematoxylin-eosin staining, immunofluorescence, and ELISA were performed to examine placental microenvironmental changes, protein expression related to TNFAIP3 and the NF-κB signaling pathway. Treatment with STW reduced the abortion rate in URSA model mice and improved trophoblast development. TNFAIP3 was identified as a potential target of STW for treating URSA, as STW enhanced TNFAIP3 protein expression while decreasing IL-6 and TNF-α secretion in the placenta. Moreover, STW upregulated TNFAIP3 protein expression and Foxp3 mRNA levels, increased the production of anti-inflammatory cytokines such as IL-10 and TGF-β1, and decreased p-NF-κB expression in CD4+ cells at the placenta. The findings of this study indicate that STW treatment reduces the abortion rate in the URSA mouse model. These effects are likely mediated by increased TNFAIP3 expression and decreased NF-κB signaling pathway activity at the maternal-fetal interface. These molecular changes may contribute to the regulation of T cell immunity and immune tolerance during pregnancy.
Collapse
Affiliation(s)
- Le Du
- Department of traditional Chinese Medicine, Pizhou people's Hospital affiliated to Xuzhou Medical University, Jiangsu 221000, China
| | - Dingchen Pan
- Department of Obstetrics and Gynecology, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai 200000, China
| | - He Huang
- ShuGuang Clinical College, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Qian Liu
- ShuGuang Clinical College, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yang Yang
- Experiment Center for Science and Technology, Shanghai University of Traditional Chinese Medicine, Shanghai 200000, China.
| | - Guojing Jiang
- Department of Obstetrics and Gynecology, Xinhua Hospital Affiliated to Shanghai Jiao Tong University, Shanghai 200092, China.
| |
Collapse
|
5
|
Dang X, Feng Y, Zheng P, Liu D, Nuerbiye Y, Liao Z, Liu F, Che Z. The mechanism of Shoutai Wan in the treatment of recurrent spontaneous abortion - A review. Heliyon 2024; 10:e33213. [PMID: 39021899 PMCID: PMC11252737 DOI: 10.1016/j.heliyon.2024.e33213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2024] [Revised: 06/14/2024] [Accepted: 06/17/2024] [Indexed: 07/20/2024] Open
Abstract
Recurrent spontaneous abortion (RSA) is a prevalent pregnancy complication with a complex and poorly understood pathogenesis. Shoutai Wan (STW), a traditional Chinese medicine formula, is renowned for its kidney tonifying and fetus tranquilizing effects. It is used to treat miscarriages associated with kidney deficiency, hyperemesis gravidarum, and fetal restlessness. Recently, there has been an increase in experimental studies exploring the use of STW for RSA treatment, making progress in understanding its molecular mechanisms and signaling pathways. This review aims to systematically elucidate the mechanisms by which STW enhances cellular antioxidant capacity, attenuates inflammation, and improves the environment for embryo implantation. This involves regulating multiple signaling pathways, including Nuclear factor-erythroid 2-related factor 2/Heme oxygenase-1, JAK kinase 1/Signal transducer and activator of transcription 3, NOD-like receptor pyrin domain-containing protein/Caspase-1/Gasdermin D, Human Leukocyte Antigen G, Mitogen-activated protein kinase, and Serum and glucocorticoid-regulated kinase 1/Epithelial sodium channel. This review provides a theoretical reference for the clinical application and further experimental researches on the treatment of RSA with STW.
Collapse
Affiliation(s)
- Xue Dang
- Traditional Chinese Medicine (Zhong Jing) School, Henan University of Chinese Medicine, Zhengzhou, 450046, China
| | - Yanchen Feng
- Traditional Chinese Medicine (Zhong Jing) School, Henan University of Chinese Medicine, Zhengzhou, 450046, China
| | - Pan Zheng
- Traditional Chinese Medicine (Zhong Jing) School, Henan University of Chinese Medicine, Zhengzhou, 450046, China
| | - Diyan Liu
- Traditional Chinese Medicine (Zhong Jing) School, Henan University of Chinese Medicine, Zhengzhou, 450046, China
| | - Yusupu Nuerbiye
- Traditional Chinese Medicine (Zhong Jing) School, Henan University of Chinese Medicine, Zhengzhou, 450046, China
| | - Ziyun Liao
- College of Acupuncture, Moxibustion and Tuina, Henan University of Chinese Medicine, Zhengzhou, 450046, China
| | - Feixiang Liu
- Hospital of Encephalopathy, The First Affiliated Hospital of Henan University of Chinese Medicine, Zhengzhou, 450099, China
| | - Zhiying Che
- Traditional Chinese Medicine (Zhong Jing) School, Henan University of Chinese Medicine, Zhengzhou, 450046, China
| |
Collapse
|
6
|
Zhang L, Luo YL, Xiang Y, Bai XY, Qiang RR, Zhang X, Yang YL, Liu XL. Ferroptosis inhibitors: past, present and future. Front Pharmacol 2024; 15:1407335. [PMID: 38846099 PMCID: PMC11153831 DOI: 10.3389/fphar.2024.1407335] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Accepted: 05/06/2024] [Indexed: 06/09/2024] Open
Abstract
Ferroptosis is a non-apoptotic mode of programmed cell death characterized by iron dependence and lipid peroxidation. Since the ferroptosis was proposed, researchers have revealed the mechanisms of its formation and continue to explore effective inhibitors of ferroptosis in disease. Recent studies have shown a correlation between ferroptosis and the pathological mechanisms of neurodegenerative diseases, as well as diseases involving tissue or organ damage. Acting on ferroptosis-related targets may provide new strategies for the treatment of ferroptosis-mediated diseases. This article specifically describes the metabolic pathways of ferroptosis and summarizes the reported mechanisms of action of natural and synthetic small molecule inhibitors of ferroptosis and their efficacy in disease. The paper also describes ferroptosis treatments such as gene therapy, cell therapy, and nanotechnology, and summarises the challenges encountered in the clinical translation of ferroptosis inhibitors. Finally, the relationship between ferroptosis and other modes of cell death is discussed, hopefully paving the way for future drug design and discovery.
Collapse
Affiliation(s)
- Lei Zhang
- School of Medicine, Yan’an University, Yan’an, China
| | - Yi Lin Luo
- School of Medicine, Yan’an University, Yan’an, China
| | - Yang Xiang
- College of Physical Education, Yan’an University, Yan’an, China
| | - Xin Yue Bai
- School of Medicine, Yan’an University, Yan’an, China
| | | | - Xin Zhang
- School of Medicine, Yan’an University, Yan’an, China
| | - Yan Ling Yang
- School of Medicine, Yan’an University, Yan’an, China
| | - Xiao Long Liu
- School of Medicine, Yan’an University, Yan’an, China
| |
Collapse
|
7
|
Liu Q, Tan L, Yuan L, Chen X, Li F, He J, Gao R. Subacute exposure to DEHP leads to impaired decidual reaction and exacerbates the risk of early miscarriage in mice. Zhejiang Da Xue Xue Bao Yi Xue Ban 2024; 53:331-341. [PMID: 38763769 PMCID: PMC11348695 DOI: 10.3724/zdxbyxb-2023-0583] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Accepted: 03/21/2024] [Indexed: 05/21/2024]
Abstract
OBJECTIVES To investigate the effect of subacute exposure of Di (2-ethylhexyl) phthalate (DEHP) on endometrial decidualization and early pregnancy miscarriage in mice. METHODS CD1 mice were orally administrated with 300 (low-dose group), 1000 (medium-dose group), or 3000 mg·kg-1·d-1 DEHP (1/10 LD50, high-dose group) for 28 days, respectively. An early natural pregnancy model and an artificially induced decidualization model were established. The uterine tissues were collected on D7 of natural pregnancy and D8 of artificially induced decidualization, respectively. The effects of a subacute exposure to DEHP on the decidualization of mice were detected by HE staining, Masson staining, TUNEL assay, and Western blotting. A model of spontaneous abortion was constructed in mice after subacute exposure to 300 mg·kg-1·d-1 DEHP, and the effect of impaired decidualization on pregnancy was investigated by observing the pregnancy outcome on the 10th day of gestation. RESULTS Compared with the control group, the conception rate was significantly decreased in the high-dose DEHP subacute exposure group (P<0.05). HE staining showed that, compared with the control group, the decidual stromal cells in the low- and medium-dose exposure groups were disorganized, the nuclei of the cells were irregular, the cytoplasmic staining was uneven, and the number of polymorphonuclear cells was significantly reduced. Masson staining showed that compared with the control group, the collagen fibers in the decidua region of the DEHP low-dose group and the medium-dose group were more distributed, more abundant and more disorderly. TUNEL assay showed increased apoptosis in the decidua area compared to the control group. Western blotting showed that the expression of BMP2, a marker molecule for endometrial decidualization, was significantly reduced (P<0.05 or P<0.01). The abortion rate and embryo resorption rate were increased, and the number of embryos, uterine wet weight, uterine area and placenta wet weight were decreased in DEHP low-dose group compared to the control group stimulated by mifepristone, an abortifacient drug (P<0.05 or P<0.01). CONCLUSIONS Subacute exposure to DEHP leads to impaired endometrial decidualization during early pregnancy and exacerbates the risk of adverse pregnancy outcomes in mice.
Collapse
Affiliation(s)
- Qiuju Liu
- Laboratory of Reproductive Biology, School of Public Health, Chongqing Medical University, Joint International Research Laboratory of Reproduction & Development, Chongqing Medical University, Chongqing 400016, China.
| | - Liping Tan
- Laboratory of Reproductive Biology, School of Public Health, Chongqing Medical University, Joint International Research Laboratory of Reproduction & Development, Chongqing Medical University, Chongqing 400016, China
| | - Liu Yuan
- Laboratory of Reproductive Biology, School of Public Health, Chongqing Medical University, Joint International Research Laboratory of Reproduction & Development, Chongqing Medical University, Chongqing 400016, China
| | - Xuemei Chen
- Laboratory of Reproductive Biology, School of Public Health, Chongqing Medical University, Joint International Research Laboratory of Reproduction & Development, Chongqing Medical University, Chongqing 400016, China
| | - Fangfang Li
- Laboratory of Reproductive Biology, School of Public Health, Chongqing Medical University, Joint International Research Laboratory of Reproduction & Development, Chongqing Medical University, Chongqing 400016, China
| | - Junlin He
- Laboratory of Reproductive Biology, School of Public Health, Chongqing Medical University, Joint International Research Laboratory of Reproduction & Development, Chongqing Medical University, Chongqing 400016, China
| | - Rufei Gao
- Laboratory of Reproductive Biology, School of Public Health, Chongqing Medical University, Joint International Research Laboratory of Reproduction & Development, Chongqing Medical University, Chongqing 400016, China.
| |
Collapse
|
8
|
Liu Z, Wang C, Tang Y, Zhang X, Pei J, Liu H, Yu Y, Gu W. ENO1 promotes trophoblast invasion regulated by E2F8 in recurrent miscarriage. FASEB J 2024; 38:e23631. [PMID: 38661062 DOI: 10.1096/fj.202302032rr] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Revised: 04/06/2024] [Accepted: 04/12/2024] [Indexed: 04/26/2024]
Abstract
Recurrent miscarriage (RM) is related to the dysfunction of extravillous trophoblast cells (EVTs), but the comprehensive mechanisms remain largely unexplored. We analyzed single-cell RNA sequencing (scRNA-seq), bulk RNA sequencing and microarray datasets obtained from Gene Expression Omnibus (GEO) database to explore the hub genes in the mechanisms of RM. We identified 1724 differentially expressed genes (DEGs) in EVTs from the RM, and they were all expressed along the trajectory of EVTs. These DEGs were associated with hypoxia and glucose metabolism. Single-cell Regulatory Network Inference and Clustering (SCENIC) analysis revealed that E2F transcription factor (E2F) 8 (E2F8) was a key transcription factor for these DEGs. And the expression of ENO1 can be positively regulated by E2F8 via RNA sequencing analysis. Subsequently, we performed immunofluorescence assay (IF), plasmid transfection, western blotting, chromatin immunoprecipitation (ChIP), real-time quantitative polymerase chain reaction (qRT-PCR), and transwell assays for validation experiments. We found that the expression of alpha-Enolase 1 (ENO1) was lower in the placentas of RM. Importantly, E2F8 can transcriptionally regulate the expression of ENO1 to promote the invasion of trophoblast cells by inhibiting secreted frizzled-related protein 1/4 (SFRP1/4) to activate Wnt signaling pathway. Our results suggest that ENO1 can promote trophoblast invasion via an E2F8-dependent manner, highlighting a potential novel target for the physiological mechanisms of RM.
Collapse
Affiliation(s)
- Zhenzhen Liu
- Department of Obstetrics and Gynecology, Obstetrics and Gynecology Hospital of Fudan University, Shanghai, China
- Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Obstetrics and Gynecology Hospital of Fudan University, Shanghai, China
| | - Chengjie Wang
- Department of Obstetrics and Gynecology, Obstetrics and Gynecology Hospital of Fudan University, Shanghai, China
| | - Yao Tang
- Department of Obstetrics and Gynecology, Obstetrics and Gynecology Hospital of Fudan University, Shanghai, China
| | - Xiaoyue Zhang
- Department of Obstetrics and Gynecology, Obstetrics and Gynecology Hospital of Fudan University, Shanghai, China
- Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Obstetrics and Gynecology Hospital of Fudan University, Shanghai, China
| | - Jiangnan Pei
- Department of Obstetrics and Gynecology, Obstetrics and Gynecology Hospital of Fudan University, Shanghai, China
| | - Haiyan Liu
- Department of Obstetrics and Gynecology, Obstetrics and Gynecology Hospital of Fudan University, Shanghai, China
| | - Yi Yu
- Department of Obstetrics and Gynecology, Obstetrics and Gynecology Hospital of Fudan University, Shanghai, China
| | - Weirong Gu
- Department of Obstetrics and Gynecology, Obstetrics and Gynecology Hospital of Fudan University, Shanghai, China
| |
Collapse
|
9
|
Lai Y, Zhang Y, Zhang H, Chen Z, Zeng L, Deng G, Luo S, Gao J. Modified Shoutai Pill inhibited ferroptosis to alleviate recurrent pregnancy loss. JOURNAL OF ETHNOPHARMACOLOGY 2024; 319:117028. [PMID: 37597678 DOI: 10.1016/j.jep.2023.117028] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 08/01/2023] [Accepted: 08/09/2023] [Indexed: 08/21/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Modified Shoutai Pill, also called Jianwei Shoutai Pill (JSP), is a traditional Chinese medicine prescription that has been used as an effective agent for the treatment of miscarriage. AIM OF THE STUDY To explore the potential molecular mechanism of JSP against recurrent pregnancy loss (RPL). MATERIALS AND METHODS In vivo, CBA/J mated DBA/2 mice were used to conduct RPL model, while CBA/J mated BALB/c mice were seen as the control group. Mice were orally administered with JSP, Fer-1 (a ferroptosis inhibitor) or distilled water from day 0.5-12.5 of gestation (GD 0.5-12.5). Pregnancy outcomes were analyzed and ferroptosis related indexes of the whole implantation sites were measured on GD 12.5. In vitro, human trophoblast cell line HTR-8/SVneo was cultured and treated with RAS-selective lethal small molecule 3 (RSL3) (a ferroptosis agonist) or different concentrations of JSP. Then, ferroptosis related indexes were tested to analyze whether JSP could inhibit ferroptosis in HTR-8/SVneo cells. RESULTS In vivo consequences demonstrated that JSP or Fer-1 alleviated pregnancy outcomes including lower resorption rate and abortion rate. In addition, excessive iron accumulation and MDA level were inhibited, while GSH and GPX content were raised under JSP or Fer-1 exposure. Also, JSP or Fer-1 enhanced protein expressions of GPX4 and SLC7A11 which suppress ferroptosis, and lightened protein expression of ACSL4 which boosts ferroptosis. In vitro, JSP rescued HTR-8/SVneo cell death and migration ability that were injured by RSL3. Furthermore, JSP inhibited RSL3-induced intracellular reactive oxygen species (ROS), lipid ROS and iron deposition. CONCLUSIONS Collectively, our findings illustrated that the mechanism of JSP in treating RPL might be related to inhibiting ferroptosis, which provided a novel insight into the application of JSP in RPL intervention.
Collapse
Affiliation(s)
- Yuling Lai
- Guangzhou University of Chinese Medicine, Guangzhou, 510405, People's Republic of China; Guangzhou Sport University, Guangzhou, 510500, People's Republic of China
| | - Yu Zhang
- Guangzhou University of Chinese Medicine, Guangzhou, 510405, People's Republic of China
| | - Huimin Zhang
- Guangzhou University of Chinese Medicine, Guangzhou, 510405, People's Republic of China
| | - Zhenyue Chen
- Guangzhou University of Chinese Medicine, Guangzhou, 510405, People's Republic of China
| | - Lihua Zeng
- Guangzhou University of Chinese Medicine, Guangzhou, 510405, People's Republic of China
| | - Gaopi Deng
- The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, 510405, People's Republic of China
| | - Songping Luo
- The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, 510405, People's Republic of China.
| | - Jie Gao
- The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, 510405, People's Republic of China.
| |
Collapse
|
10
|
Song Y, Hu R, Li F, Huang Y, Liu Z, Geng Y, Ding J, Ma W, Song K, Dong H, Zhang M. In view of ovarian steroidogenesis and luteal construction to explore the effects of Bushen Huoxue recipe in mice of ovarian hyperstimulation. JOURNAL OF ETHNOPHARMACOLOGY 2024; 318:116913. [PMID: 37479069 DOI: 10.1016/j.jep.2023.116913] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Revised: 07/06/2023] [Accepted: 07/11/2023] [Indexed: 07/23/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Bushen Huoxue recipe (BSHXR) is a widely used prescription medicine for treating gynecological diseases. We have previously found that BSHXR can improve the pregnancy outcome of controlled ovarian hyperstimulation (COH) mice by modulating the abnormal high level of progesterone. While the pharmacological mechanism of such therapeutic effect is not clear. AIM OF THE STUDY We aimed to investigate the effects of BSHXR on the ovarian steroidogenesis and luteal function in mice undergoing COH. MATERIALS AND METHODS A COH mouse model was established via an intraperitoneal injection of 0.4 IU/g pregnant mare serum gonadotropin (PMSG) and 1 IU/g human chorionic gonadotropin (HCG). The histological features of ovaries were observed using hematoxylin-eosin staining. The expression levels of FSHR, LHCGR, and key molecules in ovarian steroidogenesis, including CYP11A1, CYP17A1, CYP19A1, HSD3B1, and StAR, were examined via immunohistochemical staining, western blotting, and RT-qPCR. CD31, VEGFA, and FGF2 levels were assessed to evaluate ovarian vascularization. The protein and mRNA levels of ovarian ERK1/2, p-ERK1/2, MEK1/2, and p-MEK1/2 were also detected using western blotting, RT-qPCR, or immunofluorescence staining. RESULTS COH mice had a significantly increased volume and weight of the ovary and number of corpora lutea. In particular, COH exhibited a long-term influence on ovarian FSHR and LHCGR expression, disrupting the levels of CYP11A1, HSD3B1, and CYP17A1, causing poorer luteal angiogenesis. Compared with normal mice, the expression levels of ovarian VEGFA and FGF2 in COH mice were considerably lower on Day 1 after PMSG. On concomitant HCG treatment, both VEGFA and FGF2 expression surged dramatically on ED1 and then declined on ED4 and ED8. Moreover, the expression pattern of MEK1/2-ERK1/2 was almost consistent with that of VEGFA and FGF2. After treatment, BSHXR increased ovarian LHCGR, FSHR, CYP11A1, HSD3B1, and CYP17A1 levels, boosted luteal vascularization, and restored MEK1/2-ERK1/2 signaling in COH mice. CONCLUSION BSHXR restored the abnormally high progesterone level by regulating the CYP11A1 and HSD3B1 expression as well as promoted luteal angiogenesis, which was related with LHCGR-MEK1/2-ERK1/2-VEGFA/FGF2 signaling pathway in the ovary. This effect prevented the fluctuation of sex hormones in COH mice and benefited the outcome of pregnancy.
Collapse
Affiliation(s)
- Yufan Song
- Institute of Integrated Traditional Chinese and Western Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, PR China.
| | - Runan Hu
- Institute of Integrated Traditional Chinese and Western Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, PR China.
| | - Fan Li
- Institute of Integrated Traditional Chinese and Western Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, PR China.
| | - Yanjing Huang
- Institute of Integrated Traditional Chinese and Western Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, PR China.
| | - Zhuo Liu
- Institute of Integrated Traditional Chinese and Western Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, PR China.
| | - Yuli Geng
- Institute of Integrated Traditional Chinese and Western Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, PR China.
| | - Jiahui Ding
- Department of Obstetrics and Gynecology, School of Medicine, Wayne State University, Detroit, MI, USA.
| | - Wenwen Ma
- Institute of Integrated Traditional Chinese and Western Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, PR China.
| | - Kunkun Song
- Institute of Integrated Traditional Chinese and Western Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, PR China.
| | - Haoxu Dong
- Institute of Integrated Traditional Chinese and Western Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, PR China.
| | - Mingmin Zhang
- Institute of Integrated Traditional Chinese and Western Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, PR China.
| |
Collapse
|
11
|
Gou R, Zhang X. Glycolysis: A fork in the path of normal and pathological pregnancy. FASEB J 2023; 37:e23263. [PMID: 37889786 DOI: 10.1096/fj.202301230r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 09/17/2023] [Accepted: 10/04/2023] [Indexed: 10/29/2023]
Abstract
Glucose metabolism is vital to the survival of living organisms. Since the discovery of the Warburg effect in the 1920s, glycolysis has become a major research area in the field of metabolism. Glycolysis has been extensively studied in the field of cancer and is considered as a promising therapeutic target. However, research on the role of glycolysis in pregnancy is limited. Recent evidence suggests that blastocysts, trophoblasts, decidua, and tumors all acquire metabolic energy at specific stages in a highly similar manner. Glycolysis, carefully controlled throughout pregnancy, maintains a dynamic and coordinated state, so as to maintain the homeostasis of the maternal-fetal interface and ensure normal gestation. In the present review, we investigate metabolic remodeling and the selective propensity of the embryo and placenta for glycolysis. We then address dysregulated glycolysis that occurs in the cellular interactive network at the maternal-fetal interface in miscarriage, preeclampsia, fetal growth restriction, and gestational diabetes mellitus. We provide new insights into the field of maternal-fetal medicine from a metabolic perspective, thus revealing the mystery of human pregnancy.
Collapse
Affiliation(s)
- Rui Gou
- Department of Obstetrics and Gynecology, Peking University People's Hospital, Beijing, P.R. China
| | - Xiaohong Zhang
- Department of Obstetrics and Gynecology, Peking University People's Hospital, Beijing, P.R. China
| |
Collapse
|
12
|
Fu X, Cao X, Fu Z, Huang Z, Jin W, Fu G, Bi W. Antiepileptic drug concentration detection based on Raman spectroscopy and an improved snake optimization-convolutional neural network algorithm. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2023; 15:6097-6104. [PMID: 37933570 DOI: 10.1039/d3ay01631e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/08/2023]
Abstract
A method for measurement of antiepileptic drug concentrations based on Raman spectroscopy and an optimization algorithm for mathematical models are proposed and investigated. This study uses Raman spectroscopy to measure mixed antiepileptic drugs, and an Improved Snake Optimization (ISO)-Convolutional Neural Network (CNN) algorithm is proposed. Raman spectroscopy is widely used in the identification of pharmaceutical ingredients due to its sharp peaks, no pre-treatment of samples and non-destructive detection. To analyze the spectral data precisely, a machine learning method is used in this paper. The ISO algorithm is an improved intelligent swarm algorithm in which the method of generating random solutions is improved, which can ensure that a comprehensive local search of the model is performed, the global search capability is maintained at a later stage, and the convergence speed is accelerated. In this study, 360 groups of oxcarbazepine, carbamazepine, and lamotrigine drug mixtures are measured using Raman spectroscopy, and the raw spectral data after pre-processing are trained and evaluated using ISO-CNN algorithms, and the results are compared and analyzed with those obtained from other algorithms such as the Northern Goshawk Optimization algorithm, Chameleon Swarm Algorithm, and White Shark Optimizer algorithm. The results show that the best ISO-CNN algorithm training is achieved for oxcarbazepine, with a determination coefficient and root mean square error of 0.99378 and 0.0295 for the validation set, and 0.99627 and 0.0278 for the test set. The overall results suggest that Raman spectroscopy combined with machine learning algorithms can be a potential tool for drug concentration prediction.
Collapse
Affiliation(s)
- Xinghu Fu
- School of Information Science and Engineering, The Key Laboratory for Special Fiber and Fiber Sensor of Hebei Province, Yanshan University, Qinhuangdao, China.
| | - Xiqing Cao
- School of Information Science and Engineering, The Key Laboratory for Special Fiber and Fiber Sensor of Hebei Province, Yanshan University, Qinhuangdao, China.
| | - Zizhen Fu
- School of Information Science and Engineering, The Key Laboratory for Special Fiber and Fiber Sensor of Hebei Province, Yanshan University, Qinhuangdao, China.
| | - Zhexu Huang
- School of Information Science and Engineering, The Key Laboratory for Special Fiber and Fiber Sensor of Hebei Province, Yanshan University, Qinhuangdao, China.
| | - Wa Jin
- School of Information Science and Engineering, The Key Laboratory for Special Fiber and Fiber Sensor of Hebei Province, Yanshan University, Qinhuangdao, China.
| | - Guangwei Fu
- School of Information Science and Engineering, The Key Laboratory for Special Fiber and Fiber Sensor of Hebei Province, Yanshan University, Qinhuangdao, China.
| | - Weihong Bi
- School of Information Science and Engineering, The Key Laboratory for Special Fiber and Fiber Sensor of Hebei Province, Yanshan University, Qinhuangdao, China.
| |
Collapse
|