1
|
Lu CW, Lin TY, Pan WJ, Chiu KM, Lee MY, Wang SJ. Cynarin protects against seizures and neuronal death in a rat model of kainic acid-induced seizures. Food Funct 2025; 16:3048-3063. [PMID: 40138216 DOI: 10.1039/d4fo05464d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/29/2025]
Abstract
The potential therapeutic value of cynarin, a phenolic compound derived from artichoke, in treating epilepsy has not yet been reported. The present study evaluated the effects of cynarin on a kainic acid (KA)-induced seizure rat model and its potential mechanism. Cynarin was administered through oral gavage at a dosage of 10 mg kg-1 daily for 7 days before the induction of seizures with KA (15 mg kg-1) via intraperitoneal injection. The results showed that pretreatment with cynarin effectively attenuated the KA-induced seizure score and electroencephalogram (EEG) changes and prevented neuronal loss and glial cell activation in the hippocampi of KA-treated rats. In addition, pretreatment with cynarin dramatically prevented the aberrant levels of high mobility group box 1 (HMGB1), toll-like receptor-4 (TLR4), p-IκB, p65-NFκB, interleukin-1β (IL-1β), interleukin-6 (IL-6) and tumor necrosis factor (TNF-α) induced by KA administration in hippocampal tissues. Additionally, KA substantially increased hippocampal glutamate levels and decreased cerebral blood flow, which were significantly alleviated by pretreatment with cynarin. The observed effects of cynarin were comparable to those of the antiepileptic drug carbamazepine (CBZ). Furthermore, there was no significant difference in the serum AST, ALT, creatinine, or bilirubin levels between the cynarin-treated rats and the control rats. Cynarin has a neuroprotective effect on a rat model of seizures induced by KA, reducing seizures, gliosis, inflammatory cytokines, and glutamate elevation and increasing cerebral blood flow. Thus, cynarin has therapeutic potential for preventing epilepsy.
Collapse
Affiliation(s)
- Cheng-Wei Lu
- Department of Anesthesiology, Far Eastern Memorial Hospital, New Taipei City 22060, Taiwan
- Department of Mechanical Engineering, Yuan Ze University, Taoyuan 32003, Taiwan
| | - Tzu-Yu Lin
- Department of Anesthesiology, Far Eastern Memorial Hospital, New Taipei City 22060, Taiwan
- Department of Mechanical Engineering, Yuan Ze University, Taoyuan 32003, Taiwan
| | - Wun-Jing Pan
- Ph.D. Program in Pharmaceutical Biotechnology, School of Medicine, Fu Jen Catholic University, New Taipei 24205, Taiwan
| | - Kuan-Ming Chiu
- Division of Cardiovascular Surgery, Cardiovascular Center, Far Eastern Memorial Hospital, New Taipei City 22060, Taiwan
- Department of Electrical Engineering, Yuan Ze University, Taoyuan 32003, Taiwan
| | - Ming-Yi Lee
- Department of Medical Research, Far Eastern Memorial Hospital, New Taipei 22060, Taiwan
| | - Su-Jane Wang
- School of Medicine, Fu Jen Catholic University, New Taipei City, Taiwan 24205.
- Research Center for Chinese Herbal Medicine, College of Human Ecology, Chang Gung University of Science and Technology, Taoyuan City, Taiwan
| |
Collapse
|
2
|
Batista JJ, Silva FCO, de Araújo MIF, de Almeida Moura Nunes PH, de Oliveira Ferreira SA, da Silva LA, de Siqueira Patriota LL, Napoleão TH, Paiva PMG, de Carvalho JM, Filho LDV, Kennedy JF, Soares PAG, de Lima Aires A, Coelho LCBB. Parkia pendula polysaccharides have no acute toxicity and prevent ethanol-induced gastric ulcers via downregulation of TBARS, IL-6, and TNF-α and upregulation of SOD, CAT, and IL-10. Int J Biol Macromol 2025; 309:142702. [PMID: 40174847 DOI: 10.1016/j.ijbiomac.2025.142702] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2025] [Revised: 03/24/2025] [Accepted: 03/29/2025] [Indexed: 04/04/2025]
Abstract
We investigated the safety of Parkia pendula exudate polysaccharide (PePp) for acute toxicity and its gastroprotective effect on ethanol-induced gastric ulcers. In the acute toxicity test, animals were treated with a single dose of PePp (2000 mg/kg body weight) and evaluated for behavioral parameters, morbidity and mortality; also biochemical, hematological, and histopathological analysis. The mice were pretreated with a single dose of PePp (10, 25, 50 mg/kg) or ranitidine (80 mg/kg) before gastric ulcer induction with ethanol (99.9 %, orally). Subsequently, the stomachs were analyzed for macroscopic and histopathological parameters and the activity of catalase (CAT), superoxide dismutase (SOD), lipid peroxidation, and cytokines IL-6, TNF-α and IL-10. PePp did not cause any changes in acute toxicity parameters. Pretreatment with PePp inhibited the formation of gastric ulcers by 52 %, 71 %, and 83 % at doses of 10, 25 and 50 mg/kg, respectively. Macroscopic improvements and treating gastric tissue exudative inflammatory infiltrate reduction were dose-dependent on PePp. In gastric tissue, PePp presented antioxidative effects, evidenced by increasing CAT and SOD activities and reducing lipid peroxidation; it also showed anti-inflammatory effects, evidenced by reduced IL-6 and TNF-α levels and elevated IL-10 levels. PePp is toxicologically safe and has a gastroprotective effect on ethanol-induced gastric ulcers.
Collapse
Affiliation(s)
- José Josenildo Batista
- Department of Biochemistry, Biosciences Center, Federal University of Pernambuco-UFPE, Av. Prof. Moraes Rego, 1235, Cidade Universitária, 50.670-901 Recife, Pernambuco - PE, Brazil
| | - Francisca Crislândia Oliveira Silva
- Department of Biochemistry, Biosciences Center, Federal University of Pernambuco-UFPE, Av. Prof. Moraes Rego, 1235, Cidade Universitária, 50.670-901 Recife, Pernambuco - PE, Brazil
| | - Maria Isabela Ferreira de Araújo
- Department of Biochemistry, Biosciences Center, Federal University of Pernambuco-UFPE, Av. Prof. Moraes Rego, 1235, Cidade Universitária, 50.670-901 Recife, Pernambuco - PE, Brazil
| | - Pedro Henrique de Almeida Moura Nunes
- Department of Biochemistry, Biosciences Center, Federal University of Pernambuco-UFPE, Av. Prof. Moraes Rego, 1235, Cidade Universitária, 50.670-901 Recife, Pernambuco - PE, Brazil
| | - Sílvio Assis de Oliveira Ferreira
- Department of Biochemistry, Biosciences Center, Federal University of Pernambuco-UFPE, Av. Prof. Moraes Rego, 1235, Cidade Universitária, 50.670-901 Recife, Pernambuco - PE, Brazil
| | - Luzia Abilio da Silva
- Department of Physiology and Pharmacology, Biosciences Center, UFPE, Av. Prof. Moraes Rego, 1235, Cidade Universitária, 50, 670-901 Recife, PE, Brazil
| | - Leydianne Leite de Siqueira Patriota
- Department of Biochemistry, Biosciences Center, Federal University of Pernambuco-UFPE, Av. Prof. Moraes Rego, 1235, Cidade Universitária, 50.670-901 Recife, Pernambuco - PE, Brazil
| | - Thiago Henrique Napoleão
- Department of Biochemistry, Biosciences Center, Federal University of Pernambuco-UFPE, Av. Prof. Moraes Rego, 1235, Cidade Universitária, 50.670-901 Recife, Pernambuco - PE, Brazil
| | - Patrícia Maria Guedes Paiva
- Department of Biochemistry, Biosciences Center, Federal University of Pernambuco-UFPE, Av. Prof. Moraes Rego, 1235, Cidade Universitária, 50.670-901 Recife, Pernambuco - PE, Brazil
| | - Jennyfer Martins de Carvalho
- Department of Physiology and Pharmacology, Biosciences Center, UFPE, Av. Prof. Moraes Rego, 1235, Cidade Universitária, 50, 670-901 Recife, PE, Brazil
| | - Leucio Duarte Vieira Filho
- Department of Physiology and Pharmacology, Biosciences Center, UFPE, Av. Prof. Moraes Rego, 1235, Cidade Universitária, 50, 670-901 Recife, PE, Brazil
| | - Jonh F Kennedy
- Chembiotech Research, Tenbury Wells WR15 8FF, Worcestershire, United Kingdom
| | - Paulo Antônio Galindo Soares
- Department of Biochemistry, Biosciences Center, Federal University of Pernambuco-UFPE, Av. Prof. Moraes Rego, 1235, Cidade Universitária, 50.670-901 Recife, Pernambuco - PE, Brazil
| | - André de Lima Aires
- Keizo Asami Institute - iLIKA, Immunopathology Laboratory, UFPE, Av. Prof. Moraes Rego, Cidade Universitária, 50.670-901 Recife, PE, Brazil.
| | - Luana Cassandra Breitenbach Barroso Coelho
- Department of Biochemistry, Biosciences Center, Federal University of Pernambuco-UFPE, Av. Prof. Moraes Rego, 1235, Cidade Universitária, 50.670-901 Recife, Pernambuco - PE, Brazil.
| |
Collapse
|
3
|
Abdel Bar FM, Alonazi R, Elekhnawy E, Samra RM, Alqarni MH, Badreldin H, Magdy G. HPLC-PDA and in vivo anti-inflammatory potential of isorhamnetin-3-O-β-D-glucoside from Zygophyllum simplex L. JOURNAL OF ETHNOPHARMACOLOGY 2025; 338:119089. [PMID: 39528120 DOI: 10.1016/j.jep.2024.119089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Revised: 10/27/2024] [Accepted: 11/08/2024] [Indexed: 11/16/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Inflammation is a biological process in response to injury, resulting in altered blood flow, increased vascular permeability, tissue destruction, and the production of reactive oxygen species (ROS) and inflammatory mediators. Zygophyllum simplex L., a medicinal plant traditionally used in the Arabian Peninsula for inflammatory disorders, has demonstrated promising in vitro anti-inflammatory activity due to its phenolic content. Additionally, the ethyl acetate fraction has exhibited notable in vivo anti-inflammatory effects. STUDY OBJECTIVE This research aimed to evaluate the in vivo anti-inflammatory effects of a Z. simplex plant extract and its principal ethyl acetate isolate, isorhamnetin-3-O-β-D-glucoside (Isor-3-Glu). The study seeks to develop a straightforward and robust HPLC method for quantifying Isor-3-Glu within the total methanolic extract of Z. simplex. MATERIALS AND METHODS The total methanol extract of Z. simplex was successively partitioned with a variety of organic solvents and the ethyl acetate fraction was used to isolate Isor-3-Glu on a Sephadex LH-20 column. The in vivo anti-inflammatory activity was investigated using carrageenan-triggered inflammation in rats. Histological features and immunohistochemical expression of cyclooxygenase-2 (COX-2) and tumor necrosis factor-alpha (TNF-α) were analyzed, and the levels of interleukins (IL-1β and IL-6) as well as prostaglandin E2 (PGE2) of the paw tissues were examined by qRT-PCR and ELISA, respectively. Quantification of Isor-3-Glu was achieved using an HPLC-PDA method. RESULTS Isor-3-Glu considerably (p < 0.05) lowered the weight of the paw edema. The histological abnormalities were improved, and the percentage of the COX-2 and TNF-α immunoreactive cells substantially decreased in the Isor-3-Glu-treated group in comparison with the positive control and Z. simplex extract group. Isor-3-Glu significantly ameliorated PGE2, IL-1β, and IL-6 levels. A straightforward and dependable HPLC technique was established for quantifying Isor-3-Glu in the total extract. The proposed methodology effectively determined Isor-3-Glu in less than 5 min. The calibration curve exhibited a linear relationship over the concentration range of 1.0-40.0 μg/mL, with a correlation coefficient (r) ≥ 0.9995. The developed method demonstrated a high level of sensitivity, with a detection limit as low as 0.139 μg/mL. The concentration of Isor-3-Glu in the total extract of Z. simplex was determined to be 0.05% w/w of dry extract. CONCLUSION Isor-3-Glu could be considered a promising anti-inflammatory compound that necessitates future clinical research. Isor-3-Glu was accurately quantified using a meticulously developed and optimized HPLC-PDA technique.
Collapse
Affiliation(s)
- Fatma M Abdel Bar
- Department of Pharmacognosy, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al-Kharj, 11942, Saudi Arabia; Department of Pharmacognosy, Faculty of Pharmacy, Mansoura University, Mansoura, 35516, Egypt.
| | - Rana Alonazi
- Department of Pharmacognosy, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al-Kharj, 11942, Saudi Arabia.
| | - Engy Elekhnawy
- Pharmaceutical Microbiology Department, Faculty of Pharmacy, Tanta University, Tanta, 31527, Egypt.
| | - Reham M Samra
- Department of Pharmacognosy, Faculty of Pharmacy, Mansoura University, Mansoura, 35516, Egypt.
| | - Mohammed H Alqarni
- Department of Pharmacognosy, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al-Kharj, 11942, Saudi Arabia.
| | - Hussein Badreldin
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Mansoura University, Mansoura, 35516, Egypt.
| | - Galal Magdy
- Pharmaceutical Analytical Chemistry Department, Faculty of Pharmacy, Kafrelsheikh University, Kafrelsheikh, 33511, Egypt; Department of Pharmaceutical Analytical Chemistry, Faculty of Pharmacy, Mansoura National University, Gamasa, 7731168, Egypt.
| |
Collapse
|
4
|
Maugeri A, Citraro R, Leo A, Russo C, Navarra M, De Sarro G. GABA A Receptors Are Involved in the Seizure Blockage Prompted by a Polyphenol-Rich Extract of White Grape Juice in Rodents. Pharmaceuticals (Basel) 2025; 18:186. [PMID: 40006000 PMCID: PMC11859719 DOI: 10.3390/ph18020186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2025] [Revised: 01/28/2025] [Accepted: 01/29/2025] [Indexed: 02/27/2025] Open
Abstract
Background/Objectives: Polyphenols have been suggested to possess anticonvulsant properties, which can be exploited as tools in novel strategies against epilepsy. Along that line, the aim of this study was to investigate the effects of a polyphenol-rich extract of white grape juice (WGJe) in different rodent models of epilepsy, exploring its putative mechanism of action. Methods: In this study, we employed pentylenetetrazole (PTZ)-injected ICR-CD1 mice, audiogenic seizure (AGS)-susceptible DBA/2 mice and WAG/Rij rats. Seizures were monitored and scored, while absence was assessed by electroencephalogram. The open-field test was employed to assess the anxiolytic effects of WGJe. In order to assess the involvement of the GABAA receptor, we used the antagonist flumazenil in AGS-susceptible DBA/2 mice. Computational analyses were employed to evaluate the interaction of the main polyphenols of WGJe and GABAA receptors. Results: Our results showed that the intraperitoneal injection of WGJe hindered tonic seizures in PTZ-injected ICR-CD1 mice. In WAG/Rij rats, WGJe did not elicit any significant effects on spike-wave discharges compared to untreated rats. In AGS-susceptible DBA/2 mice, WGJe significantly hampered both clonic and tonic seizures, as well as induced anxiolytic effects. Interestingly, when administering WGJe with flumazenil to DBA/2 mice, we noted that the observed effects were mediated by the GABAA receptor. Moreover, docking simulations confirmed that the main polyphenols of WGJe are able to interact with the benzodiazepine sites located in both extracellular and transmembrane domains in the GABAA receptor. Conclusions: This study outlines the mechanism underlying the anti-epileptic activity of WGJe, thus supporting its potential role in the management of epilepsy.
Collapse
Affiliation(s)
- Alessandro Maugeri
- Department of Veterinary Sciences, University of Messina, I-98168 Messina, Italy;
| | - Rita Citraro
- Department of Science of Health, School of Medicine and Surgery, University “Magna Græcia” of Catanzaro, I-88100 Catanzaro, Italy; (R.C.); (A.L.); (G.D.S.)
| | - Antonio Leo
- Department of Science of Health, School of Medicine and Surgery, University “Magna Græcia” of Catanzaro, I-88100 Catanzaro, Italy; (R.C.); (A.L.); (G.D.S.)
| | - Caterina Russo
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, I-98168 Messina, Italy;
| | - Michele Navarra
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, I-98168 Messina, Italy;
| | - Giovambattista De Sarro
- Department of Science of Health, School of Medicine and Surgery, University “Magna Græcia” of Catanzaro, I-88100 Catanzaro, Italy; (R.C.); (A.L.); (G.D.S.)
| |
Collapse
|
5
|
Tonk M, Singh I, Sharma RJ, Chauhan SB. A Revolutionary Approach for Combating Efflux Transporter-mediated Resistant Epilepsy: Advanced Drug Delivery Systems. Curr Pharm Des 2025; 31:95-106. [PMID: 39279709 DOI: 10.2174/0113816128332345240823111524] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Revised: 07/19/2024] [Accepted: 07/22/2024] [Indexed: 09/18/2024]
Abstract
Epilepsy is a persistent neurological condition that affects 60 million individuals globally, with recurrent spontaneous seizures affecting 80% of patients. Antiepileptic drugs (AEDs) are the main course of therapy for approximately 65% of epileptic patients, and the remaining 35% develop resistance to medication, which leads to drug-resistant epilepsy (DRE). DRE continues to be an important challenge in clinical epileptology. There are several theories that attempt to explain the neurological causes of pharmacoresistance in epilepsy. The theory that has been studied the most is the transporter hypothesis. Therefore, it is believed that upregulation of multidrug efflux transporters at the blood-brain barrier (BBB), such as P-glycoprotein (P-gp), which extrudes AEDs from their target location, is the major cause, leading to pharmacoresistance in epilepsy. The most effective strategies for managing this DRE are peripheral and central inhibition of P-gp and maintaining an effective concentration of the drug in the brain parenchyma. Presently, no medicinal product that inhibits Pgp is being used in clinical practice. In this review, several innovative and promising treatment methods, including gene therapy, intracranial injections, Pgp inhibitors, nanocarriers, and precision medicine, are discussed. The primary goal of this work is to review the P-gp transporter, its substrates, and the latest novel treatment methods for the management of DRE.
Collapse
Affiliation(s)
- Megha Tonk
- Raj Kumar Goel Institute of Technology (Pharmacy), 5-Km, Stone, Delhi-Meerut Road, Ghaziabad, Uttar Pradesh 201017, India
| | - Indu Singh
- Amity Institute of Pharmacy, Amity University, Noida 201301, India
| | - Ram Jee Sharma
- Indian Herbs Specialities Pvt. Ltd., Nawada Road, Saharanpur (U.P.) 247001, India
| | | |
Collapse
|
6
|
de Souza FS, de Veras BO, Lucena LDM, Casoti R, Martins RD, Ximenes RM. Antivenom potential of the latex of Jatropha mutabilis baill. (Euphorbiaceae) against Tityus stigmurus venom: Evaluating its ability to neutralize toxins and local effects in mice. JOURNAL OF ETHNOPHARMACOLOGY 2024; 335:118642. [PMID: 39098623 DOI: 10.1016/j.jep.2024.118642] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Revised: 07/22/2024] [Accepted: 07/29/2024] [Indexed: 08/06/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Species of the Jatropha genus (Euphorbiaceae) are used indiscriminately in traditional medicine to treat accidents involving venomous animals. Jatropha mutabilis Baill., popularly known as "pinhão-de-seda," is found in the semi-arid region of Northeastern Brazil. It is widely used as a vermifuge, depurative, laxative, and antivenom. AIM OF THE STUDY Obtaining the phytochemical profile of the latex of Jatropha mutabilis (JmLa) and evaluate its acute oral toxicity and inhibitory effects against the venom of the scorpion Tityus stigmurus (TstiV). MATERIALS AND METHODS The latex of J. mutabilis (JmLa) was obtained through in situ incisions in the stem and characterized using HPLC-ESI-QToF-MS. Acute oral toxicity was investigated in mice. The protein profile of T. stigmurus venom was obtained by electrophoresis. The ability of latex to interact with venom components (TstiV) was assessed using SDS-PAGE, UV-Vis scanning spectrum, and the neutralization of fibrinogenolytic and hyaluronidase activities. Additionally, the latex was evaluated in vivo for its ability to inhibit local edematogenic and nociceptive effects induced by the venom. RESULTS The phytochemical profile of the latex revealed the presence of 75 compounds, including cyclic peptides, glycosides, phenolic compounds, alkaloids, coumarins, and terpenoids, among others. No signs of acute toxicity were observed at a dose of 2000 mg/kg (p.o.). The latex interacted with the protein profile of TstiV, inhibiting the venom's fibrinogenolytic and hyaluronidase activities by 100%. Additionally, the latex was able to mitigate local envenomation effects, reducing nociception by up to 56.5% and edema by up to 50% compared to the negative control group. CONCLUSIONS The latex of Jatropha mutabilis exhibits a diverse phytochemical composition, containing numerous classes of metabolites. It does not present acute toxic effects in mice and has the ability to inhibit the enzymatic effects of Tityus stigmurus venom in vitro. Additionally, it reduces nociception and edema in vivo. These findings corroborate popular reports regarding the antivenom activity of this plant and indicate that the latex has potential for treating scorpionism.
Collapse
Affiliation(s)
- Felipe Santana de Souza
- Laboratory of Ethnopharmacology and Phytochemistry, Department of Antibiotics, Center for Biosciences, Federal University of Pernambuco, Recife, PE, 50740-525, Brazil
| | - Bruno Oliveira de Veras
- Laboratory of Ethnopharmacology and Phytochemistry, Department of Antibiotics, Center for Biosciences, Federal University of Pernambuco, Recife, PE, 50740-525, Brazil; Department of Biochemistry, Center for Biosciences, Federal University of Pernambuco, Recife, PE, 50670-420, Brazil
| | - Lorena de Mendonça Lucena
- Laboratory of Natural Products and Metabolomics Analysis, Department of Antibiotics, Center for Biosciences, Federal University of Pernambuco, Recife, PE, 50740-525, Brazil
| | - Rosana Casoti
- Laboratory of Natural Products and Metabolomics Analysis, Department of Antibiotics, Center for Biosciences, Federal University of Pernambuco, Recife, PE, 50740-525, Brazil
| | - René Duarte Martins
- Nucleus of Public Health, Academic Center of Vitória, Federal University of Pernambuco, Vitória de Santo Antão, PE, 55608-680, Brazil
| | - Rafael Matos Ximenes
- Laboratory of Ethnopharmacology and Phytochemistry, Department of Antibiotics, Center for Biosciences, Federal University of Pernambuco, Recife, PE, 50740-525, Brazil.
| |
Collapse
|
7
|
Aktar A, Bhuia S, Chowdhury R, Hasan R, Islam Rakib A, Al Hasan S, Akter Sonia F, Torequl Islam M. Therapeutic Promises of Bioactive Rosavin: A Comprehensive Review with Mechanistic Insight. Chem Biodivers 2024; 21:e202400286. [PMID: 38752614 DOI: 10.1002/cbdv.202400286] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Accepted: 05/16/2024] [Indexed: 06/27/2024]
Abstract
Rosavin is an alkylbenzene diglycoside primarily found in Rhodiola rosea (L.), demonstrating various pharmacological properties in a number of preclinical test systems. This study focuses on evaluating the pharmacological effects of rosavin and the underlying molecular mechanisms based on different preclinical and non-clinical investigations. The findings revealed that rosavin has anti-microbial, antioxidant, and different protective effects, including neuroprotective effects against various neurodegenerative ailments such as mild cognitive disorders, neuropathic pain, depression, and stress, as well as gastroprotective, osteoprotective, pulmoprotective, and hepatoprotective activities. This protective effect of rosavin is due to its capability to diminish inflammation and oxidative stress. The compound also manifested anticancer properties against various cancer via exerting cytotoxicity, apoptotic cell death, arresting the different phases (G0/G1) of the cancerous cell cycle, inhibiting migration, and invading other organs. Rosavin also regulated MAPK/ERK signaling pathways to exert suppressing effect of cancer cell. However, because of its high-water solubility, which lowers its permeability, the phytochemical has low oral bioavailability. The compound's relevant drug likeness was evaluated by the in silico ADME, revealing appropriate drug likeness. We suggest more extensive investigation and clinical studies to determine safety, efficacy, and human dose to establish the compound as a reliable therapeutic agent.
Collapse
Affiliation(s)
- Asma Aktar
- Department of Pharmacy, Bangabandhu Sheikh Mujibur Rahman Science and Technology University, 8100, Gopalganj, Bangladesh
- Phytochemistry and Biodiversity Research Laboratory, BioLuster Research Center, Gopalganj, 8100, Bangladesh
| | - Shimul Bhuia
- Department of Pharmacy, Bangabandhu Sheikh Mujibur Rahman Science and Technology University, 8100, Gopalganj, Bangladesh
- Phytochemistry and Biodiversity Research Laboratory, BioLuster Research Center, Gopalganj, 8100, Bangladesh
| | - Raihan Chowdhury
- Department of Pharmacy, Bangabandhu Sheikh Mujibur Rahman Science and Technology University, 8100, Gopalganj, Bangladesh
- Phytochemistry and Biodiversity Research Laboratory, BioLuster Research Center, Gopalganj, 8100, Bangladesh
| | - Rubel Hasan
- Department of Pharmacy, Bangabandhu Sheikh Mujibur Rahman Science and Technology University, 8100, Gopalganj, Bangladesh
| | - Asraful Islam Rakib
- Department of Pharmacy, Bangabandhu Sheikh Mujibur Rahman Science and Technology University, 8100, Gopalganj, Bangladesh
| | - Sakib Al Hasan
- Department of Pharmacy, Bangabandhu Sheikh Mujibur Rahman Science and Technology University, 8100, Gopalganj, Bangladesh
| | - Fatema Akter Sonia
- Department of Pharmacy, Bangabandhu Sheikh Mujibur Rahman Science and Technology University, 8100, Gopalganj, Bangladesh
| | - Muhammad Torequl Islam
- Department of Pharmacy, Bangabandhu Sheikh Mujibur Rahman Science and Technology University, 8100, Gopalganj, Bangladesh
- Phytochemistry and Biodiversity Research Laboratory, BioLuster Research Center, Gopalganj, 8100, Bangladesh
- Pharmacy Discipline, Khulna University, 9208, Khulna, Bangladesh
| |
Collapse
|
8
|
Li S, Lin X, Duan L. Harnessing the power of natural alkaloids: the emergent role in epilepsy therapy. Front Pharmacol 2024; 15:1418555. [PMID: 38962319 PMCID: PMC11220463 DOI: 10.3389/fphar.2024.1418555] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Accepted: 05/31/2024] [Indexed: 07/05/2024] Open
Abstract
The quest for effective epilepsy treatments has spotlighted natural alkaloids due to their broad neuropharmacological effects. This review provides a comprehensive analysis of the antiseizure properties of various natural compounds, with an emphasis on their mechanisms of action and potential therapeutic benefits. Our findings reveal that bioactive substances such as indole, quinoline, terpenoid, and pyridine alkaloids confer medicinal benefits by modulating synaptic interactions, restoring neuronal balance, and mitigating neuroinflammation-key factors in managing epileptic seizures. Notably, these compounds enhance GABAergic neurotransmission, diminish excitatory glutamatergic activities, particularly at NMDA receptors, and suppress proinflammatory pathways. A significant focus is placed on the strategic use of nanoparticle delivery systems to improve the solubility, stability, and bioavailability of these alkaloids, which helps overcome the challenges associated with crossing the blood-brain barrier (BBB). The review concludes with a prospective outlook on integrating these bioactive substances into epilepsy treatment regimes, advocating for extensive research to confirm their efficacy and safety. Advancing the bioavailability of alkaloids and rigorously assessing their toxicological profiles are essential to fully leverage the therapeutic potential of these compounds in clinical settings.
Collapse
Affiliation(s)
- Siyu Li
- Department of Neurosurgery, Clinical Trial Center, West China School of Nursing, West China Hospital, Sichuan University, Chengdu, China
| | - Xinyu Lin
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Lijuan Duan
- Department of Neurosurgery, Clinical Trial Center, West China School of Nursing, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
9
|
Tabassum S, Shorter S, Ovsepian SV. Analysis of the action mechanisms and targets of herbal anticonvulsants highlights opportunities for therapeutic engagement with refractory epilepsy. J Mol Med (Berl) 2024; 102:761-771. [PMID: 38653825 PMCID: PMC11106186 DOI: 10.1007/s00109-024-02445-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 03/26/2024] [Accepted: 04/05/2024] [Indexed: 04/25/2024]
Abstract
Epilepsy is a neurological disorder characterized by spontaneous and recurring seizures. It poses significant therapeutic challenges due to diverse etiology, pathobiology, and pharmacotherapy-resistant variants. The anticonvulsive effects of herbal leads with biocompatibility and toxicity considerations have attracted much interest, inspiring mechanistic analysis with the view of their use for engagement of new targets and combination with antiseizure pharmacotherapies. This article presents a comprehensive overview of the key molecular players and putative action mechanisms of the most common antiepileptic herbals demonstrated in tissue culture and preclinical models. From the review of the literature, it emerges that their effects are mediated via five distinct mechanisms: (1) reduction of membrane excitability through inhibition of cation channels, (2) improvement of mitochondrial functions with antioxidant effects, (3) enhancement in synaptic transmission mediated by GABAA receptors, (4) improvement of immune response with anti-inflammatory action, and (5) suppression of protein synthesis and metabolism. While some of the primary targets and action mechanisms of herbal anticonvulsants (1, 3) are shared with antiseizure pharmacotherapies, herbal leads also engage with distinct mechanisms (2, 4, and 5), suggesting new drug targets and opportunities for their integration with antiseizure medications. Addressing outstanding questions through research and in silico modeling should facilitate the future use of herbals as auxiliary therapy in epilepsy and guide the development of treatment of pharmacoresistant seizures through rigorous trials and regulatory approval.
Collapse
Affiliation(s)
- Sobia Tabassum
- Department of Biological Sciences, Faculty of Sciences, International Islamic University, Islamabad, Pakistan
| | - Susan Shorter
- Faculty of Engineering and Science, University of Greenwich London, Chatham Maritime, Kent, ME4 4TB, UK
| | - Saak V Ovsepian
- Faculty of Engineering and Science, University of Greenwich London, Chatham Maritime, Kent, ME4 4TB, UK.
- Faculty of Medicine, Tbilisi State University, Tbilisi, 0177, Republic of Georgia.
| |
Collapse
|
10
|
He X, Chen X, Yang Y, Xie Y, Liu Y. Medicinal plants for epileptic seizures: Phytoconstituents, pharmacology and mechanisms revisited. JOURNAL OF ETHNOPHARMACOLOGY 2024; 320:117386. [PMID: 37956914 DOI: 10.1016/j.jep.2023.117386] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Revised: 10/16/2023] [Accepted: 11/02/2023] [Indexed: 11/21/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Epilepsy is a neurological disorder that presents with recurring and spontaneous seizures. It is prevalent worldwide, affecting up to 65 million people, with 80% of cases found in lower-income countries. Medicinal plants are commonly employed for managing and treating epilepsy and convulsions due to their unique therapeutic properties. With increasing research and clinical application, medicinal plants are gaining attention globally due to their potent therapeutic effects and fewer side effects. The development of new plant-based antiepileptic/anticonvulsant agents has become a major focus in the pharmaceutical industry. AIM OF THE REVIEW This article summarizes recent research on medicinal plants with reported antiepileptic/anticonvulsant effects. It provides pharmacological and molecular mechanism of action information for the crude extracts and related active constituents evaluated in preclinical research for the treatment of epilepsy and convulsions, and offers a reference for the development of future related studies in this area. MATERIALS AND METHODS Articles related to ethnopharmacological and antiepileptic studies on plants or natural products from 2018 to 2023 were collected from PubMed, Web of Science and Scopus, etc. using keywords related to epilepsy, medicinal plants, and natural products, etc. RESULTS: Eighty plant species are commonly used to treat epilepsy and convulsions in African and Asian countries. Sixty natural products showing potential for antiepileptic/anticonvulsant effects have been identified from these medicinal plants. These products can be broadly classified as alkaloids, coumarins, flavonoids, saponins, terpenoids and other compounds. The antiepileptic action of plant extracts and their active ingredients can be classified according to their abilities to modulate the GABAergic and glutamatergic systems, act as antioxidants, exhibit anti-neuroinflammatory effects, and provide neuroprotection. In addition, we highlight that some medicinal plants capable of pharmacologically relieving epilepsy and cognition may be therapeutically useful in the treatment of refractory epilepsy. CONCLUSIONS The review highlights the fact that herbal medicinal products used in traditional medicine are a valuable source of potential candidates for antiepileptic drugs. This confirms and encourages the antiepileptic/anticonvulsant activity of certain medicinal plants, which could serve as inspiration for further development. However, the aspects of structural modification and optimization, metabolism, toxicology, mechanisms, and clinical trials are not fully understood and need to be further explored.
Collapse
Affiliation(s)
- Xirui He
- Shool of Bioengineering, Zhuhai Campus of Zunyi Medical University, Zhuhai, Guangdong, 519041, China.
| | - Xufei Chen
- Key Laboratory of Western Resource Biology and Modern Biotechnology, Northwest University, 710065, Shaanxi, Xi'an, China
| | - Yan Yang
- Shool of Bioengineering, Zhuhai Campus of Zunyi Medical University, Zhuhai, Guangdong, 519041, China
| | - Yulu Xie
- Shool of Bioengineering, Zhuhai Campus of Zunyi Medical University, Zhuhai, Guangdong, 519041, China
| | - Yujie Liu
- Shool of Bioengineering, Zhuhai Campus of Zunyi Medical University, Zhuhai, Guangdong, 519041, China
| |
Collapse
|
11
|
Moussavi N, van der Ent W, Diallo D, Sanogo R, Malterud KE, Esguerra CV, Wangensteen H. Inhibition of Seizure-Like Paroxysms and Toxicity Effects of Securidaca longepedunculata Extracts and Constituents in Zebrafish Danio rerio. ACS Chem Neurosci 2024; 15:617-628. [PMID: 38270158 PMCID: PMC10853935 DOI: 10.1021/acschemneuro.3c00642] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 01/08/2024] [Accepted: 01/15/2024] [Indexed: 01/26/2024] Open
Abstract
Plants used in traditional medicine in the management of epilepsy could potentially yield novel drug compounds with antiepileptic properties. The medicinal plant Securidaca longepedunculata is widely used in traditional medicine in the African continent, and epilepsy is among several indications. Limited knowledge is available on its toxicity and medicinal effects, such as anticonvulsant activities. This study explores the potential in vivo inhibition of seizure-like paroxysms and toxicity effects of dichloromethane (DCM) and ethanol (EtOH) extracts, as well as isolated xanthones and benzoates of S. longepedunculata. Ten phenolic compounds were isolated from the DCM extract. All of the substances were identified by nuclear magnetic resonance spectroscopy. Assays for toxicity and inhibition of pentylenetetrazole (PTZ)-induced seizure-like paroxysms were performed in zebrafish larvae. Among the compounds assessed in the assay for maximum tolerated concentration (MTC), benzyl-2-hydroxy-6-methoxy-benzoate (MTC 12.5 μM), 4,8-dihydroxy-1,2,3,5,6-pentamethoxyxanthone (MTC 25 μM), and 1,7-dihydroxy-4-methoxyxanthone (MTC 6.25 μM) were the most toxic. The DCM extract, 1,7-dihydroxy-4-methoxyxanthone and 2-hydroxy-1,7-dimethoxyxanthone displayed the most significant inhibition of paroxysms by altering the locomotor behavior in GABAA receptor antagonist, PTZ, which induced seizures in larval zebrafish. The EtOH extract, benzyl benzoate, and benzyl-2-hydroxy-6-methoxy-benzoate unexpectedly increased locomotor activity in treated larval zebrafish and decreased locomotor activity in nontreated larval zebrafish, seemingly due to paradoxical excitation. The results reveal promising medicinal activities of this plant, contributing to our understanding of its use as an antiepileptic drug. It also shows us the presence of potentially new lead compounds for future drug development.
Collapse
Affiliation(s)
- Nastaran Moussavi
- Section
for Pharmaceutical Chemistry, Department of Pharmacy, University of Oslo, P.O. Box 1068, Oslo 0316, Norway
| | - Wietske van der Ent
- NCMM,
Chemical Neuroscience Group, Centre for Molecular Medicine Norway,
Faculty of Medicine, University of Oslo, Oslo 0349, Norway
| | - Drissa Diallo
- Department
of Traditional Medicine, National Institute
of Public Health, PB, Bamako 1746, Mali
- Faculty
of Pharmacy, University of Sciences, Techniques
and Technologies of Bamako (USTTB), Bamako 1746, Mali
| | - Rokia Sanogo
- Department
of Traditional Medicine, National Institute
of Public Health, PB, Bamako 1746, Mali
- Faculty
of Pharmacy, University of Sciences, Techniques
and Technologies of Bamako (USTTB), Bamako 1746, Mali
| | - Karl E. Malterud
- Section
for Pharmaceutical Chemistry, Department of Pharmacy, University of Oslo, P.O. Box 1068, Oslo 0316, Norway
| | - Camila V. Esguerra
- Section
for Pharmacology and Pharmaceutical Biosciences, Department of Pharmacy, University of Oslo, P.O.
Box 1068, Oslo 0316, Norway
| | - Helle Wangensteen
- Section
for Pharmaceutical Chemistry, Department of Pharmacy, University of Oslo, P.O. Box 1068, Oslo 0316, Norway
| |
Collapse
|
12
|
Łuszczki JJ, Kochman-Moskal E, Bojar H, Florek-Łuszczki M, Skalicka-Woźniak K. Imperatorin interacts additively with novel antiseizure medications in the mouse maximal electroshock-induced seizure model: an isobolographic transformation. Pharmacol Rep 2024; 76:216-222. [PMID: 38015370 PMCID: PMC10830790 DOI: 10.1007/s43440-023-00555-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2023] [Revised: 11/02/2023] [Accepted: 11/02/2023] [Indexed: 11/29/2023]
Abstract
BACKGROUND Anticonvulsant effects of imperatorin (IMP) have been experimentally confirmed earlier, but no information is available on the interaction profiles of this naturally occurring coumarin when combined with novel antiseizure medication (ASMs). This study aimed to determine the effects of IMP on the anticonvulsant effects of lacosamide (LCM), oxcarbazepine (OXC), pregabalin (PGB), and topiramate (TPM) in the maximal electroshock-induced seizure (MES) model in mice. METHODS The anticonvulsant effects exerted by novel ASMs (LCM, OXC, PGB, and TPM) when combined with constant doses of IMP (25 and 50 mg/kg) underwent isobolographic transformation to precisely classify the observed interactions in the mouse MES model. Total brain concentrations of ASMs were measured with high-pressure liquid chromatography to exclude the pharmacokinetic nature of interactions among IMP and the tested ASMs. RESULTS IMP (50 mg/kg) significantly enhanced (p < 0.01) the anticonvulsant potency of LCM, OXC, PGB, and TPM in the mouse MES model. IMP (25 mg/kg) mildly potentiated the anticonvulsant action of LCM, OXC, PGB, and TPM, but no statistical significance was reported for these combinations. The isobolographic transformation of data from the MES test revealed that the interactions of novel ASMs with IMP were additive. Moreover, IMP (50 mg/kg) did not affect the total brain content of any of the novel ASMs in experimental mice. CONCLUSIONS The additive interactions of IMP with LCM, OXC, PGB, and TPM in the mouse MES model accompanied by no pharmacokinetic changes in the total brain content of ASMs are worthy of recommendation for further studies.
Collapse
Affiliation(s)
- Jarogniew J Łuszczki
- Department of Occupational Medicine, Medical University of Lublin, Lublin, Poland.
| | | | - Hubert Bojar
- Department of Toxicology and Food Safety, Institute of Rural Health, Lublin, Poland
| | | | | |
Collapse
|
13
|
Zhu H, Wu Z, Yu Y, Chang K, Zhao C, Huang Z, He W, Luo Z, Huang H, Zhang C. Integrated non-targeted metabolomics and network pharmacology to reveal the mechanisms of berberine in the long-term treatment of PTZ-induced epilepsy. Life Sci 2024; 336:122347. [PMID: 38103728 DOI: 10.1016/j.lfs.2023.122347] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 12/04/2023] [Accepted: 12/09/2023] [Indexed: 12/19/2023]
Abstract
AIMS The increasing resistance to anti-seizure medications (ASMs) and the ambiguous mechanisms of epilepsy highlight the pressing demand for the discovery of pioneering lead compounds. Berberine (BBR) has received significant attention in recent years within the field of chronic metabolic disorders. However, the reports on the treatment of epilepsy with BBR are not systematic and the mechanism remains unclear. MAIN METHODS In this study, the seizure behaviors of mice were recorded following subcutaneous injection of pentetrazol (PTZ). Non-targeted metabolomics was used to analyze the serum metabolites based on ultra-performance liquid chromatography-quadrupole time-of-flight mass spectrometry (UPLC-Q-TOF/MS). Meanwhile, multivariate statistical methods were used for metabolite identification and pathway analysis. Furthermore, network pharmacology, molecular docking, and quantitative real-time PCR assay were used for the target identification. KEY FINDINGS BBR had anti-seizure effects on PTZ-induced seizure mice after long-term treatment. Tryptophan metabolism and phenylalanine metabolism were involved in regulating the therapeutic effects of BBR. SIGNIFICANCE This study reveals the potential mechanism of BBR for epilepsy treatment based on non-targeted metabolomics and network pharmacology, which provides evidence for uncovering the pathogenesis of epilepsy, suggesting that BBR is a potential lead compound for anti-epileptic treatment.
Collapse
Affiliation(s)
- Hailin Zhu
- School of Pharmacy, Nanchang University, 1299 Xuefu Road, Nanchang 330014, China
| | - Ziyu Wu
- School of Pharmacy, Nanchang University, 1299 Xuefu Road, Nanchang 330014, China
| | - Yizhou Yu
- School of Pharmacy, Nanchang University, 1299 Xuefu Road, Nanchang 330014, China
| | - Kaile Chang
- School of Pharmacy, Nanchang University, 1299 Xuefu Road, Nanchang 330014, China
| | - Chunfang Zhao
- School of Pharmacy, Nanchang University, 1299 Xuefu Road, Nanchang 330014, China
| | - Ziyu Huang
- School of Pharmacy, Nanchang University, 1299 Xuefu Road, Nanchang 330014, China
| | - Wen He
- School of Pharmacy, Nanchang University, 1299 Xuefu Road, Nanchang 330014, China
| | - Zhong Luo
- School of Pharmacy, Nanchang University, 1299 Xuefu Road, Nanchang 330014, China
| | - Hui Huang
- Department of Neurosurgery, the Second Affiliated Hospital of Nanchang University, 330006, Nanchang 330200, China
| | - Chunbo Zhang
- School of Pharmacy, Nanchang University, 1299 Xuefu Road, Nanchang 330014, China; Department of Pathology and Institute of Molecular Pathology, The First Affiliated Hospital of Nanchang University, Nanchang 330006, China.
| |
Collapse
|
14
|
Ding Y, Guo K, Li J, Shan Q, Guo Y, Chen M, Wu Y, Wang X. Alterations in brain network functional connectivity and topological properties in DRE patients. Front Neurol 2023; 14:1238421. [PMID: 38116109 PMCID: PMC10729765 DOI: 10.3389/fneur.2023.1238421] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2023] [Accepted: 10/20/2023] [Indexed: 12/21/2023] Open
Abstract
Objective The study aimed to find the difference in functional network topology on interictal electroencephalographic (EEG) between patients with drug-resistant epilepsy (DRE) and healthy people. Methods We retrospectively analyzed the medical records as well as EEG data of ten patients with DRE and recruited five sex-age-matched healthy controls (HC group). Each participant remained awake while undergoing video-electroencephalography (vEEG) monitoring. After excluding data that contained abnormal discharges, we screened EEG segments that were free of artifacts and put them together into 20-min segments. The screened data was bandpass filtered to different frequency bands (delta, theta, alpha, beta, and gamma). The weighted phase lag index (wPLI) and the network properties were calculated to evaluate changes in the topology of the functional network. Finally, the results were statistically analyzed, and the false discovery rate (FDR) was used to correct for differences after multiple comparisons. Results In the full frequency band (0.5-45 Hz), the functional connectivity in the DRE group during the interictal period was significantly lower than that in the HC group (p < 0.05). Compared to the HC group, in the full frequency band, the DRE group exhibited significantly decreased clustering coefficient (CC), node degree (D), and global efficiency (GE), while the characteristic path length (CPL) significantly increased (p < 0.05). In the sub-frequency bands, the functional connectivity of the DRE group was significantly lower than that of the HC group in the delta band but higher in the alpha, beta, and gamma bands (p < 0.05). The statistical results of network properties revealed that in the delta band, the DRE group had significantly decreased values for D, CC, and GE, but in the alpha, beta, and gamma bands, these values were significantly increased (p < 0.05). Additionally, the CPL of the DRE group significantly increased in the delta and theta bands but significantly decreased in the alpha, beta, and gamma bands (p < 0.05). Conclusion The topology structure of the functional network in DRE patients was significantly changed compared with healthy people, which was reflected in different frequency bands. It provided a theoretical basis for understanding the pathological network alterations of DRE.
Collapse
Affiliation(s)
- Yongqiang Ding
- Department of Neurosurgery, The Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Kunlin Guo
- Henan Key Laboratory of Brain Science and Brain–Computer Interface Technology, School of Electrical and Information Engineering, Zhengzhou University, Zhengzhou, China
| | - Jialiang Li
- Department of Neurosurgery, The First People Hospital of Shangqiu, Shangqiu, China
| | - Qiao Shan
- Department of Neurosurgery, The Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Yongkun Guo
- Department of Neurosurgery, The Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Mingming Chen
- Henan Key Laboratory of Brain Science and Brain–Computer Interface Technology, School of Electrical and Information Engineering, Zhengzhou University, Zhengzhou, China
| | - Yuehui Wu
- Department of Neurosurgery, The Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Xinjun Wang
- Department of Neurosurgery, The Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| |
Collapse
|
15
|
Łuszczki JJ, Bojar H, Jankiewicz K, Florek-Łuszczki M, Chmielewski J, Skalicka-Woźniak K. Anticonvulsant effects of isopimpinellin and its interactions with classic antiseizure medications and borneol in the mouse tonic-clonic seizure model: an isobolographic transformation. Pharmacol Rep 2023; 75:1533-1543. [PMID: 37821793 PMCID: PMC10661746 DOI: 10.1007/s43440-023-00532-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Revised: 09/14/2023] [Accepted: 09/15/2023] [Indexed: 10/13/2023]
Abstract
BACKGROUND Overwhelming evidence indicates that some naturally occurring coumarins and terpenes are widely used in folk medicine due to their various therapeutic effects affecting the brain. Antiseizure medications (ASMs) are the principal treatment option for epilepsy patients, although some novel strategies based on naturally occurring substances are intensively investigated. This study was aimed at determining the influence of isopimpinellin (ISOP-a coumarin) when administered either separately or in combination with borneol (BOR-a monoterpenoid), on the antiseizure potencies of four classic ASMs (carbamazepine (CBZ), phenytoin (PHT), phenobarbital (PB), and valproate (VPA)) in the mouse model of maximal electroshock-induced (MES) tonic-clonic seizures. MATERIALS Tonic-clonic seizures were evoked experimentally in mice after systemic (ip) administration of the respective doses of ISOP, BOR, and classic ASMs. Interactions for two-drug (ISOP + a classic ASM) and three-drug (ISOP + BOR + a classic ASM) mixtures were assessed isobolographically in the mouse MES model. RESULTS ISOP (administered alone) had no impact on the anticonvulsant potencies of four classic ASMs. Due to the isobolographic transformation of data, the combination of ISOP + VPA exerted an antagonistic interaction, whereas the two-drug mixtures of ISOP + CBZ, ISOP + PHT, and ISOP + PB produced additive interactions in the mouse MES model. The three-drug combinations of ISOP + BOR with CBZ and PHT produced additive interactions, while the three-drug combinations of ISOP + BOR with PB and VPA exerted synergistic interactions in the mouse MES model. CONCLUSIONS The most intriguing interaction was that for ISOP + VPA, for which the addition of BOR evoked a transition from antagonism to synergy in the mouse MES model.
Collapse
Affiliation(s)
- Jarogniew J Łuszczki
- Department of Occupational Medicine, Medical University of Lublin, 20-090, Lublin, Poland.
| | - Hubert Bojar
- Department of Toxicology and Food Safety, Institute of Rural Health, 20-950, Lublin, Poland
| | - Katarzyna Jankiewicz
- 2nd Department of Gynecology, Medical University of Lublin, 20-954, Lublin, Poland
| | | | - Jarosław Chmielewski
- Institute of Environmental Protection, National Research Institute, 02-170, Warsaw, Poland
| | | |
Collapse
|