1
|
Zhao K, Meng L, Wang X, Sui W, Zhang Y. Uncoupling protein 1-mediated protective effects of β3-adrenergic receptor agonist on kidney fibrosis via promoting adipose tissue browning in diabetic mice. Int J Biol Macromol 2025; 309:142977. [PMID: 40210064 DOI: 10.1016/j.ijbiomac.2025.142977] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2025] [Revised: 03/16/2025] [Accepted: 04/07/2025] [Indexed: 04/12/2025]
Abstract
BACKGROUND Diabetes mellitus (DM) is a global health concern. Diabetic kidney disease (DKD) is a prevalent severe complication of DM and therapy is urgently needed. Adipose tissue (AT) plays a crucial role in the energy mediation through glucolipid metabolism. Mirabegron is a specific β3-adrenergic receptor agonist, which can activate thermogenesis in adipocytes, improve energy consumption, and increase insulin sensitivity and glucose tolerance. Therefore, mirabegron may play a role in DKD pathogenesis. However, its effects and precise mechanisms remain unclear. METHODS A DKD mouse model based on type 2 DM (T2DM) was constructed and treated with mirabegron. Mice with AT surgically removed and mice with uncoupling protein 1 (Ucp1) knockout were used to confirm whether thermogenesis induced by mirabegron was the key process. RESULTS Mirabegron promoted AT browning in DKD mice. Mirabegron increased insulin sensitivity, promoted glucolipid metabolism, reduced inflammatory factor levels in kidney tissue, and improved renal function and fibrosis in DKD mice. Notably, all of these benefits disappeared in AT-removed DKD mice or in Ucp1 knockout DKD mice. CONCLUSIONS Mirabegron protects against kidney fibrosis in DM mice by activating AT thermogenesis via the UCP1 pathway. Thus, mirabegron may provide a promising potential option for DKD therapy.
Collapse
MESH Headings
- Animals
- Uncoupling Protein 1/metabolism
- Uncoupling Protein 1/genetics
- Adrenergic beta-3 Receptor Agonists/pharmacology
- Mice
- Fibrosis
- Thiazoles/pharmacology
- Acetanilides/pharmacology
- Adipose Tissue, Brown/metabolism
- Adipose Tissue, Brown/drug effects
- Male
- Thermogenesis/drug effects
- Kidney/pathology
- Kidney/drug effects
- Kidney/metabolism
- Diabetic Nephropathies/metabolism
- Diabetic Nephropathies/drug therapy
- Diabetic Nephropathies/pathology
- Diabetes Mellitus, Experimental/metabolism
- Diabetes Mellitus, Experimental/drug therapy
- Diabetes Mellitus, Experimental/complications
- Diabetes Mellitus, Experimental/pathology
- Mice, Knockout
- Receptors, Adrenergic, beta-3/metabolism
- Mice, Inbred C57BL
Collapse
Affiliation(s)
- Kunsheng Zhao
- State Key Laboratory for Innovation and Transformation of Luobing Theory, Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences, Department of Cardiology, Qilu Hospital of Shandong University, Jinan, China
| | - Linlin Meng
- State Key Laboratory for Innovation and Transformation of Luobing Theory, Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences, Department of Cardiology, Qilu Hospital of Shandong University, Jinan, China
| | - Xinlu Wang
- State Key Laboratory for Innovation and Transformation of Luobing Theory, Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences, Department of Cardiology, Qilu Hospital of Shandong University, Jinan, China
| | - Wenhai Sui
- State Key Laboratory for Innovation and Transformation of Luobing Theory, Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences, Department of Cardiology, Qilu Hospital of Shandong University, Jinan, China.
| | - Yun Zhang
- State Key Laboratory for Innovation and Transformation of Luobing Theory, Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences, Department of Cardiology, Qilu Hospital of Shandong University, Jinan, China.
| |
Collapse
|
2
|
Chen C, Gao H, Wei Y, Wang Y. Traditional Chinese medicine in the prevention of diabetes mellitus and cardiovascular complications: mechanisms and therapeutic approaches. Front Pharmacol 2025; 16:1511701. [PMID: 40290429 PMCID: PMC12021819 DOI: 10.3389/fphar.2025.1511701] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2024] [Accepted: 03/28/2025] [Indexed: 04/30/2025] Open
Abstract
Diabetes mellitus (DM) is a chronic endocrine and metabolic disorder characterized by persistent hyperglycemia that poses serious threats to human health and quality of life. The morbidity, disability, and mortality rates of cardiovascular complications stemming from chronic hyperglycemia are primary factors affecting the lifespan of patients with diabetes. Currently, there is no cure for DM. Standard biomedical treatments mostly control the symptoms using insulin injections or oral hypoglycemic drugs. Although the effect of standard biomedical therapy is remarkable, its long-term use is prone to toxic side effects. Numerous studies have recently found that Traditional Chinese Medicine (TCM) has strong advantages in the prevention and treatment of DM and cardiovascular complications (DACC). The collection, processing, preparation and clinical use of TCM are guided by the theory of TCM and follow the "holistic concept." Multiple components, pathways, and targets form the basis for the use of TCM in treating multiple parts and organs of the body simultaneously. TCM is mainly derived from natural medicines and their processed products and has fewer side effects. TCM is clinically used as compound prescriptions, botanical drugs, and monomers. TCM, either independently or in combination with standard biomedical treatments, has shown unique therapeutic advantages. This review aimed to explore the recently reported mechanisms of action of TCM in the prevention and treatment of DACC. These findings will aid the optimization of the current therapy or formation of a therapeutic schedule for integrated TCM and standard biomedical treatments.
Collapse
Affiliation(s)
- Caixia Chen
- Inner Mongolia Key Laboratory of Medical Cell Biology, Clinical Medicine Research Center, Affiliated Hospital of Inner Mongolia Medical University, Hohhot, Inner Mongolia, China
- College of Life Sciences, Inner Mongolia Agricultural University, Hohhot, Inner Mongolia, China
| | - Hui Gao
- Thoracic Surgery Department, Inner Mongolia Hospital of Peking University Cancer Hospital, The Affiliated Cancer Hospital of Inner Mongolia Medical University, Hohhot, Inner Mongolia, China
| | - Ying Wei
- Inner Mongolia Key Laboratory of Medical Cell Biology, Clinical Medicine Research Center, Affiliated Hospital of Inner Mongolia Medical University, Hohhot, Inner Mongolia, China
| | - Yaxi Wang
- Ultrasonic Department, Affiliated Hospital of Inner Mongolia Medical University, Hohhot, Inner Mongolia, China
| |
Collapse
|
3
|
Zhang Y, Wang L, Zeng J, Shen W. Research advances in polyphenols from Chinese herbal medicine for the prevention and treatment of chronic obstructive pulmonary disease: a review. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2025:10.1007/s00210-025-03945-y. [PMID: 40035820 DOI: 10.1007/s00210-025-03945-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/26/2024] [Accepted: 02/17/2025] [Indexed: 03/06/2025]
Abstract
Chronic obstructive pulmonary disease (COPD) is a global health problem due to its high death and morbidity worldwide, which is characterized by an incompletely reversible limitation in airflow that is not fully reversible. Unfortunately, Western medical treatments are unable to reverse the progressive decline in lung function. Importantly, polyphenolic compounds isolated from Chinese herbal medicine exhibited therapeutic/interventional effects on COPD in preclinical studies. This review systematically analyzed the pathogenesis of COPD, such as inflammation, oxidative stress, protease/antiprotease imbalance, aging, cell death, and dysbiosis of gut microbiota. Moreover, this review summarized the regulatory mechanisms of natural polyphenolic compounds for the treatment of COPD. Several studies have demonstrated that natural polyphenolic compounds have therapeutic effects on COPD by regulating various biological processes, such as anti-inflammatory, reduction of oxidative damage, anti-cell death, and inhibition of airway hyperglycemia. Mechanistically, this review found that the promising effects of natural polyphenolic compounds on COPD were mainly achieved through modulating the NF-κB and MAPK inflammatory pathways, the Nrf2 oxidative stress pathway, and the SIRT1/PGC-1α lung injury pathway. Furthermore, this review analyzed the efficacy and safety of natural polyphenolic compounds for the treatment of COPD in clinical trials, and discussed their challenges and future development directions. In conclusion, this review combined the latest literature to illustrate the various pathogenesis and interrelationships of COPD in the form of graphs, texts, and tables, and sorted out the functional role and mechanisms of natural polyphenols in treating COPD, with a view to providing new ideas and plans for the in-depth research on COPD and the systemic treatment of COPD with Chinese herbal medicine.
Collapse
Affiliation(s)
- Yang Zhang
- Department of General Practice Medicine, The Second Affiliated Hospital of Kunming Medical University, No. 374 Dianmian Avenue, Wuhua District, Kunming, 650101, China
| | - Lijuan Wang
- Department of Nuclear Medicine, The Second Affiliated Hospital of Kunming Medical University, Kunming, 650101, Yunnan, China
| | - Jinyi Zeng
- Department of General Practice Medicine, The Second Affiliated Hospital of Kunming Medical University, No. 374 Dianmian Avenue, Wuhua District, Kunming, 650101, China
| | - Wen Shen
- Department of General Practice Medicine, The Second Affiliated Hospital of Kunming Medical University, No. 374 Dianmian Avenue, Wuhua District, Kunming, 650101, China.
| |
Collapse
|
4
|
Yan M, Zhang S, Liang P, Huang H, Li G, A R, Wu H. Research Hotspots and Frontier Trends of Autophagy in Diabetic Cardiomyopathy From 2014 to 2024: A Bibliometric Analysis. J Multidiscip Healthc 2025; 18:837-860. [PMID: 39963325 PMCID: PMC11831922 DOI: 10.2147/jmdh.s507217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2024] [Accepted: 02/04/2025] [Indexed: 02/20/2025] Open
Abstract
Objective In recent years, the investigation of autophagy mechanisms has gained prominence as a key focus for understanding the pathogenesis and therapeutic potential of diabetic cardiomyopathy. This study aims to present an overview of the current state, major research areas, and emerging trends in autophagy related to diabetic cardiomyopathy through bibliometric analysis, offering a scientific foundation for future research. Methods The Web of Science Core Collection served as the data source for this study, from which full-text publications were extracted. Using CiteSpace 6.3.R1, VOSviewer v1.6.18, and R-Bibliometrix, the analysis evaluated research output across dimensions such as subjects, countries, institutions, journals, authors, and co-cited references, generating a comprehensive visual map. Results A total of 367 publications met the inclusion criteria. Between 2014 and 2024, the volume of articles demonstrated a consistent upward trajectory. Research on autophagy in diabetic cardiomyopathy predominantly spans the disciplines of biology and medicine. China and the Fourth Military Medical University emerged as leading contributors among 41 countries and 505 institutions. Sun Dongdong was identified as the most prolific author, while Jia GH was the most frequently cited. Key journals in this field include Biochimica et Biophysica Acta - Molecular Basis of Disease and Frontiers in Cardiovascular Medicine, while Circulation Research recorded the highest number of co-citations. The most cited reference was an experimental study by Xie ZL. Current research focuses on autophagy, diabetic cardiomyopathy, oxidative stress, and their underlying mechanisms. Conclusion Research on the role of autophagy in diabetic cardiomyopathy has reached a stable phase of development. Future investigations should prioritize mechanistic studies and emphasize the clinical application of novel pharmacological interventions, thereby advancing therapeutic strategies and contributing to improved human health outcomes.
Collapse
Affiliation(s)
- Mei Yan
- Jiangxi University of Chinese Medicine, Nanchang, People’s Republic of China
- Shanghai University of Traditional Chinese Medicine Shenzhen Hospital, Shenzhen,People’s Republic of China
| | - Shizhao Zhang
- Shanghai University of Traditional Chinese Medicine Shenzhen Hospital, Shenzhen,People’s Republic of China
- Shanghai University of Traditional Chinese Medicine, Shanghai, People’s Republic of China
| | - Pengpeng Liang
- Shanghai University of Traditional Chinese Medicine Shenzhen Hospital, Shenzhen,People’s Republic of China
- Shanghai University of Traditional Chinese Medicine, Shanghai, People’s Republic of China
| | - Hai Huang
- Shanghai University of Traditional Chinese Medicine Shenzhen Hospital, Shenzhen,People’s Republic of China
| | - Guiyun Li
- Shanghai University of Traditional Chinese Medicine Shenzhen Hospital, Shenzhen,People’s Republic of China
| | - Ruhan A
- Jiangxi University of Chinese Medicine, Nanchang, People’s Republic of China
| | - Hongyan Wu
- Jiangxi University of Chinese Medicine, Nanchang, People’s Republic of China
- Shanghai University of Traditional Chinese Medicine Shenzhen Hospital, Shenzhen,People’s Republic of China
- Shanghai University of Traditional Chinese Medicine, Shanghai, People’s Republic of China
| |
Collapse
|
5
|
Chen Q, Qiu FS, Xie W, Yu WY, Su ZA, Qin GM, Kang YK, Jiang SL, Yu CH. Gypenoside A-loaded mPEG-PLGA nanoparticles ameliorate high-glucose-induced retinal microvasculopathy by inhibiting ferroptosis. Int J Pharm 2024; 666:124758. [PMID: 39326476 DOI: 10.1016/j.ijpharm.2024.124758] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Revised: 08/30/2024] [Accepted: 09/24/2024] [Indexed: 09/28/2024]
Abstract
Diabetic retinopathy (DR) is one of the chronic microvascular complications of type 2 diabetes mellitus (T2DM), which will cause retinal detachment and blindness without ideal therapies. Gypenoside A (GPA) are the main bioactive compound from Gynostemma pentaphyllum, and have various pharmacological effects. However, it suffered from poor bioavailability and potential cardiotoxicity in the clinical application. To overcome those limitations, in this study, nearly spherical nanoparticles (GPA-NP) with a mean particle size of 140.6 ± 22.4 nm were prepared by encapsulating GPA into mPEG-PLGA. This encapsulation efficiency was 84.4 ± 6.9 %, and the drug load was 4.02 %±0.35 %. The results showed that GPA-NP displayed more prolonged GPA release and higher bioavailability in vitro than GPA. GPA-NP obviously reduced the levels of oxidative stress markers and inflammatory cytokines in both retinal tissues of DR mice and high glucose-exposed HRMEC better than GPA alone. Mechanismly, GPA blocked the Nrf2-Keap1 interaction by binding with Kelch domain of Keap1 via alkyl and hydrogen bonds. Therefore, GPA-NP exerted more potent protectivity effects against high glucose-induced retinal microvascular endothelial ferroptosis in vitro and in vivo by activating Nrf2/HO-1/GPX4 pathway. It could be a promising therapeutic agent for preventing DR.
Collapse
Affiliation(s)
- Qin Chen
- Eye Center, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310003, China; Zhejiang Provincial Key Laboratory of Ophthalmology, Zhejiang Provincial Clinical Research Center for Eye Diseases, Zhejiang Provincial Engineering Institute on Eye Diseases, Hangzhou 310003, China
| | - Fen-Sheng Qiu
- Hangzhou Institute of Medicine, Chinese Academy of Sciences, Hangzhou 310018, China; Key Laboratory of Experimental Animal and Safety Evaluation, Hangzhou Medical College, Hangzhou 310013, China
| | - Wei Xie
- Key Laboratory of Experimental Animal and Safety Evaluation, Hangzhou Medical College, Hangzhou 310013, China
| | - Wen-Ying Yu
- Key Laboratory of Experimental Animal and Safety Evaluation, Hangzhou Medical College, Hangzhou 310013, China
| | - Zhao-An Su
- Eye Center, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310003, China; Zhejiang Provincial Key Laboratory of Ophthalmology, Zhejiang Provincial Clinical Research Center for Eye Diseases, Zhejiang Provincial Engineering Institute on Eye Diseases, Hangzhou 310003, China
| | - Guang-Ming Qin
- Eye Center, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310003, China; Zhejiang Provincial Key Laboratory of Ophthalmology, Zhejiang Provincial Clinical Research Center for Eye Diseases, Zhejiang Provincial Engineering Institute on Eye Diseases, Hangzhou 310003, China.
| | - You-Kun Kang
- Key Laboratory of Experimental Animal and Safety Evaluation, Hangzhou Medical College, Hangzhou 310013, China
| | - Song-Lin Jiang
- Key Laboratory of Experimental Animal and Safety Evaluation, Hangzhou Medical College, Hangzhou 310013, China
| | - Chen-Huan Yu
- Hangzhou Institute of Medicine, Chinese Academy of Sciences, Hangzhou 310018, China.
| |
Collapse
|
6
|
Pan X, Hao E, Zhang F, Wei W, Du Z, Yan G, Wang X, Deng J, Hou X. Diabetes cardiomyopathy: targeted regulation of mitochondrial dysfunction and therapeutic potential of plant secondary metabolites. Front Pharmacol 2024; 15:1401961. [PMID: 39045049 PMCID: PMC11263127 DOI: 10.3389/fphar.2024.1401961] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2024] [Accepted: 06/11/2024] [Indexed: 07/25/2024] Open
Abstract
Diabetic cardiomyopathy (DCM) is a specific heart condition in diabetic patients, which is a major cause of heart failure and significantly affects quality of life. DCM is manifested as abnormal cardiac structure and function in the absence of ischaemic or hypertensive heart disease in individuals with diabetes. Although the development of DCM involves multiple pathological mechanisms, mitochondrial dysfunction is considered to play a crucial role. The regulatory mechanisms of mitochondrial dysfunction mainly include mitochondrial dynamics, oxidative stress, calcium handling, uncoupling, biogenesis, mitophagy, and insulin signaling. Targeting mitochondrial function in the treatment of DCM has attracted increasing attention. Studies have shown that plant secondary metabolites contribute to improving mitochondrial function and alleviating the development of DCM. This review outlines the role of mitochondrial dysfunction in the pathogenesis of DCM and discusses the regulatory mechanism for mitochondrial dysfunction. In addition, it also summarizes treatment strategies based on plant secondary metabolites. These strategies targeting the treatment of mitochondrial dysfunction may help prevent and treat DCM.
Collapse
Affiliation(s)
- Xianglong Pan
- Department of Pharmaceutical, Heilongjiang University of Chinese Medicine, Harbin, Heilongjiang, China
| | - Erwei Hao
- Guangxi Key Laboratory of Efficacy Study on Chinese Materia Medica, Guangxi University of Chinese Medicine, Nanning, Guangxi, China
- Guangxi Collaborative Innovation Center for Research on Functional Ingredients of Agricultural Residues, Guangxi University of Chinese Medicine, Nanning, Guangxi, China
- Guangxi Key Laboratory of TCM Formulas Theory and Transformation for Damp Diseases, Guangxi University of Chinese Medicine, Nanning, Guangxi, China
| | - Fan Zhang
- Guangxi Key Laboratory of Efficacy Study on Chinese Materia Medica, Guangxi University of Chinese Medicine, Nanning, Guangxi, China
- Guangxi Collaborative Innovation Center for Research on Functional Ingredients of Agricultural Residues, Guangxi University of Chinese Medicine, Nanning, Guangxi, China
- Guangxi Key Laboratory of TCM Formulas Theory and Transformation for Damp Diseases, Guangxi University of Chinese Medicine, Nanning, Guangxi, China
| | - Wei Wei
- Guangxi Key Laboratory of Efficacy Study on Chinese Materia Medica, Guangxi University of Chinese Medicine, Nanning, Guangxi, China
- Guangxi Collaborative Innovation Center for Research on Functional Ingredients of Agricultural Residues, Guangxi University of Chinese Medicine, Nanning, Guangxi, China
- Guangxi Key Laboratory of TCM Formulas Theory and Transformation for Damp Diseases, Guangxi University of Chinese Medicine, Nanning, Guangxi, China
| | - Zhengcai Du
- Guangxi Key Laboratory of Efficacy Study on Chinese Materia Medica, Guangxi University of Chinese Medicine, Nanning, Guangxi, China
- Guangxi Collaborative Innovation Center for Research on Functional Ingredients of Agricultural Residues, Guangxi University of Chinese Medicine, Nanning, Guangxi, China
- Guangxi Key Laboratory of TCM Formulas Theory and Transformation for Damp Diseases, Guangxi University of Chinese Medicine, Nanning, Guangxi, China
| | - Guangli Yan
- Department of Pharmaceutical, Heilongjiang University of Chinese Medicine, Harbin, Heilongjiang, China
| | - Xijun Wang
- Department of Pharmaceutical, Heilongjiang University of Chinese Medicine, Harbin, Heilongjiang, China
| | - Jiagang Deng
- Guangxi Key Laboratory of Efficacy Study on Chinese Materia Medica, Guangxi University of Chinese Medicine, Nanning, Guangxi, China
- Guangxi Collaborative Innovation Center for Research on Functional Ingredients of Agricultural Residues, Guangxi University of Chinese Medicine, Nanning, Guangxi, China
- Guangxi Key Laboratory of TCM Formulas Theory and Transformation for Damp Diseases, Guangxi University of Chinese Medicine, Nanning, Guangxi, China
| | - Xiaotao Hou
- Department of Pharmaceutical, Heilongjiang University of Chinese Medicine, Harbin, Heilongjiang, China
- Guangxi Key Laboratory of Efficacy Study on Chinese Materia Medica, Guangxi University of Chinese Medicine, Nanning, Guangxi, China
- Guangxi Collaborative Innovation Center for Research on Functional Ingredients of Agricultural Residues, Guangxi University of Chinese Medicine, Nanning, Guangxi, China
- Guangxi Key Laboratory of TCM Formulas Theory and Transformation for Damp Diseases, Guangxi University of Chinese Medicine, Nanning, Guangxi, China
| |
Collapse
|
7
|
Sevimli E, Seyhan G, Akkaya D, Sarı S, Barut B, Köksoy B. Effective α-glycosidase inhibitors based on polyphenolic benzothiazole heterocycles. Bioorg Chem 2024; 147:107366. [PMID: 38636435 DOI: 10.1016/j.bioorg.2024.107366] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 04/03/2024] [Accepted: 04/10/2024] [Indexed: 04/20/2024]
Abstract
α-Glycosidase inhibition is one of the main approaches to treat Diabetes mellitus. Polyphenolic moieties are known to be responsible for yielding exhibit potent α-glycosidase inhibitory effects. In addition, compounds containing benzothiazole and Schiff base functionalities were previously reported to show α-glycosidase inhibition. In this paper, the synthesis of seven new phloroglucinol-containing benzothiazole Schiff base derivatives through the reaction of 6-substituted-2-aminobenzothiazole compounds with 2,4,6-trihydroxybenzaldehyde using acetic acid as a catalyst was reported. The synthesized compounds were characterized using spectroscopic methods such as FT-IR, 1H NMR, 13C NMR, and elemental analysis. The synthesized compounds were evaluated for their inhibitory effects on α-glycosidase, compounds 3f and 3g were found to show significant inhibitory properties when compared to the positive control. The IC50 values of 3f and 3g were calculated as 24.05 ± 2.28 and 18.51 ± 1.19 µM, respectively. Kinetic studies revealed that compounds 3f and 3g exhibited uncompetitive mode of inhibition against α-glycosidase. Molecular modeling predicted druglikeness for the title compounds and underpinned the importance of phloroglucinol hydroxyls for interacting with the key residues of α-glycosidase.
Collapse
Affiliation(s)
- Esra Sevimli
- Bursa Technical University, Department of Chemistry, Bursa, Turkiye
| | - Gökçe Seyhan
- Karadeniz Technical University, Faculty of Pharmacy, Department of Biochemistry, Trabzon, Turkiye
| | - Didem Akkaya
- Karadeniz Technical University, Faculty of Pharmacy, Department of Biochemistry, Trabzon, Turkiye
| | - Suat Sarı
- Hacettepe University, Faculty of Pharmacy, Department of Pharmaceutical Chemistry, Ankara, Turkiye
| | - Burak Barut
- Karadeniz Technical University, Faculty of Pharmacy, Department of Biochemistry, Trabzon, Turkiye
| | - Baybars Köksoy
- Bursa Technical University, Department of Chemistry, Bursa, Turkiye.
| |
Collapse
|
8
|
Nan Y, Xiao M, Duan Y, Yang Y. Toxicity of Ammonia Stress on the Physiological Homeostasis in the Gills of Litopenaeus vannamei under Seawater and Low-Salinity Conditions. BIOLOGY 2024; 13:281. [PMID: 38666893 PMCID: PMC11048301 DOI: 10.3390/biology13040281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2024] [Revised: 04/19/2024] [Accepted: 04/19/2024] [Indexed: 04/28/2024]
Abstract
Ammonia is a major water quality factor influencing the survival and health of shrimp, among which the gill is the main effector organ for ammonia toxicity. In this study, we chose two types of Litopenaeus vannamei that were cultured in 30‱ seawater and domesticated in 3‱ low salinity, respectively, and then separately subjected to ammonia stress for 14 days under seawater and low-salinity conditions, of which the 3‱ low salinity-cultured shrimp were domesticated from the shrimp cultured in 30‱ seawater after 27 days of gradual salinity desalination. In detail, this study included four groups, namely the SC group (ammonia-N 0 mg/L, salinity 30‱), SAN group (ammonia-N 10 mg/L, salinity 30‱), LC group (ammonia-N 0 mg/L, salinity 3‱), and LAN group (ammonia-N 10 mg/L, salinity 3‱). The ammonia stress lasted for 14 days, and then the changes in the morphological structure and physiological function of the gills were explored. The results show that ammonia stress caused the severe contraction of gill filaments and the deformation or even rupture of gill vessels. Biochemical indicators of oxidative stress, including LPO and MDA contents, as well as T-AOC and GST activities, were increased in the SAN and LAN groups, while the activities of CAT and POD and the mRNA expression levels of antioxidant-related genes (nrf2, cat, gpx, hsp70, and trx) were decreased. In addition, the mRNA expression levels of the genes involved in ER stress (ire1 and xbp1), apoptosis (casp-3, casp-9, and jnk), detoxification (gst, ugt, and sult), glucose metabolism (pdh, hk, pk, and ldh), and the tricarboxylic acid cycle (mdh, cs, idh, and odh) were decreased in the SAN and LAN groups; the levels of electron-transport chain-related genes (ndh, cco, and coi), and the bip and sdh genes were decreased in the SAN group but increased in the LAN group; and the level of the ATPase gene was decreased but the cytc gene was increased in the SAN and LAN groups. The mRNA expression levels of osmotic regulation-related genes (nka-β, ca, aqp and clc) were decreased in the SAN group, while the level of the ca gene was increased in the LAN group; the nka-α gene was decreased in both two groups. The results demonstrate that ammonia stress could influence the physiological homeostasis of the shrimp gills, possibly by damaging the tissue morphology, and affecting the redox, ER function, apoptosis, detoxification, energy metabolism, and osmoregulation.
Collapse
Affiliation(s)
- Yuxiu Nan
- Ocean College, Hebei Agricultural University, Qinhuangdao 066003, China
- Key Laboratory of South China Sea Fishery Resources Exploitation & Utilization, Ministry of Agriculture and Rural Affairs, State Key Laboratory of Mariculture Biobreeding and Sustainable Goods, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510300, China
| | - Meng Xiao
- Ocean College, Hebei Agricultural University, Qinhuangdao 066003, China
- Key Laboratory of South China Sea Fishery Resources Exploitation & Utilization, Ministry of Agriculture and Rural Affairs, State Key Laboratory of Mariculture Biobreeding and Sustainable Goods, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510300, China
| | - Yafei Duan
- Key Laboratory of South China Sea Fishery Resources Exploitation & Utilization, Ministry of Agriculture and Rural Affairs, State Key Laboratory of Mariculture Biobreeding and Sustainable Goods, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510300, China
- Key Laboratory of Efficient Utilization and Processing of Marine Fishery Resources of Hainan Province, Sanya Tropical Fisheries Research Institute, Sanya 572018, China
| | - Yukai Yang
- Key Laboratory of South China Sea Fishery Resources Exploitation & Utilization, Ministry of Agriculture and Rural Affairs, State Key Laboratory of Mariculture Biobreeding and Sustainable Goods, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510300, China
- Shenzhen Base of South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Shenzhen 518121, China
| |
Collapse
|
9
|
Zhang Q, Hu S, Jin Z, Wang S, Zhang B, Zhao L. Mechanism of traditional Chinese medicine in elderly diabetes mellitus and a systematic review of its clinical application. Front Pharmacol 2024; 15:1339148. [PMID: 38510656 PMCID: PMC10953506 DOI: 10.3389/fphar.2024.1339148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Accepted: 01/31/2024] [Indexed: 03/22/2024] Open
Abstract
Objective: Affected by aging, the elderly diabetes patients have many pathological characteristics different from the young people, including more complications, vascular aging, cognitive impairment, osteoporosis, and sarcopenia. This article will explore their pathogenesis and the mechanism of Traditional Chinese medicine (TCM) intervention, and use the method of systematic review to evaluate the clinical application of TCM in elderly diabetes. Method: Searching for randomized controlled trials (RCTs) published from January 2000 to November 2023 in the following databases: Web of Science, Pubmed, Embase, Cochrane Library, Sinomed, China National Knowledge Internet, Wanfang and VIP. They were evaluated by three subgroups of Traditional Chinese Prescription, Traditional Chinese patent medicines and Traditional Chinese medicine extracts for their common prescriptions, drugs, adverse reactions and the quality of them. Results and Conclusion: TCM has the advantages of multi-target and synergistic treatment in the treatment of elderly diabetes. However, current clinical researches have shortcomings including the inclusion of age criteria and diagnosis of subjects are unclear, imprecise research design, non-standard intervention measures, and its safety needs further exploration. In the future, the diagnosis of elderly people with diabetes needs to be further clarified. Traditional Chinese patent medicines included in the pharmacopoeia can be used to conduct more rigorous RCTs, and then gradually standardize the traditional Chinese medicine prescriptions and traditional Chinese medicine extracts, providing higher level evidence for the treatment of elderly diabetes with traditional Chinese medicine.
Collapse
Affiliation(s)
- Qiqi Zhang
- Institute of Metabolic Diseases, Guang’anmen Hospital, Chinese Academy of Chinese Medical Sciences, Beijing, China
| | - Shiwan Hu
- Institute of Metabolic Diseases, Guang’anmen Hospital, Chinese Academy of Chinese Medical Sciences, Beijing, China
- Graduate School, Beijing University of Chinese Medicine, Beijing, China
| | - Zishan Jin
- Institute of Metabolic Diseases, Guang’anmen Hospital, Chinese Academy of Chinese Medical Sciences, Beijing, China
- Graduate School, Beijing University of Chinese Medicine, Beijing, China
| | - Sicheng Wang
- Institute of Metabolic Diseases, Guang’anmen Hospital, Chinese Academy of Chinese Medical Sciences, Beijing, China
| | - Boxun Zhang
- Department of Endocrinology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Linhua Zhao
- Institute of Metabolic Diseases, Guang’anmen Hospital, Chinese Academy of Chinese Medical Sciences, Beijing, China
| |
Collapse
|