1
|
He L, Zhang Y, Li J, Chen D, Yue S, Liu Y, Guo Y, Wang Y, Xiu M, He J. Dunhuang Dabupi Decoction and its active components alleviate ulcerative colitis by activating glutathione metabolism and inhibiting JAK-STAT pathway in Drosophila and mice. JOURNAL OF ETHNOPHARMACOLOGY 2025; 346:119717. [PMID: 40164365 DOI: 10.1016/j.jep.2025.119717] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2025] [Revised: 03/22/2025] [Accepted: 03/28/2025] [Indexed: 04/02/2025]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Dabupi Decoction (DBPD) originates from the ancient Dunhuang medical literature "Fu Xing Jue Visceral to Drug law legend" for more than 1000 years, which has been extensively employed to treat various diseases related to the spleen and stomach. However, limited studies focus on the mechanism of DBPD against ulcerative colitis (UC). AIM OF THE STUDY The beneficial effect and mechanism of DBPD against UC were detected by adopting both Drosophila melanogaster and C57BL/6J mouse models. METHODS The protective effect of DBPD against DSS-induced intestinal damage in flies was investigated by utilizing survival rate, locomotion, excretion, smurf, intestinal length, intestinal acid-base homeostasis, and Tepan blue assay. In mice, HE staining and ELISA kit were employed to assess serum histopathological damage and inflammatory factor levels. Subsequently, the molecular mechanism of DBPD was subsequently detected via DHE staining, immunofluorescence, transmission electron microscopy (TEM), real-time PCR, and transcriptomic sequencing. Additionally, liquid chromatography-mass spectrometry (LC-MS) and phenotype experiments in UC flies were utilized to identify the bioactive components of DBPD against UC. RESULTS Oral administration of DBPD remarkably alleviated DSS-induced body damage in flies by improving survival rate, locomotion, and excretion. It also remarkably rescued intestinal morphological damage, repaired acid-base homeostatic imbalance, inhibited intestinal epithelial cells (IECs) death and excessive proliferation of intestinal stem cells (ISCs), and improved ultrastructural damage of IECs in flies treated with DSS. Consistently, DBPD attenuated colitis symptoms, alleviated intestinal histopathological damage, and restored the expression of inflammatory factors in DSS-induced UC mice. As suggested by an integration of transcriptome data with molecular biology experiments, DBPD not only dramatically alleviated oxidative damage by activating the glutathione metabolic pathway, but also lowered inflammatory reaction by inhibiting the JAK-STAT pathway. Additionally, four compounds of DBPD, rhein acid, isoquercitrin, curcumin, and zeaxanthin were identified to alleviate the DSS-induced intestinal injury. CONCLUSION DBPD demonstrate immense potential for intestinal injury predominantly by activating the glutathione metabolic pathway to alleviate oxidative damage, and inhibiting the JAK-STAT pathway to mitigate inflammatory response. Rhein acid, isoquercitrin, curcumin, and zeaxanthin were the bioactive compounds of DBPD against UC.
Collapse
Affiliation(s)
- Li He
- College of Public Health, Gansu University of Chinese Medicine, Lanzhou, 730000, China.
| | - Yongxuan Zhang
- College of Public Health, Gansu University of Chinese Medicine, Lanzhou, 730000, China.
| | - Jiangnan Li
- College of Basic Medicine, Gansu University of Chinese Medicine, Lanzhou, 730000, China.
| | - Dandan Chen
- College of Public Health, Gansu University of Chinese Medicine, Lanzhou, 730000, China.
| | - Shiqi Yue
- College of Public Health, Gansu University of Chinese Medicine, Lanzhou, 730000, China.
| | - Yongqi Liu
- Provincial-Level Key Laboratory for Molecular Medicine of Major Diseases and The Prevention and Treatment with Traditional Chinese Medicine Research in Gansu Colleges and University, Gansu University of Chinese Medicine, Lanzhou, 730000, China; Key Laboratory of Dunhuang Medicine, Ministry of Education, Lanzhou, 730000, China.
| | - Yaqiong Guo
- Second Provincial People's Hospital of Gansu, Lanzhou, 730000, China.
| | - Yan Wang
- College of Public Health, Gansu University of Chinese Medicine, Lanzhou, 730000, China.
| | - Minghui Xiu
- College of Public Health, Gansu University of Chinese Medicine, Lanzhou, 730000, China; Key Laboratory of Dunhuang Medicine, Ministry of Education, Lanzhou, 730000, China.
| | - Jianzheng He
- Provincial-Level Key Laboratory for Molecular Medicine of Major Diseases and The Prevention and Treatment with Traditional Chinese Medicine Research in Gansu Colleges and University, Gansu University of Chinese Medicine, Lanzhou, 730000, China; Key Laboratory of Dunhuang Medicine, Ministry of Education, Lanzhou, 730000, China; Research and Experimental Center, Gansu University of Chinese Medicine, Lanzhou, 730000, China.
| |
Collapse
|
2
|
Li Q, Wang L, Tan L, Tao X, Zhang B, Pei J, Li Q. Quality Control of Shenqi Tongmai Oral Liquid Based on Quantitative Analysis of Multicomponents by Single Marker, Molecular Docking, and Multivariate Statistics. PHYTOCHEMICAL ANALYSIS : PCA 2025. [PMID: 39970946 DOI: 10.1002/pca.3520] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2024] [Revised: 01/17/2025] [Accepted: 02/12/2025] [Indexed: 02/21/2025]
Abstract
INTRODUCTION Shenqi Tongmai oral liquid (SQTM) is famous for its remarkable effect in the treatment of cardiovascular diseases. However, the SQTM quality evaluation system has not been established. OBJECTIVE The objective of this study is to establish a method for the determination of nine components of SQTM and to screen quality control indicators to comprehensively evaluate the quality of SQTM. METHODS The fingerprints of SQTM were established, and the contents of nine components in 17 batches of SQTM were determined based on quantitative analysis of multicomponents by single marker (QAMS). The antioxidant activity of samples was determined by the DPPH method and hydroxyl method, and the correlation between the content of nine components and antioxidant activity was analyzed by gray relational analysis (GRA), bivariate correlation analysis (BCA), and partial least squares regression (PLSR). The antioxidant activity of the monomers was confirmed through molecular docking techniques and in vitro experiments. RESULTS There was no significant difference in the content between the QAMS method and the external standard method (p > 0.05). The findings from multivariate statistics, molecular docking, and in vitro validation indicated that rosmarinic acid, luteolin, and protocatechualdehyde exhibited significant antioxidant activities, which were important pharmacodynamic components that exerted antioxidant effects and could serve as quality markers (Q-Markers). CONCLUSION The study elucidated the Q-Markers of SQTM and provided a relatively comprehensive approach for the assay of SQTM, which is a promising advance in the quality control of SQTM.
Collapse
Affiliation(s)
- Qian Li
- Department of Pharmacy, Liuzhou Hospital of Traditional Chinese Medicine, Liuzhou, China
- Graduate School of Guangxi University of Traditional Chinese Medicine, Nanning, China
| | - Li Wang
- Department of Pharmacy, Liuzhou Hospital of Traditional Chinese Medicine, Liuzhou, China
- Graduate School of Guangxi University of Traditional Chinese Medicine, Nanning, China
| | - Liuping Tan
- Department of Pharmacy, Liuzhou Hospital of Traditional Chinese Medicine, Liuzhou, China
| | - Xiaojing Tao
- Department of Pharmacy, Liuzhou Hospital of Traditional Chinese Medicine, Liuzhou, China
| | - Bei Zhang
- Department of Pharmacy, Liuzhou Hospital of Traditional Chinese Medicine, Liuzhou, China
| | - Jingnan Pei
- Department of Pharmacy, Liuzhou Hospital of Traditional Chinese Medicine, Liuzhou, China
- Graduate School of Guangxi University of Traditional Chinese Medicine, Nanning, China
| | - Qiuping Li
- Department of Pharmacy, Liuzhou Hospital of Traditional Chinese Medicine, Liuzhou, China
| |
Collapse
|
3
|
Luo JF, Yu Y, Liu JX. Mechanism of Asperosaponin VI Related to EGFR/MMP9/AKT/PI3K Pathway in Treatment of Rheumtoid Arthritis. Chin J Integr Med 2025; 31:131-141. [PMID: 39499411 DOI: 10.1007/s11655-024-3767-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/10/2024] [Indexed: 11/07/2024]
Abstract
OBJECTIVE To explore the mechanism of action of asperosaponin VI (AVI) in the treatment of rheumatoid arthritis (RA) and validate it in ex vivo experiments using network pharmacology and molecular docking methods. METHODS The predicted targets of AVI were obtained from PharmMaper, UniProt and SwissTarget Prediction platforms, the disease targets were collected from Online Mendelian Inheritance in Man, Therapeutic Target Database and GeneCards databases, the intersection targets of AVI and RA were obtained from Venny 2.1.0, and the protein-protein interaction (PPI) network was obtained from STRING database, which was analyzed by Cytoscape software and screened to obtain the core targets. Cytoscape software was used to analyze PPI network and screen the core targets. Based on the Database for Annotation, Visualization and Integrated Discovery database, Gene Ontology functional and Kyoto Encyclopedia of Genes and Genomes pathway enrichment analysis were performed, and Cytoscape software was used to construct the "Disease-Pathway-Target-Drug" network, which was finally verified by molecular docking and animal experiments. RESULTS Network pharmacological studies showed that AVI was able to modulate 289 targets, with 102 targets for the potential treatment of RA, with the core pathway being the AKT/PI3K signaling pathway, and the core targets being the epidermal growth factor receptor (EGFR) and matrix metalloproteinase 9 (MMP9). Molecular docking results showed that AVI could produce strong binding with both of the 2 core targets. In vitro cellular experiments showed that AVI reduced nitric oxide, prostaglandin E2, tumor necrosis factor-alpha (TNF-α), interleukin-6 (IL-6), and IL-1 β levels (P<0.05) and inhibited cyclooxygenase-2, nitric oxide synthase, EGFR, MMP9, phosphorylated phosphoinositide 3-kinase (p-PI3K), and phosphorylated serine-threonine kinase (p-AKT) proteins (P<0.05). The results of in vivo studies showed that AVI improved RA score and foot swelling thickness and decreased TNF-α, IL-6, p-PI3K and p-AKT levels in RA rats (P<0.05). CONCLUSION AVI exerts anti-inflammatory and anti-RA effects which might be related to the EGFR/MMP9/AKT/PI3K pathway.
Collapse
Affiliation(s)
- Jin-Fang Luo
- School of Basic Medicine, Guizhou University of Traditional Chinese Medicine, Guiyang, 550025, China
| | - Yang Yu
- School of Basic Medicine, Guizhou University of Traditional Chinese Medicine, Guiyang, 550025, China
| | - Jian-Xin Liu
- Sino-Pakistan Center on Traditional Chinese Medicine, China-Pakistan International Science and Technology Innovation Cooperation Base for Ethnic Medicine Development in Hunan Province, School of Pharmaceutical Sciences, Hunan University of Medicine, Huaihua City, Hunan Province, 418000, China.
| |
Collapse
|
4
|
Guo S, Keremu A, Hu M, He F, Maiwulanjiang M, Aisa HA, Xin X. Evaluation of the effect of Ela tablets in the treatment of diabetic nephropathy based on rat experiments and screening strategy for quality markers of Ela tablets targeting aldose reductase. J Chromatogr B Analyt Technol Biomed Life Sci 2025; 1252:124450. [PMID: 39793182 DOI: 10.1016/j.jchromb.2025.124450] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2024] [Revised: 12/25/2024] [Accepted: 01/04/2025] [Indexed: 01/13/2025]
Abstract
Ela tablets (ALP) is a traditional Uyghur medicinal formulation comprising 9 herbs. Clinical applications have demonstrated its potential in treating diabetic nephropathy (DN). However, its specific medicinal effects and pharmacodynamic components have not been elucidated. This research aims to investigate the efficacy of ALP in treating DN and to explore the quality markers (Q-markers) for its exertion of efficacy. Using the UHPLC-Q-Orbitrap HRMS technique, a total of 60 compounds were identified within ALP. Animal experiments were conducted to investigate the effect of ALP intervention at doses of 80, 160, and 320 mg/kg in Sprague-Dawley rats. Then, fingerprints of ten batches of ALP extracts were established using UPLC-DAD. Spectrum-effect relationship analysis of these fingerprints and aldose reductase (AR) activity was conducted by chemometric analysis methods. The results were further validated by molecular docking and cellular experiments. The animal experiments indicated that ALP had a therapeutic effect on DN. Specifically, ALP reduced biochemical indexes such as serum creatinine (SCr), 24-hour urinary total protein (24 h UTP), uric acid (UA), blood urea nitrogen (BUN), triglycerides (TG), and total cholesterol (TC). ALP stabilized body weight and fasting blood glucose, enhanced the antioxidant capacity of kidneys, and improved renal pathology. Comprehensive analysis indicated that crocin-I and gallic acid may be used as Q-markers for ALP. In summary, ALP has been identified as a treatment for DN, and gallic acid and crocin-I can be used as its Q-markers.
Collapse
Affiliation(s)
- Shunan Guo
- The State Key Laboratory Basis of Xinjiang Indigenous Medicinal Plants Resource Utilization, Xinjiang Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Urumqi 830011, China; University of Chinese Academy of Sciences, Beijing 100039, China
| | - Aizaiti Keremu
- The State Key Laboratory Basis of Xinjiang Indigenous Medicinal Plants Resource Utilization, Xinjiang Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Urumqi 830011, China; University of Chinese Academy of Sciences, Beijing 100039, China
| | - Miao Hu
- The State Key Laboratory Basis of Xinjiang Indigenous Medicinal Plants Resource Utilization, Xinjiang Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Urumqi 830011, China; University of Chinese Academy of Sciences, Beijing 100039, China
| | - Fei He
- The State Key Laboratory Basis of Xinjiang Indigenous Medicinal Plants Resource Utilization, Xinjiang Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Urumqi 830011, China
| | - Maitinuer Maiwulanjiang
- The State Key Laboratory Basis of Xinjiang Indigenous Medicinal Plants Resource Utilization, Xinjiang Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Urumqi 830011, China
| | - Haji Akber Aisa
- The State Key Laboratory Basis of Xinjiang Indigenous Medicinal Plants Resource Utilization, Xinjiang Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Urumqi 830011, China.
| | - Xuelei Xin
- The State Key Laboratory Basis of Xinjiang Indigenous Medicinal Plants Resource Utilization, Xinjiang Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Urumqi 830011, China.
| |
Collapse
|
5
|
Liu X, Gong Q, Deng X, Li L, Luo R, Li X, Guo D, Deng F. UHPLC-Q/Orbitrap HRMS combined with spectrum-effect relationship and network pharmacology to discovery the gastrointestinal motility-promoting material basis in Citri Sarcodactylis Fructus. JOURNAL OF ETHNOPHARMACOLOGY 2025; 337:118926. [PMID: 39393559 DOI: 10.1016/j.jep.2024.118926] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Revised: 10/03/2024] [Accepted: 10/08/2024] [Indexed: 10/13/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE The prevalence of gastrointestinal motility disorders (GMD) is increasing and is characterized by long-term recurrence. Citri Sarcodactylis Fructus (CSF), as a traditional Chinese medicine (TCM) known in "regulating qi and harmonizing the stomach", has therapeutic effects on GMD. However, the material basis of its efficacy is not clear. AIM OF THE STUDY The aim of this study was to evaluate the gastrointestinal motility-promoting activity of CSF extracts and to screen their active ingredients and to perform a preliminary validation. METHODS The chemical composition spectrum of different extracts of CSF were established by ultra high-performance liquid chromatography coupled with quadrupole orbitrap high-resolution mass spectrometry (UHPLC-Q/Orbitrap HRMS). The gastrointestinal motility-promoting activities of CSF were investigated by determining the intestinal propulsion rate, gastric emptying rate, acetylcholinesterase activity, and motilin content in L-arginine-induced GMD mice. Spectrum-effect relationship and network pharmacology analysis were used for the screening of potential active ingredients. A zebrafish gastrointestinal motility model traced with Nile Red was established to validate the active ingredients. Molecular docking prediction was used to explore the mechanism of action of the active ingredient. Finally, Western blotting and TUNEL staining were performed to validate the molecular docking predictions. RESULTS In total, 42 shared components were identified. The main active fraction of CSF to promote gastrointestinal motility was 70% ethanol elution fraction. Eleven potential active ingredients were screened by grey correlation analysis, orthogonal partial least squares analysis, and "active ingredient-target" network. Six compounds were confirmed as the pharmacodynamic substances of CSF by zebrafish gastrointestinal motility model, namely, quercetin, kaempferol, isorhamnetin, diosmetin, hesperetin, and 5,7,3'-trihydroxy-6,4',5'-trimethoxyflavone. Molecular docking predictions and Western blotting assays indicated that CSF may act on AKT and MMP9 targets to exert gastrointestinal motility-promoting activity. CONCLUSION This study provided a foundation for elucidating the gastrointestinal motility-promoting activity of CSF and its material basis by integrating spectrum-effect relationship and network pharmacology. It also provided a theoretical basis for quality control of CSF and a new idea for the discovery and validation of pharmacodynamic substances in TCM.
Collapse
Affiliation(s)
- Xin Liu
- State Key Laboratory of Southwestern Chinese Medicine Resources, The Ministry of Education Key Laboratory of Standardization of Chinese Herbal Medicine, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Qianqian Gong
- State Key Laboratory of Southwestern Chinese Medicine Resources, The Ministry of Education Key Laboratory of Standardization of Chinese Herbal Medicine, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Xianglan Deng
- State Key Laboratory of Southwestern Chinese Medicine Resources, The Ministry of Education Key Laboratory of Standardization of Chinese Herbal Medicine, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Longxuan Li
- State Key Laboratory of Southwestern Chinese Medicine Resources, The Ministry of Education Key Laboratory of Standardization of Chinese Herbal Medicine, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Ruiyi Luo
- State Key Laboratory of Southwestern Chinese Medicine Resources, The Ministry of Education Key Laboratory of Standardization of Chinese Herbal Medicine, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Xuemin Li
- State Key Laboratory of Southwestern Chinese Medicine Resources, The Ministry of Education Key Laboratory of Standardization of Chinese Herbal Medicine, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Dale Guo
- State Key Laboratory of Southwestern Chinese Medicine Resources, The Ministry of Education Key Laboratory of Standardization of Chinese Herbal Medicine, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China.
| | - Fang Deng
- State Key Laboratory of Southwestern Chinese Medicine Resources, The Ministry of Education Key Laboratory of Standardization of Chinese Herbal Medicine, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China.
| |
Collapse
|
6
|
Tang X, He M, Ren Y, Ji M, Yan X, Zeng W, Lv Y, Li Y, He Y. Traditional Chinese Medicine formulas-based interventions on colorectal carcinoma prevention: The efficacies, mechanisms and advantages. JOURNAL OF ETHNOPHARMACOLOGY 2025; 337:119008. [PMID: 39471879 DOI: 10.1016/j.jep.2024.119008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 10/08/2024] [Accepted: 10/26/2024] [Indexed: 11/01/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE The Traditional Chinese Medicine Formulas (TCMFs) represent a distinctive medical approach to disease treatment and have been utilized in clinical practice for treating intestinal diseases for thousands of years. Recently, TCMFs have received increasing attention due to their advantages of high efficiency, safety, as well as low toxicity, providing promising strategies for preventing colorectal carcinoma (CRC). Nonetheless, the potential mechanism of TCMFs in preventing CRC has not been fully elucidated. AIM OF THE STUDY The literature from the past three years was reviewed to highlight the therapeutic effects and underlying mechanisms of TCMFs in preventing CRC. MATERIALS AND METHODS The keywords have been searched, including "traditional Chinese medicine formulas," "herb pairs," "Herbal plant-derived nanoparticles," et al. in "PubMed" and "China National Knowledge Infrastructure (CNKI)," and screened published articles related to the treatment of intestinal precancerous lesions. This review primarily examined the effectiveness and mechanisms of TCMFs in treating intestinal precancerous lesions, highlighting their significant potential in preventing CRC. RESULTS Gegen Qinlian decoction, Shaoyao decoction, Wu Wei Wan, etc., exert substantial therapeutic effects on intestinal precancerous lesions. These therapeutic effects are demonstrated by a reduction in disease activity index scores, suppression of intestinal inflammation, and preservation of body weight and intestinal function, all of which contribute to the effective prevention of CRC. Besides, the classic Chinese herbal pairs and the extracellular vesicle-like nanoparticles of herbaceous plants have demonstrated superior efficacy in the treatment of intestinal precancerous lesions. Mechanistically, protecting the epithelial barrier, regulating gut microbiota as well as related metabolism, modulating macrophage polarization, and maintaining immune balance contribute to the role of TCMFs in CRC prevention. CONCLUSIONS This review demonstrates the great potential and mechanism of TCMFs in CRC prevention and provides a scientific basis for their utilization in CRC prevention.
Collapse
Affiliation(s)
- Xiaojuan Tang
- School of biomedical sciences, Hunan University, Changsha, 410012, Hunan, China; Hunan Provincial Hospital of Integrated Traditional Chinese and Western Medicine (The Affiliated Hospital of Hunan Academy of Traditional Chinese Medicine), Changsha, 410006, Hunan, China; Hunan Academy of Chinese Medicine, Changsha, 410006, Hunan, China.
| | - Min He
- Hunan University of Chinese Medicine, Changsha, 410208, Hunan, China
| | - Yuan Ren
- Hunan University of Chinese Medicine, Changsha, 410208, Hunan, China
| | - Meng Ji
- Hunan University of Chinese Medicine, Changsha, 410208, Hunan, China
| | - Xiaoqi Yan
- Hunan Provincial Hospital of Integrated Traditional Chinese and Western Medicine (The Affiliated Hospital of Hunan Academy of Traditional Chinese Medicine), Changsha, 410006, Hunan, China
| | - Wen Zeng
- Hunan University of Chinese Medicine, Changsha, 410208, Hunan, China
| | - Yuan Lv
- Hunan Provincial Hospital of Integrated Traditional Chinese and Western Medicine (The Affiliated Hospital of Hunan Academy of Traditional Chinese Medicine), Changsha, 410006, Hunan, China; Hunan Academy of Chinese Medicine, Changsha, 410006, Hunan, China
| | - Yongmin Li
- Hunan Provincial Hospital of Integrated Traditional Chinese and Western Medicine (The Affiliated Hospital of Hunan Academy of Traditional Chinese Medicine), Changsha, 410006, Hunan, China; Hunan Academy of Chinese Medicine, Changsha, 410006, Hunan, China
| | - Yongheng He
- Hunan Provincial Hospital of Integrated Traditional Chinese and Western Medicine (The Affiliated Hospital of Hunan Academy of Traditional Chinese Medicine), Changsha, 410006, Hunan, China; Hunan Academy of Chinese Medicine, Changsha, 410006, Hunan, China; Hunan University of Chinese Medicine, Changsha, 410208, Hunan, China.
| |
Collapse
|
7
|
Xu B, Chen S, Liu J, Wu D, Sun W, Liu S, Hu Y, Wang H, Wang J, Yang B, Li W, Ma S. Anti-LSSDS pharmacological components identification of YuHuangLian based on the combination of spectrum-effect analysis and network pharmacology as well as molecular docking. Biomed Chromatogr 2024; 38:e5973. [PMID: 39318149 DOI: 10.1002/bmc.5973] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Revised: 06/16/2024] [Accepted: 07/15/2024] [Indexed: 09/26/2024]
Abstract
This research aimed to investigate the pharmacological components for liver stagnation and spleen deficiency syndrome (LSSDS) of Evodia rutaecarpa (also called Yu HuangLian [YHL]) by exploring the spectrum-effect relationship between fingerprints and pharmacological actions. The fingerprints of 17 batches of YHL with different preparation conditions according to Box-Behnken Design were generated and analyzed to identify the common peaks by HPLC and FT-IR. Vasoactive intestinal peptide (vip), substance P, and 5-HT levels in colon sample were measured by ELISA. Gray degree correlation and orthogonal partial least squares were employed to explore the correlation degree between components and pharmacologic activity. The presumed pharmacological components were further confirmed by network pharmacology, molecular docking, and qRT-PCR. The columbamine, jatrorrhizine, coptisine, berberine, rutecarpine, and evodiamine of the 14 common peaks in HPLC fingerprints were significantly correlated with the pharmacological indexes. Similarly, there was a strong correlation with -OH, δNC-H, and νC-O-C of the 10 common peaks in FT-IR fingerprints. PTGS2 and CHRM3 were the main targets intervening LSSDS, and the presumed pharmacological components could markedly increase the expression of CHRM3 and obviously reduce the expression of PTGS2 compared with the model group.
Collapse
Affiliation(s)
- Beilei Xu
- School of Pharmacy, Harbin University of Commerce, Harbin, China
- Engineering Research Center of Natural Anti-cancer Drugs, Ministry of Education, Harbin, China
- Heilongjiang Key Laboratory of Preventive and Therapeutic Drug Research of Senile Diseases, Harbin, China
- Engineering Research Center of Chinese Medicine Production and New Drug Development, Beijing University of TCM, Beijing, China
| | - Shengnan Chen
- School of Pharmacy, Harbin University of Commerce, Harbin, China
| | - Jingjing Liu
- National Institutes for Food and Drug Control, Beijing, China
| | - Di Wu
- School of Pharmacy, Harbin University of Commerce, Harbin, China
| | - Wenbin Sun
- School of Pharmacy, Harbin University of Commerce, Harbin, China
| | - Shusen Liu
- School of Pharmacy, Harbin University of Commerce, Harbin, China
| | - Yang Hu
- School of Pharmacy, Harbin University of Commerce, Harbin, China
- Engineering Research Center of Natural Anti-cancer Drugs, Ministry of Education, Harbin, China
- Heilongjiang Key Laboratory of Preventive and Therapeutic Drug Research of Senile Diseases, Harbin, China
| | - Hao Wang
- School of Pharmacy, Harbin University of Commerce, Harbin, China
- Engineering Research Center of Natural Anti-cancer Drugs, Ministry of Education, Harbin, China
- Heilongjiang Key Laboratory of Preventive and Therapeutic Drug Research of Senile Diseases, Harbin, China
| | - Jinhong Wang
- School of Pharmacy, Harbin University of Commerce, Harbin, China
- Engineering Research Center of Natural Anti-cancer Drugs, Ministry of Education, Harbin, China
- Heilongjiang Key Laboratory of Preventive and Therapeutic Drug Research of Senile Diseases, Harbin, China
| | - Bo Yang
- School of Pharmacy, Harbin University of Commerce, Harbin, China
- Engineering Research Center of Natural Anti-cancer Drugs, Ministry of Education, Harbin, China
- Heilongjiang Key Laboratory of Preventive and Therapeutic Drug Research of Senile Diseases, Harbin, China
| | - Wenlan Li
- School of Pharmacy, Harbin University of Commerce, Harbin, China
- Engineering Research Center of Natural Anti-cancer Drugs, Ministry of Education, Harbin, China
- Heilongjiang Key Laboratory of Preventive and Therapeutic Drug Research of Senile Diseases, Harbin, China
| | - Shuangcheng Ma
- National Institutes for Food and Drug Control, Beijing, China
| |
Collapse
|
8
|
Guan Y, Yang B, Zeng J, Mo Y, Wu X, Yang Y, Feng L, Jia X. A novel strategy for the multi-components division and discovering pharmacodynamic material basis of Chinese herbal compounds: A case study of Xian-Ling-Gu-Bao capsule. J Pharm Biomed Anal 2024; 243:116112. [PMID: 38513502 DOI: 10.1016/j.jpba.2024.116112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 03/14/2024] [Accepted: 03/14/2024] [Indexed: 03/23/2024]
Abstract
The therapeutic effects of Chinese herbal compounds are often achieved through the synergistic interactions of multiple ingredients. However, current research predominantly focuses on individual ingredients, neglecting the holistic nature of Chinese herbal compounds. This study proposes a novel strategy to elucidate the pharmacodynamic material basis of Chinese herbal compounds based on their multi-components (components named 'ZuFen' in China, it refers to multiple ingredients with similar chemical structures) composition, using the Xian-Ling-Gu-Bao (XLGB) capsule as a case study. Cheminformatics-based components partitioning was conducted after sourcing ingredients from various databases, resulting in a total of 856 ingredients which were categorized into nine major components. Furthermore, the pharmacodynamic ingredients of XLGB capsule were determined by analyzing the ingredients that were absorbed into the bloodstream. Through a combination of these ingredients and screening for absorption, the Dipsacus asper saponin components, Psoralea corylifolia coumarin components, and Epimedium flavonoid polyglycosides components were isolated. The anti-osteoporosis efficacy of these components were evaluated in zebrafish, demonstrating their capability to reverse mineralization reduction caused by prednisolone. These findings further support the idea that these components serve as the material basis for the pharmacological efficacy of XLGB capsule. This study provides a novel systematic strategy for discovering the pharmacodynamic material basis of the efficacy of Chinese herbal compounds based on a 'multi-components' perspective.
Collapse
Affiliation(s)
- Yuxin Guan
- School of Traditional Chinese Pharmacy, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 211198, PR China
| | - Bing Yang
- School of Traditional Chinese Pharmacy, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 211198, PR China
| | - Jingqi Zeng
- School of Traditional Chinese Pharmacy, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 211198, PR China
| | - Yulin Mo
- School of Traditional Chinese Pharmacy, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 211198, PR China
| | - Xiaochun Wu
- School of Traditional Chinese Pharmacy, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 211198, PR China
| | - Yanjun Yang
- School of Traditional Chinese Pharmacy, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 211198, PR China
| | - Liang Feng
- School of Traditional Chinese Pharmacy, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 211198, PR China.
| | - Xiaobin Jia
- School of Traditional Chinese Pharmacy, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 211198, PR China.
| |
Collapse
|
9
|
Wang T, Liu X, Zhang W, Wang J, Wang T, Yue W, Ming L, Cheng J, Sun J. Traditional Chinese medicine treats ulcerative colitis by regulating gut microbiota, signaling pathway and cytokine: Future novel method option for pharmacotherapy. Heliyon 2024; 10:e27530. [PMID: 38501018 PMCID: PMC10945194 DOI: 10.1016/j.heliyon.2024.e27530] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 02/28/2024] [Accepted: 03/01/2024] [Indexed: 03/20/2024] Open
Abstract
Background Ulcerative colitis (UC) is a chronic non-specific inflammatory disease with intestinal tract as the main site. The pathogenic of UC has not yet been clarified, and multiple mechanisms can lead to the pathogenesis of UC. Traditional Chinese medicine (TCM) offers an opportunity for UC treatment. TCM has become the preferred treatment for UC with characteristics of multiple targets, multiple pathways and high safety. This review attempted to summarize the characteristics of TCM (compound prescriptions, single Chinese herbs, and active ingredients) for UC treatment and discussed their pathogenesis based on analyzing the UC-related gut microbiota, signaling pathway and cytokine. In order to provide more systematic and diverse reference for TCM in the prevention and treatment of UC, and provide theoretical reference for clinical treatment of UC. Materials and methods The information was acquired from different databases, including Web of Science, PubMed, CNKI, Wanfang, and VIP databases. We then focused on the recent research progress in UC treatment by TCM. Finally, the deficiencies and future perspectives are proposed. Results Modern pharmacological studies have shown that the compound prescriptions (strengthening spleen, clearing heat and removing dampness, clearing heat and removing toxin), single Chinese herbs (replenishing Qi, clearing heat, tonifying blood, etc.), and active ingredients (alkaloids, polysaccharides, flavonoids, polyphenols, terpenes, etc.) have an efficiency in UC treatment by regulating gut microbiota, signaling pathway and cytokine. Conclusions TCM can achieve its purpose of UC prevention and treatment by acting in multiple ways, and TCM deserves further research and development in this field.
Collapse
Affiliation(s)
- Tiancheng Wang
- College of Integrated Traditional and Western Medicine, Anhui University of Chinese Medicine, Hefei, 230012, China
| | - Xinyue Liu
- College of Traditional Chinese Medicine, Anhui University of Chinese Medicine, Hefei, 230012, China
| | - Weijie Zhang
- College of Traditional Chinese Medicine, Anhui University of Chinese Medicine, Hefei, 230012, China
| | - Jing Wang
- Department of Accounting, Hongshan College, Nanjing University of Finance and Economics, Nanjing, 210003, China
| | - Tingting Wang
- Yancheng Traditional Chinese Medicine Hospital Affiliated to Nanjing University of Chinese Medicine, Yancheng, 224000, China
| | - Wei Yue
- Yancheng Traditional Chinese Medicine Hospital Affiliated to Nanjing University of Chinese Medicine, Yancheng, 224000, China
| | - Lan Ming
- Yancheng Traditional Chinese Medicine Hospital Affiliated to Nanjing University of Chinese Medicine, Yancheng, 224000, China
| | - Jun Cheng
- Department of Infectious Diseases, First Affiliated Hospital of Anhui Medical University, Hefei, 230022, China
| | - Juan Sun
- College of Traditional Chinese Medicine, Anhui University of Chinese Medicine, Hefei, 230012, China
| |
Collapse
|