1
|
Zhang R, Xing L, Wang X, Shan Z, Wang T, Zhang Y, Wang W, Wang Y, Wang H. Inhibition of pancreatic lipase and cholesterol by hawthorn extract: A study of binding mechanisms and inhibitor screening. Int J Biol Macromol 2025; 311:143680. [PMID: 40316100 DOI: 10.1016/j.ijbiomac.2025.143680] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2025] [Revised: 03/26/2025] [Accepted: 04/28/2025] [Indexed: 05/04/2025]
Abstract
Inhibiting the activity of pancreatic lipase and reducing intestinal cholesterol absorption are potential strategies to combat obesity. This study investigated the mechanisms by which hawthorn (Crataegus pinnatifida) extract affects pancreatic lipase (PL) and disrupts cholesterol micelle formation. Enriched with bioactive compounds, hawthorn extract (HE) inhibited PL activity through reversible mixed inhibition, with a half-maximal inhibitory concentration (IC50) of 2.92 mg/mL. Infrared spectroscopy, circular dichroism and fluorescence quenching experiments demonstrated that HE binding to PL induces conformational changes in both tertiary and secondary structures. This interaction facilitated the transformation of β-turns to random coils and quenched the fluorescence of the protein through a static quenching mechanism. HPLC, immobilized enzymes and molecular docking studies collectively revealed that rutin, chlorogenic acid, and isoquercitrin in HE exhibited strong binding affinity with PL, serving as key components in inhibiting PL activity. Furthermore, HE increased the particle size of cholesterol micelles while decreasing their solubility, which makes it more difficult for lipases to function in the intestine. Overall, our study suggests that HE may serve as an effective pancreatic lipase inhibitor, presenting potential applications in the development of functional foods for obesity reduction and lipid-lowering.
Collapse
Affiliation(s)
- Ran Zhang
- State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science and Technology (TUST), Tianjin 300457, China
| | - Lulu Xing
- State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science and Technology (TUST), Tianjin 300457, China
| | - Xin Wang
- Tianjin Guanfang Fruit Juice Co. Ltd., Tianjin 301726, China
| | - Zuoyu Shan
- Tianjin Guanfang Fruit Juice Co. Ltd., Tianjin 301726, China
| | - Tianxin Wang
- State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science and Technology (TUST), Tianjin 300457, China
| | - Ye Zhang
- State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science and Technology (TUST), Tianjin 300457, China
| | - Wenjie Wang
- State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science and Technology (TUST), Tianjin 300457, China.
| | - Yuan Wang
- Department of Nutrition and Health, China Agricultural University (CAU), Beijing 100193, China.
| | - Hao Wang
- State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science and Technology (TUST), Tianjin 300457, China.
| |
Collapse
|
2
|
Li T, Chen J, Xu Y, Ji W, Yang S, Wang X. Hawthorn Pectin Alleviates DSS-Induced Colitis in Mice by Ameliorating Intestinal Barrier Function and Modulating Gut Microbiota. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2025; 73:5872-5885. [PMID: 40011195 DOI: 10.1021/acs.jafc.4c07965] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/28/2025]
Abstract
Pectin, as a kind of soluble dietary fiber in hawthorns, exhibits a wide range of biological activities. Nevertheless, its role and mechanism in ulcerative colitis (UC) remain unclear. In this study, the effect of hawthorn pectin (HP) against dextran sulfate sodium (DSS)-induced UC in mice and its underlying mechanism were evaluated. HP dramatically alleviated the pathological symptoms related to colitis in mice, displaying an increase in body weight and colon length and inhibition in colon damage. Importantly, HP inhibited the serum levels of inflammation-related factors including tumor necrosis factor-α, IL-1β, and IL-6 as well as decreased the number of F4/80-positive macrophages in the colon. Moreover, the expression levels of ZO-1 and occludin proteins related to intestinal permeability were increased. A significant decrease in a dose-dependent manner at the gut bacterial genus level (such as Alistipes, Colidextribacter, and Blautia) was observed after HP treatment. HP improved the metabolic pathways of gut microbiota and increased the concentrations of short-chain fatty acids in cecal contents of UC mice. Intriguingly, fecal microbiota transplantation intervention with an HP-derived microbiome notably increased the length and relieved histopathological changes of colon in UC mice. Conclusively, our study provided valuable insights into the potential of HP as a prebiotic for maintaining intestinal health and confirmed that HP could ameliorate UC in a gut microbiota-dependent manner.
Collapse
Affiliation(s)
- Tao Li
- Shandong Engineering Research Center for Innovation and Application of General Technology for Separation of Natural Products, Shandong Analysis and Test Center, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250014, China
- Key Laboratory for Natural Active Pharmaceutical Constituents Research in Universities of Shandong Province, School of Pharmaceutical Sciences, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250014, China
| | - Junbo Chen
- Key Laboratory of Food Bioengineering (China National Light Industry), College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
| | - Yuncong Xu
- Key Laboratory of Food Bioengineering (China National Light Industry), College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
| | - Wenhua Ji
- Shandong Engineering Research Center for Innovation and Application of General Technology for Separation of Natural Products, Shandong Analysis and Test Center, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250014, China
- Key Laboratory for Natural Active Pharmaceutical Constituents Research in Universities of Shandong Province, School of Pharmaceutical Sciences, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250014, China
| | - Shaoqing Yang
- Key Laboratory of Food Bioengineering (China National Light Industry), College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
| | - Xiao Wang
- Shandong Engineering Research Center for Innovation and Application of General Technology for Separation of Natural Products, Shandong Analysis and Test Center, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250014, China
- Key Laboratory for Natural Active Pharmaceutical Constituents Research in Universities of Shandong Province, School of Pharmaceutical Sciences, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250014, China
| |
Collapse
|
3
|
Zhou C, Adeyanju AA, Nwonuma CO, Inyinbor AA, Alejolowo OO, Al-Hamayda A, Akinsemolu A, Onyeaka H, Olaniran AF. Physical field-assisted deep eutectic solvent processing: A green and water-saving extraction and separation technology. J Food Sci 2024; 89:8248-8275. [PMID: 39668112 DOI: 10.1111/1750-3841.17545] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2024] [Revised: 10/14/2024] [Accepted: 10/28/2024] [Indexed: 12/14/2024]
Abstract
Extraction of organic and bioactive compounds from plant materials with the traditional organic solvents aided by water or oil bath heating is not sustainable, because it consumes a lot of energy, time, water/oil, solvents, and results in lower yield. This review discusses deep eutectic solvent (DES) as a green solvent, physical field technology (PFT) as a water-saving and green technology, and how the coupling of PFT (ultrasound [US], microwave [MW], infrared [IR]) to DES will improve the yield and quality of protein, polysaccharides, polyphenols, pectin, and terpenoids extracted from plant materials. Ultrasonication increases DES extraction efficiency via cavitation dislodgement and pores creation. IR coupling to DES enhances the extraction yield of polyphenols and the antioxidant and antiradical activity. MW improves DES extraction yield, reduces energy consumption, operational cost, and compound degradation, and is inferred to be the greenest technology.
Collapse
Affiliation(s)
- Cunshan Zhou
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, China
| | - Adeyemi Ayotunde Adeyanju
- Centre for Innovative Food Research (CIFR), Department of Biotechnology and Food Technology, Faculty of Science, University of Johannesburg, Johannesburg, South Africa
| | - Charles Obiora Nwonuma
- Department of Biochemistry, College of Pure and Applied Sciences, Landmark University, Omu-Aran, Nigeria
| | - Adejumoke A Inyinbor
- Industrial Chemistry Programme, Physical Sciences Department, Landmark University, Omu-Aran, Nigeria
| | | | - Asmaa Al-Hamayda
- Chemical and Petroleum Engineering Department, College of Engineering, United Arab Emirates University, Al Ain, UAE
| | | | - Helen Onyeaka
- School of Chemical Engineering, University of Birmingham, Birmingham, UK
| | - Abiola F Olaniran
- Food Science and Nutrition Programme, Food Science and Microbiology Department, College of Pure and Applied Sciences, Landmark University, Omu-Aran, Nigeria
| |
Collapse
|
4
|
Li T, Ji W, Dong H, Wu Y, Guo L, Chen L, Wang X. A Comprehensive Review on the Isolation, Bioactivities, and Structure-Activity Relationship of Hawthorn Pectin and Its Derived Oligosaccharides. Foods 2024; 13:2750. [PMID: 39272515 PMCID: PMC11394867 DOI: 10.3390/foods13172750] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Revised: 08/27/2024] [Accepted: 08/27/2024] [Indexed: 09/15/2024] Open
Abstract
Hawthorn (Crataegus pinnatifida Bunge) has been highlighted as an excellent source of a variety of bioactive polymers, which has attracted increasing research interest. Pectin, as a kind of soluble dietary fiber in hawthorn, is mainly extracted by hot water extraction and ultrasonic or enzymatic hydrolysis and is then extensively used in food, pharmaceutical, and nutraceutical industries. Numerous studies have shown that hawthorn pectin and its derived oligosaccharides exhibit a wide range of biological activities, such as antioxidant activity, hypolipidemic and cholesterol-reducing effects, antimicrobial activity, and intestinal function modulatory activity. As discovered, the bioactivities of hawthorn pectin and its derived oligosaccharides were mainly contributed by structural features and chemical compositions and were highly associated with the extraction methods. Additionally, hawthorn pectin is a potential resource for the development of emulsifiers and gelling agents, food packaging films, novel foods, and traditional medicines. This review provides a comprehensive summary of current research for readers on the extraction techniques, functional characteristics, structure-activity relationship, and applications in order to provide ideas and references for the investigation and utilization of hawthorn pectin and its derived oligosaccharides. Further research and development efforts are imperative to fully explore and harness the potential of hawthorn pectin-derived oligosaccharides in the food and medicine fields.
Collapse
Affiliation(s)
- Tao Li
- Key Laboratory for Applied Technology of Sophisticated Analytical Instruments of Shandong Province, Shandong Analysis and Test Center, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250014, China
- Key Laboratory for Natural Active Pharmaceutical Constituents Research in Universities of Shandong Province, School of Pharmaceutical Sciences, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250014, China
| | - Wenhua Ji
- Key Laboratory for Applied Technology of Sophisticated Analytical Instruments of Shandong Province, Shandong Analysis and Test Center, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250014, China
- Key Laboratory for Natural Active Pharmaceutical Constituents Research in Universities of Shandong Province, School of Pharmaceutical Sciences, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250014, China
| | - Hongjing Dong
- Key Laboratory for Applied Technology of Sophisticated Analytical Instruments of Shandong Province, Shandong Analysis and Test Center, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250014, China
- Key Laboratory for Natural Active Pharmaceutical Constituents Research in Universities of Shandong Province, School of Pharmaceutical Sciences, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250014, China
| | - Yingqun Wu
- Guizhou Ecological Food Creation Engineering Technology Center, Guizhou Medical University, Guizhou 550025, China
| | - Lanping Guo
- Key Laboratory for Applied Technology of Sophisticated Analytical Instruments of Shandong Province, Shandong Analysis and Test Center, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250014, China
| | - Lei Chen
- College of Food Science and Technology, Guangdong Ocean University, Zhanjiang 524088, China
| | - Xiao Wang
- Key Laboratory for Applied Technology of Sophisticated Analytical Instruments of Shandong Province, Shandong Analysis and Test Center, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250014, China
- Key Laboratory for Natural Active Pharmaceutical Constituents Research in Universities of Shandong Province, School of Pharmaceutical Sciences, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250014, China
| |
Collapse
|
5
|
Jia X, Yu H, Du B, Shen Y, Gui L, Xu X, Li J. Incorporating Lycium barbarum residue in diet boosts survival, growth, and liver health in juvenile grass carp (Ctenopharyngodon idellus). FISH & SHELLFISH IMMUNOLOGY 2024; 149:109573. [PMID: 38636742 DOI: 10.1016/j.fsi.2024.109573] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Revised: 04/06/2024] [Accepted: 04/15/2024] [Indexed: 04/20/2024]
Abstract
This research elucidates the potential of Lycium barbarum residue (LBR), a by-product rich in bioactive substances, as a dietary supplement in aquaculture, especially for herbivorous fish like grass carp. In a detailed 120-day feeding trial, the impacts of varying LBR levels on juvenile grass carp were assessed, focusing on growth performance, survival rate, biochemical markers, and liver health. The study identified a 6% inclusion rate of LBR as optimal for enhancing survival and growth while mitigating hepatic lipid accumulation. Composition analysis of this diet revealed high concentrations of polysaccharides and flavonoids. Notably, the intake of LBR was found to enhance the antioxidant and immune-related enzymatic activities in the liver. Furthermore, it contributed to a reduction in hepatic fat deposition by decreasing the levels of triglycerides (TG) and total cholesterol (T-CHO) both in the liver and serum. Transcriptomic analysis of the liver highlighted LBR's substantial influence on lipid metabolism pathways, including the PPAR signaling pathway, primary bile acid biosynthesis, cholesterol metabolism, bile secretion, fat digestion and absorption, fatty acid degradation and fatty acid biosynthesis. Further, the expression level of genes pinpointed significant downregulation of fasn and dgat2, alongside upregulation of genes like pparda, cpt1b, cpt1ab and abca1b, in response to LBR supplementation. Overall, the findings present LBR as a promising enhancer of growth and survival in grass carp, with significant benefits in promoting fat metabolism and liver health, offering valuable insights for aquacultural nutrition strategies.
Collapse
Affiliation(s)
- Xuewen Jia
- Key Laboratory of Freshwater Aquatic Genetic Resources Ministry of Agriculture and Rural Affairs, Shanghai Ocean University, Shanghai, China; Shanghai Engineering Research Center of Aquaculture, Shanghai Ocean University, Shanghai, China
| | - Hongyan Yu
- Key Laboratory of Freshwater Aquatic Genetic Resources Ministry of Agriculture and Rural Affairs, Shanghai Ocean University, Shanghai, China; Shanghai Engineering Research Center of Aquaculture, Shanghai Ocean University, Shanghai, China
| | - Biao Du
- Key Laboratory of Freshwater Aquatic Genetic Resources Ministry of Agriculture and Rural Affairs, Shanghai Ocean University, Shanghai, China; Shanghai Engineering Research Center of Aquaculture, Shanghai Ocean University, Shanghai, China
| | - Yubang Shen
- Key Laboratory of Freshwater Aquatic Genetic Resources Ministry of Agriculture and Rural Affairs, Shanghai Ocean University, Shanghai, China; Shanghai Engineering Research Center of Aquaculture, Shanghai Ocean University, Shanghai, China
| | - Lang Gui
- Key Laboratory of Freshwater Aquatic Genetic Resources Ministry of Agriculture and Rural Affairs, Shanghai Ocean University, Shanghai, China; Shanghai Engineering Research Center of Aquaculture, Shanghai Ocean University, Shanghai, China
| | - Xiaoyan Xu
- Key Laboratory of Freshwater Aquatic Genetic Resources Ministry of Agriculture and Rural Affairs, Shanghai Ocean University, Shanghai, China; Shanghai Engineering Research Center of Aquaculture, Shanghai Ocean University, Shanghai, China; National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai, China.
| | - Jiale Li
- Key Laboratory of Freshwater Aquatic Genetic Resources Ministry of Agriculture and Rural Affairs, Shanghai Ocean University, Shanghai, China; Shanghai Engineering Research Center of Aquaculture, Shanghai Ocean University, Shanghai, China; National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai, China.
| |
Collapse
|
6
|
Yuan J, Hu Y, Yang D, Zhou A, Luo S, Xu N, Dong J, He Q, Zhang C, Zhang X, Ji Z, Li Q, Chu J. The Effects of Crataegus pinnatifida and Wolfiporia extensa Combination on Diet-Induced Obesity and Gut Microbiota. Foods 2024; 13:1633. [PMID: 38890862 PMCID: PMC11171702 DOI: 10.3390/foods13111633] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 05/20/2024] [Accepted: 05/22/2024] [Indexed: 06/20/2024] Open
Abstract
Obesity is a multifactorial chronic metabolic disease with multiple complications. Crataegus pinnatifida (CP) and Wolfiporia extensa (WE) are traditional functional foods with improving metabolic health properties. This study demonstrated the effect of CP and WE combination on ameliorating obesity induced by a high-fat diet (HFD). Moreover, the CP-WE food pair ameliorated HFD-induced metabolic disorders, including glucose intolerance, insulin resistance, hyperlipidemia, and hepatic steatosis. 16S rRNA gene amplicon sequencing and analysis revealed that CP combined with WE reshaped the composition of gut microbiota in HFD-fed mice. Furthermore, correlation analysis revealed a substantial association between the obesity-related parameters and the shifts in predominant bacterial genera influenced by the food pair intervention. In conclusion, this study demonstrated that the CP-WE food pair ameliorated HFD-induced obesity and reshaped gut microbiota composition, providing a promising approach to combat obesity through specific food combinations.
Collapse
Affiliation(s)
- Jingjing Yuan
- Key Laboratory of Xin’an Medicine, Ministry of Education, Anhui University of Chinese Medicine, Hefei 230012, China; (J.Y.); (Y.H.); (D.Y.); (A.Z.); (J.D.); (Q.H.); (C.Z.); (X.Z.); (Z.J.)
- Research and Technology Center, Anhui University of Chinese Medicine, Hefei 230012, China
- Functional Activity and Resource Utilization on Edible and Medicinal Fungi Joint Laboratory of Anhui Province, Anhui University of Chinese Medicine, Hefei 230012, China
| | - Yueyun Hu
- Key Laboratory of Xin’an Medicine, Ministry of Education, Anhui University of Chinese Medicine, Hefei 230012, China; (J.Y.); (Y.H.); (D.Y.); (A.Z.); (J.D.); (Q.H.); (C.Z.); (X.Z.); (Z.J.)
- Affiliated Hospital of Yangzhou University, Yangzhou 225012, China
| | - Dongmei Yang
- Key Laboratory of Xin’an Medicine, Ministry of Education, Anhui University of Chinese Medicine, Hefei 230012, China; (J.Y.); (Y.H.); (D.Y.); (A.Z.); (J.D.); (Q.H.); (C.Z.); (X.Z.); (Z.J.)
| | - An Zhou
- Key Laboratory of Xin’an Medicine, Ministry of Education, Anhui University of Chinese Medicine, Hefei 230012, China; (J.Y.); (Y.H.); (D.Y.); (A.Z.); (J.D.); (Q.H.); (C.Z.); (X.Z.); (Z.J.)
- Functional Activity and Resource Utilization on Edible and Medicinal Fungi Joint Laboratory of Anhui Province, Anhui University of Chinese Medicine, Hefei 230012, China
| | - Shengyong Luo
- Anhui Academy of Medical Sciences, Hefei 230061, China;
| | - Na Xu
- State Key Laboratory of Tea Plant Biology and Utilization, School of Tea and Food Science and International Joint Laboratory on Tea Chemistry and Health Effects of Ministry of Education, Anhui Agricultural University, Hefei 230036, China;
| | - Jiaxing Dong
- Key Laboratory of Xin’an Medicine, Ministry of Education, Anhui University of Chinese Medicine, Hefei 230012, China; (J.Y.); (Y.H.); (D.Y.); (A.Z.); (J.D.); (Q.H.); (C.Z.); (X.Z.); (Z.J.)
| | - Qing He
- Key Laboratory of Xin’an Medicine, Ministry of Education, Anhui University of Chinese Medicine, Hefei 230012, China; (J.Y.); (Y.H.); (D.Y.); (A.Z.); (J.D.); (Q.H.); (C.Z.); (X.Z.); (Z.J.)
| | - Chenxu Zhang
- Key Laboratory of Xin’an Medicine, Ministry of Education, Anhui University of Chinese Medicine, Hefei 230012, China; (J.Y.); (Y.H.); (D.Y.); (A.Z.); (J.D.); (Q.H.); (C.Z.); (X.Z.); (Z.J.)
| | - Xinyu Zhang
- Key Laboratory of Xin’an Medicine, Ministry of Education, Anhui University of Chinese Medicine, Hefei 230012, China; (J.Y.); (Y.H.); (D.Y.); (A.Z.); (J.D.); (Q.H.); (C.Z.); (X.Z.); (Z.J.)
| | - Zhangxin Ji
- Key Laboratory of Xin’an Medicine, Ministry of Education, Anhui University of Chinese Medicine, Hefei 230012, China; (J.Y.); (Y.H.); (D.Y.); (A.Z.); (J.D.); (Q.H.); (C.Z.); (X.Z.); (Z.J.)
| | - Qinglin Li
- Key Laboratory of Xin’an Medicine, Ministry of Education, Anhui University of Chinese Medicine, Hefei 230012, China; (J.Y.); (Y.H.); (D.Y.); (A.Z.); (J.D.); (Q.H.); (C.Z.); (X.Z.); (Z.J.)
| | - Jun Chu
- Research and Technology Center, Anhui University of Chinese Medicine, Hefei 230012, China
- Institute of Surgery, Anhui Academy of Chinese Medicine, Anhui University of Chinese Medicine, Hefei 230012, China
| |
Collapse
|