1
|
Microbial Community Composition Correlates with Metal Sorption in an Ombrotrophic Boreal Bog: Implications for Radionuclide Retention. SOIL SYSTEMS 2021. [DOI: 10.3390/soilsystems5010019] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
Microbial communities throughout the 6.5 m depth profile of a boreal ombrotrophic bog were characterized using amplicon sequencing of archaeal, fungal, and bacterial marker genes. Microbial populations and their relationship to oxic and anoxic batch sorption of radionuclides (using radioactive tracers of I, Se, Cs, Ni, and Ag) and the prevailing metal concentrations in the natural bog was investigated. The majority of the detected archaea belonged to the Crenarchaeota, Halobacterota, and Thermoplasmatota, whereas the fungal communities consisted of Ascomycota, Basidiomycota, and unclassified fungi. The bacterial communities consisted mostly of Acidobacteriota, Proteobacteria, and Chloroflexi. The occurrence of several microbial genera were found to statistically significantly correlate with metal concentrations as well as with Se, Cs, I, and Ag batch sorption data. We suggest that the metal concentrations of peat, gyttja, and clay layers affect the composition of the microbial populations in these nutrient-low conditions and that particularly parts of the bacterial and archaeal communities tolerate high concentrations of potentially toxic metals and may concurrently contribute to the total retention of metals and radionuclides in this ombrotrophic environment. In addition, the varying metal concentrations together with chemical, mineralogical, and physical factors may contribute to the shape of the total archaeal and bacterial populations and most probably shifts the populations for more metal resistant genera.
Collapse
|
2
|
Knuutinen J, Bomberg M, Kemell M, Lusa M. Ni(II) Interactions in Boreal Paenibacillus sp., Methylobacterium sp., Paraburkholderia sp., and Pseudomonas sp. Strains Isolated From an Acidic, Ombrotrophic Bog. Front Microbiol 2019; 10:2677. [PMID: 31849859 PMCID: PMC6901981 DOI: 10.3389/fmicb.2019.02677] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2019] [Accepted: 11/04/2019] [Indexed: 12/04/2022] Open
Abstract
The uptake of nickel [Ni(II)] by Paenibacillus sp., Methylobacterium sp., Paraburkholderia sp., and Pseudomonas sp. strains isolated from a boreal bog was studied using batch experiments. All strains removed Ni(II) from the solution and the uptake efficiency was affected by the nutrient source, incubation temperature, time, and pH. As highest Ni uptake (with a maximum Kd of 1890 L/kg DW) was recorded for the Pseudomonas sp. strains, these bacteria were used in the following protein expression (SDS-PAGE and MALDI-TOFF), transmission electron microscopy (TEM) and EDS experiments. In addition, Freundlich and Langmuir sorption isotherms were determined. In the Ni(II) treated cells, dense crystalline intra-cellular accumulations were observed in TEM examinations, which were identified as Ni accumulations using EDS. SDS-PAGE and MALDI-TOFF spectra of Ni(II) treated cells showed several changes in the protein profiles, which can indicate active accumulation of Ni in these bacteria. Concurrently, we observed Ni(II) uptake to follow Freundlich and Langmuir isotherms, suggesting straight cellular biosorption in addition to the intra-cellular accumulation. The role of cellular (cell membrane and cell wall) functional groups involved in Ni(II) binding were therefore studied using Fourier transformation infrared spectroscopy. These analyses supported the potential role of the alcoholic hydroxyl, carboxyl and amine groups in Ni(II) binding in these bacteria, therefore suggesting two different Ni(II) uptake mechanisms; (i) intra-cellular accumulation [possibly connected to detoxification of Ni(II)], and (ii) straight biosorption on cell membrane/wall functional groups.
Collapse
Affiliation(s)
- Jenna Knuutinen
- Department of Chemistry, University of Helsinki, Helsinki, Finland
| | - Malin Bomberg
- VTT Technical Research Centre of Finland, Espoo, Finland
| | - Marianna Kemell
- Department of Chemistry, University of Helsinki, Helsinki, Finland
| | - Merja Lusa
- Department of Chemistry, University of Helsinki, Helsinki, Finland
| |
Collapse
|
3
|
Lusa M, Knuutinen J, Lindgren M, Virkanen J, Bomberg M. Microbial communities in a former pilot-scale uranium mine in Eastern Finland - Association with radium immobilization. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 686:619-640. [PMID: 31185409 DOI: 10.1016/j.scitotenv.2019.05.432] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2019] [Revised: 05/09/2019] [Accepted: 05/28/2019] [Indexed: 06/09/2023]
Abstract
The bacterial, fungal and archaeal communities were characterized in 17 top soil organic and mineral layer samples and in top sediment samples of the Paukkajanvaara area, a former pilot-scale uranium mine, located in Eno, Eastern Finland, using amplicon sequencing and qPCR. Soil and sediment samples were in addition analyzed for radium (226Ra), sulfate (SO42-), nitrate (NO3-) and phosphate (PO43-) concentrations. New bacterial strains, representing Pseudomonas spp., were isolated from the mine and reference area and used in laboratory experiments on uptake and leaching of radium (Ra). The effect of these strains on the sulfate leaching from the soil samples was also tested in vitro. Between 6 × 106 and 5 × 108 copies g-1 DW (dry weight) of bacterial 16S rRNA genes, 5 × 105-1 × 108 copies g-1 DW archaeal 16S rRNA genes and 1 × 105-1 × 108 copies g-1 DW fungal 5.8S rRNA genes were detected in the samples. A total of 814, 54 and 167 bacterial, archaeal and fungal genera, respectively, were identified. Proteobacteria, Euryarchaeota and Mortiriella were the dominant bacterial, archaeal and fungal phyla, respectively. All tested Pseudomonas spp. strains isolates from Paukkajanvaara removed Ra from the solution, but the amount of removed Ra depended on incubation conditions (temperature, time and nutrient broth). The highest removal of Ra (5320 L/kg DW) was observed by the Pseudomonas sp. strain T5-6-I at 37 °C. All Pseudomonas spp. strains decreased the release of Ra from soil with an average of 23% while simultaneously increasing the concentration of SO42- in the solution by 11%. As Pseudomonas spp. were frequent in both the sequence data and the cultures, these bacteria may play an important role in the immobilization of Ra in the Paukkajanvaara mine area.
Collapse
Affiliation(s)
- Merja Lusa
- Department of Chemistry, Radiochemistry, Faculty of Science, University of Helsinki, Finland.
| | - Jenna Knuutinen
- Department of Chemistry, Radiochemistry, Faculty of Science, University of Helsinki, Finland
| | - Marcus Lindgren
- Department of Chemistry, Radiochemistry, Faculty of Science, University of Helsinki, Finland
| | - Juhani Virkanen
- Department of Geosciences and Geography, Faculty of Science, University of Helsinki, Finland
| | - Malin Bomberg
- VTT Technical Research Centre of Finland, Espoo, Finland
| |
Collapse
|
4
|
Lusa M, Help H, Honkanen AP, Knuutinen J, Parkkonen J, Kalasová D, Bomberg M. The reduction of selenium(IV) by boreal Pseudomonas sp. strain T5-6-I - Effects on selenium(IV) uptake in Brassica oleracea. ENVIRONMENTAL RESEARCH 2019; 177:108642. [PMID: 31430668 DOI: 10.1016/j.envres.2019.108642] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2019] [Revised: 08/07/2019] [Accepted: 08/08/2019] [Indexed: 06/10/2023]
Abstract
Selenium (Se) is an essential micronutrient but toxic when taken in excessive amounts. Therefore, understanding the metabolic processes related to selenium uptake and bacteria-plant interactions coupled with selenium metabolism are of high importance. We cultivated Brassica oleracea with the previously isolated heterotrophic aerobic Se(IV)-reducing Pseudomonas sp. T5-6-I strain to better understand the phenomena of bacteria-mediated Se(IV) reduction on selenium availability to the plants. B. oleracea grown on Murashige and Skoog medium (MS-salt agar) with and without of Pseudomonas sp. were amended with Se(IV)/75Se(IV), and selenium transfer into plants was studied using autoradiography and gamma spectroscopy. XANES was in addition used to study the speciation of selenium in the B. oleracea plants. In addition, the effects of Se(IV) on the protein expression in B. oleracea was studied using HPLC-SEC. TEM and confocal microscopy were used to follow the bacterial/Se-aggregate accumulation in plants and the effects of bacterial inoculation on root-hair growth. In the tests using 75Se(IV) on average 130% more selenium was translocated to the B. oleracea plants grown with Pseudomonas sp. compared to the plants grown with selenium, but without Pseudomonas sp.. In addition, these bacteria notably increased root hair density. Changes in the protein expression of B. oleracea were observed on the ∼30-58 kDa regions in the Se(IV) treated samples, probably connected e.g. to the oxidative stress induced by Se(IV) or expression of proteins connected to the Se(IV) metabolism. Based on the XANES measurements, selenium appears to accumulate in B. oleracea mainly in organic C-Se-H and C-Se-C bonds with and without bacteria inoculation. We conclude that the Pseudomonas sp. T5-6-I strain seems to contribute positively to the selenium accumulation in plants, establishing the high potential of Se0-producing bacteria in the use of phytoremediation and biofortification of selenium.
Collapse
Affiliation(s)
- Merja Lusa
- Department of Chemistry, Radiochemistry, Faculty of Science, University of Helsinki, Finland.
| | - Hanna Help
- Department of Physics, X-Ray Laboratory, Faculty of Science, University of Helsinki, Finland
| | - Ari-Pekka Honkanen
- Department of Physics, X-Ray Laboratory, Faculty of Science, University of Helsinki, Finland
| | - Jenna Knuutinen
- Department of Chemistry, Radiochemistry, Faculty of Science, University of Helsinki, Finland
| | | | - Dominika Kalasová
- CEITEC - Central European Institute of Technology, Brno University of Technology, Brno, Czech Republic
| | - Malin Bomberg
- Material Recycling and Geotechnology, VTT, Technical Research Center of Finland, Espoo, Finland
| |
Collapse
|
5
|
Honkanen AP, Ollikkala S, Ahopelto T, Kallio AJ, Blomberg M, Huotari S. Johann-type laboratory-scale x-ray absorption spectrometer with versatile detection modes. THE REVIEW OF SCIENTIFIC INSTRUMENTS 2019; 90:033107. [PMID: 30927829 DOI: 10.1063/1.5084049] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2018] [Accepted: 03/01/2019] [Indexed: 06/09/2023]
Abstract
We present a low-cost laboratory X-ray absorption spectrometer that uses a conventional X-ray tube source and bent Johann-type crystal monochromators. The instrument is designed for X-ray absorption spectroscopy studies in the 4-20 keV range which covers most K edges of 3d transition metals and L edges of 5d transition metals and actinides. The energy resolution is typically in the range of 1-5 eV at 10 keV depending on the crystal analyser and the Bragg angle. Measurements can be performed in transmission, fluorescence, and imaging modes. Due to its simple and modular design, the spectrometer can be modified to accommodate additional equipment and complex sample environments required for in situ studies. A showcase of various applications is presented.
Collapse
Affiliation(s)
- Ari-Pekka Honkanen
- Department of Physics, University of Helsinki, P.O. Box 64, FI-00014 Helsinki, Finland
| | - Sami Ollikkala
- Department of Physics, University of Helsinki, P.O. Box 64, FI-00014 Helsinki, Finland
| | - Taru Ahopelto
- Department of Physics, University of Helsinki, P.O. Box 64, FI-00014 Helsinki, Finland
| | - Antti-Jussi Kallio
- Department of Physics, University of Helsinki, P.O. Box 64, FI-00014 Helsinki, Finland
| | - Merja Blomberg
- Department of Physics, University of Helsinki, P.O. Box 64, FI-00014 Helsinki, Finland
| | - Simo Huotari
- Department of Physics, University of Helsinki, P.O. Box 64, FI-00014 Helsinki, Finland
| |
Collapse
|
6
|
Lusa M, Knuutinen J, Bomberg M. Uptake and reduction of Se(IV) in two heterotrophic aerobic Pseudomonads strains isolated from boreal bog environment. AIMS Microbiol 2017; 3:798-814. [PMID: 31294190 PMCID: PMC6604954 DOI: 10.3934/microbiol.2017.4.798] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2017] [Accepted: 09/28/2017] [Indexed: 12/02/2022] Open
Abstract
Selenite (Se(IV), SeO32−) uptake and the effect of selenite supplement on protein synthesis was investigated in two Pseudomonas sp. strains isolated from a boreal bog. These aerobic bacteria efficiently reduced Se(IV) with intracellular reduced Se0 observed in the cytoplasm under dark aerobic conditions. The proteome analysis of Se(IV) supplement and temperature responses by SDS-PAGE gel electrophoresis showed variations in the protein expression on the 40–60 kDa regions following these stress factors, probably through enzymes associated to oxidative stress or temperature adaptation. NO3−/NO2−/SO42− addition enhanced Se(IV) uptake in both bacteria, but Se(IV) uptake sustained also under sulphur and nitrogen starvation. Our findings suggest two different transport mechanisms for Se(IV) uptake in these Pseudomonas sp. strains; a low affinity transport system up-regulated by NO3−/NO2−/SO42− and a distinct Se(IV)O32− regulated transport system. Following transport, Se(IV) is reduced in the cytoplasm, forming Se0 granules, visible in TEM and verified using EDX.
Collapse
Affiliation(s)
- Merja Lusa
- Department of Chemistry, Radiochemistry, University of Helsinki, P.O. Box 55, 00014 Helsinki, Finland
| | - Jenna Knuutinen
- Department of Chemistry, Radiochemistry, University of Helsinki, P.O. Box 55, 00014 Helsinki, Finland
| | - Malin Bomberg
- VTT Technical Research Centre of Finland, Espoo, Finland
| |
Collapse
|
7
|
Yeager CM, Amachi S, Grandbois R, Kaplan DI, Xu C, Schwehr KA, Santschi PH. Microbial Transformation of Iodine: From Radioisotopes to Iodine Deficiency. ADVANCES IN APPLIED MICROBIOLOGY 2017; 101:83-136. [PMID: 29050668 DOI: 10.1016/bs.aambs.2017.07.002] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Iodine is a biophilic element that is important for human health, both as an essential component of several thyroid hormones and, on the other hand, as a potential carcinogen in the form of radioiodine generated by anthropogenic nuclear activity. Iodine exists in multiple oxidation states (-1, 0, +1, +3, +5, and +7), primarily as molecular iodine (I2), iodide (I-), iodate [Formula: see text] , or organic iodine (org-I). The mobility of iodine in the environment is dependent on its speciation and a series of redox, complexation, sorption, precipitation, and microbial reactions. Over the last 15years, there have been significant advances in iodine biogeochemistry, largely spurred by renewed interest in the fate of radioiodine in the environment. We review the biogeochemistry of iodine, with particular emphasis on the microbial processes responsible for volatilization, accumulation, oxidation, and reduction of iodine, as well as the exciting technological potential of these fascinating microorganisms and enzymes.
Collapse
|
8
|
Lusa M, Bomberg M, Virtanen S, Lempinen J, Aromaa H, Knuutinen J, Lehto J. Factors affecting the sorption of cesium in a nutrient-poor boreal bog. JOURNAL OF ENVIRONMENTAL RADIOACTIVITY 2015; 147:22-32. [PMID: 26010098 DOI: 10.1016/j.jenvrad.2015.05.005] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2015] [Revised: 05/06/2015] [Accepted: 05/06/2015] [Indexed: 06/04/2023]
Abstract
(135)Cs is among the most important radionuclides in the long-term safety assessments of spent nuclear fuel, due to its long half-life of 2.3 My and large inventory in spent nuclear fuel. Batch sorption experiments were conducted to evaluate the sorption behavior of radiocesium ((134)Cs) in the surface moss, peat, gyttja, and clay layers of 7-m-deep profiles taken from a nutrient-poor boreal bog. The batch distribution coefficient (Kd) values of radiocesium increased as a function of sampling depth. The highest Kd values, with a geometric mean of 3200 L/kg dry weight (DW), were observed in the bottom clay layer and the lowest in the 0.5-1.0 m peat layer (50 L/kg DW). The maximum sorption in all studied layers was observed at a pH between 7 and 9.5. The in situ Kd values of (133)Cs in surface Sphagnum moss, peat and gyttja samples were one order of magnitude higher than the Kd values obtained using the batch method. The highest in situ Kd values (9040 L/kg DW) were recorded for the surface moss layer. The sterilization of fresh surface moss, peat, gyttja and clay samples decreased the sorption of radiocesium by 38%, although the difference was not statistically significant. However, bacteria belonging to the genera Pseudomonas, Paenibacillus, Rhodococcus and Burkholderia isolated from the bog were found to remove radiocesium from the solution under laboratory conditions. The highest biosorption was observed for Paenibacillus sp. V0-1-LW and Pseudomonas sp. PS-0-L isolates. When isolated bacteria were added to sterilized bog samples, the removal of radiocesium from the solution increased by an average of 50% compared to the removal recorded for pure sterilized peat. Our results demonstrate that the sorption of radiocesium in the bog environment is dependent on pH and the type of the bog layer and that common environmental bacteria prevailing in the bog can remove cesium from the solution phase.
Collapse
Affiliation(s)
- M Lusa
- Laboratory of Radiochemistry, Department of Chemistry, University of Helsinki, P.O. Box 55, 00014 Helsinki, Finland.
| | - M Bomberg
- VTT Technical Research Centre of Finland, P.O. Box 1000, 02044 VTT, Finland
| | - S Virtanen
- Laboratory of Radiochemistry, Department of Chemistry, University of Helsinki, P.O. Box 55, 00014 Helsinki, Finland
| | - J Lempinen
- Laboratory of Radiochemistry, Department of Chemistry, University of Helsinki, P.O. Box 55, 00014 Helsinki, Finland
| | - H Aromaa
- Laboratory of Radiochemistry, Department of Chemistry, University of Helsinki, P.O. Box 55, 00014 Helsinki, Finland
| | - J Knuutinen
- Laboratory of Radiochemistry, Department of Chemistry, University of Helsinki, P.O. Box 55, 00014 Helsinki, Finland
| | - J Lehto
- Laboratory of Radiochemistry, Department of Chemistry, University of Helsinki, P.O. Box 55, 00014 Helsinki, Finland
| |
Collapse
|
9
|
Lusa M, Bomberg M, Aromaa H, Knuutinen J, Lehto J. The microbial impact on the sorption behaviour of selenite in an acidic, nutrient-poor boreal bog. JOURNAL OF ENVIRONMENTAL RADIOACTIVITY 2015; 147:85-96. [PMID: 26048060 DOI: 10.1016/j.jenvrad.2015.05.014] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2015] [Revised: 05/12/2015] [Accepted: 05/13/2015] [Indexed: 06/04/2023]
Abstract
(79)Se is among the most important long lived radionuclides in spent nuclear fuel and selenite, SeO3(2-), is its typical form in intermediate redox potential. The sorption behaviour of selenite and the bacterial impact on the selenite sorption in a 7-m-deep profile of a nutrient-poor boreal bog was studied using batch sorption experiments. The batch distribution coefficient (Kd) values of selenite decreased as a function of sampling depth and highest Kd values, 6600 L/kg dry weight (DW), were observed in the surface moss and the lowest in the bottom clay at 1700 L/kg DW. The overall maximum sorption was observed at pH between 3 and 4 and the Kd values were significantly higher in unsterilized compared to sterilized samples. The removal of selenite from solution by Pseudomonas sp., Burkholderia sp., Rhodococcus sp. and Paenibacillus sp. strains isolated from the bog was affected by incubation temperature and time. In addition, the incubation of sterilized surface moss, subsurface peat and gyttja samples with added bacteria effectively removed selenite from the solution and on average 65% of selenite was removed when Pseudomonas sp. or Burkholderia sp. strains were used. Our results demonstrate the important role of bacteria for the removal of selenite from the solution phase in the bog environment, having a high organic matter content and a low pH.
Collapse
Affiliation(s)
- M Lusa
- Laboratory of Radiochemistry, Department of Chemistry, P.O. Box 55, 00014 University of Helsinki, Finland.
| | - M Bomberg
- VTT Technical Research Centre of Finland, P.O. Box 1000, 02044 VTT, Finland
| | - H Aromaa
- Laboratory of Radiochemistry, Department of Chemistry, P.O. Box 55, 00014 University of Helsinki, Finland
| | - J Knuutinen
- Laboratory of Radiochemistry, Department of Chemistry, P.O. Box 55, 00014 University of Helsinki, Finland
| | - J Lehto
- Laboratory of Radiochemistry, Department of Chemistry, P.O. Box 55, 00014 University of Helsinki, Finland
| |
Collapse
|