1
|
Mondal S, Dilly Rajan K, Rathinam M, Neppolian B, Vattikondala G. Enhanced photocatalytic degradation of tetracycline using NiCo-BiVO 4 nanocomposite under visible light irradiation: A noble-metal-free approach for water remediation. CHEMOSPHERE 2024; 350:141012. [PMID: 38145845 DOI: 10.1016/j.chemosphere.2023.141012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 11/17/2023] [Accepted: 12/19/2023] [Indexed: 12/27/2023]
Abstract
The increasing pollution of water bodies with organic contaminants, including antibiotics, has become a significant environmental concern. In this study, a noble-metal-free alternative, NiCo bimetal cocatalyst, was synthesized and applied to enhance the photocatalytic degradation of the antibiotic tetracycline (TC) using BiVO4 as the photocatalyst under the visible spectrum. The NiCo-BiVO4 nanocomposite exhibited improved visible light absorption, reduced recombination rate of charge carriers, and enhanced electrochemical properties. The photocatalytic degradation of TC was significantly enhanced by the NiCo bimetal modification, with the 2 wt% NiCo-BiVO4 nanocomposite achieving an 87.2% degradation of TC and 82% Total Organic Carbon (TOC) removal within 120 min. The degradation kinetics of TC (target compound) followed a first-order reaction, with photogenerated electrons and holes identified as the primary active species responsible for the degradation process. The recyclability of the catalyst was also demonstrated for multiple runs, indicating its stability. Furthermore, the pathway of TC degradation by 2 wt% NiCo-BiVO4 nanocomposite was proposed based on the detected intermediate products using LC-MS analysis. This study provides a promising approach for developing efficient, noble-metal-free photocatalysts to remove organic contaminants from water sources.
Collapse
Affiliation(s)
- Sneha Mondal
- Department of Physics and Nanotechnology, Faculty of Engineering and Technology, SRM Institute of Science and Technology, Kattankulathur, Tamil Nadu, 603203, India
| | - Karthik Dilly Rajan
- Department of Physics and Nanotechnology, Faculty of Engineering and Technology, SRM Institute of Science and Technology, Kattankulathur, Tamil Nadu, 603203, India
| | - Maheswaran Rathinam
- Department of Physics and Nanotechnology, Faculty of Engineering and Technology, SRM Institute of Science and Technology, Kattankulathur, Tamil Nadu, 603203, India
| | - Bernaurdshaw Neppolian
- Department of Chemistry, Faculty of Engineering and Technology, SRM Institute of Science and Technology, Kattankulathur, Tamil Nadu, 603203, India
| | - Ganesh Vattikondala
- Department of Physics and Nanotechnology, Faculty of Engineering and Technology, SRM Institute of Science and Technology, Kattankulathur, Tamil Nadu, 603203, India.
| |
Collapse
|
2
|
Methods and strategies for producing porous photocatalysts: Review. J SOLID STATE CHEM 2023. [DOI: 10.1016/j.jssc.2023.123834] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
3
|
Rostami M, Badiei A, Ganjali MR, Rahimi-Nasrabadi M, Naddafi M, Karimi-Maleh H. Nano-architectural design of TiO 2 for high performance photocatalytic degradation of organic pollutant: A review. ENVIRONMENTAL RESEARCH 2022; 212:113347. [PMID: 35513059 DOI: 10.1016/j.envres.2022.113347] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2022] [Revised: 03/18/2022] [Accepted: 04/19/2022] [Indexed: 06/14/2023]
Abstract
In the past several decades, significant efforts have been paid toward photocatalytic degradation of organic pollutants in environmental research. During the past years, titanium dioxide nano-architectures (TiO2 NAs) have been widely used in water purification applications with photocatalytic degradation processes under Uv/Vis light illumination. Photocatalysis process with nano-architectural design of TiO2 is viewed as an efficient procedure for directly channeling solar energy into water treatment reactions. The considerable band-gap values and the subsequent short life time of photo-generated charge carriers are showed among the limitations of this approach. One of these effective efforts is the using of oxidation processes with advance semiconductor photocatalyst NAs for degradation the organic pollutants under UV/Vis irradiation. Among them, nano-architectural design of TiO2 photocatalyst (such as Janus, yolk-shell (Y@S), hollow microspheres (HMSs) and nano-belt) is an effective way to improve oxidation processes for increasing photocatalytic activity in water treatment applications. In the light of the above issues, this study tends to provide a critical overview of the used strategies for preparing TiO2 photocatalysts with desirable physicochemical properties like enhanced absorption of light, low density, high surface area, photo-stability, and charge-carrier behavior. Among the various nanoarchitectural design of TiO2, the Y@S and HMSs have created a great appeal given their considerable large surface area, low density, homogeneous catalytic environment, favorable light harvesting properties, and enhanced molecular diffusion kinetics of the particles. In this review was summarized the developments that have been made for nano-architectural design of TiO2 photocatalyst. Additional focus is placed on the realization of interfacial charge and the possibility of achieving charge carriers separation for these NAs as electron migration is the extremely important factor for increasing the photocatalytic activity.
Collapse
Affiliation(s)
- Mojtaba Rostami
- School of Chemistry, College of Science, University of Tehran, Tehran, Iran
| | - Alireza Badiei
- School of Chemistry, College of Science, University of Tehran, Tehran, Iran.
| | - Mohammad Reza Ganjali
- Center of Excellence in Electrochemistry, School of Chemistry, College of Science, University of Tehran, Tehran, Iran; Biosensor Research Center, Endocrinology and Metabolism Molecular Cellular Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Mehdi Rahimi-Nasrabadi
- Chemical Injuries Research Center, Systems Biology and Poisonings Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran; Faculty of Pharmacy, Baqiyatallah University of Medical Sciences, Tehran, Iran; Institute of Electronic and Sensor Materials, TU Bergakademie Freiberg, Freiberg, 09599, Germany
| | - Mastoureh Naddafi
- School of Resources and Environment, University of Electronic Science and Technology of China, 611731, Xiyuan Ave, Chengdu, PR China
| | - Hassan Karimi-Maleh
- School of Resources and Environment, University of Electronic Science and Technology of China, 611731, Xiyuan Ave, Chengdu, PR China; Department of Chemical Engineering, Quchan University of Technology, Quchan, 9477177870, Iran; Department of Chemical Sciences, University of Johannesburg, Doornfontein Campus 2028, Johannesburg, 17011, South Africa.
| |
Collapse
|
4
|
Sun M, Zhou H, Xiong H, Zhang R, Liu Z, Li D, Gao B, Qiao ZA. Acid-regulated hydrolysis and condensation of titanium cation toward controllable synthesis of multiphase mesoporous TiO2 for effectively enhance photocatalytic H2 evolution. Catal Today 2022. [DOI: 10.1016/j.cattod.2022.05.032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
5
|
Yang M, Li PH, Chen SH, Xiao XY, Tang XH, Lin CH, Huang XJ, Liu WQ. Nanometal Oxides with Special Surface Physicochemical Properties to Promote Electrochemical Detection of Heavy Metal Ions. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2020; 16:e2001035. [PMID: 32406188 DOI: 10.1002/smll.202001035] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2020] [Revised: 03/26/2020] [Accepted: 04/06/2020] [Indexed: 06/11/2023]
Abstract
Heavy metal ions (HMIs) are one of the major environmental pollution problems currently faced. To monitor and control HMIs, rapid and reliable detection is required. Electrochemical analysis is one of the promising methods for on-site detection and monitoring due to high sensitivity, short response time, etc. Recently, nanometal oxides with special surface physicochemical properties have been widely used as electrode modifiers to enhance sensitivity and selectivity for HMIs detection. In this work, recent advances in the electrochemical detection of HMIs using nanometal oxides, which are attributed to specific crystal facets and phases, surficial defects and vacancies, and oxidation state cycle, are comprehensively summarized and discussed in aspects of synthesis, characterization, electroanalysis application, and mechanism. Moreover, the challenges and opportunities for the development and application of nanometal oxides with functional surface physicochemical properties in electrochemical determination of HMIs are presented.
Collapse
Affiliation(s)
- Meng Yang
- Key Laboratory of Environmental Optics and Technology, and Institute of Intelligent Machines, Chinese Academy of Sciences, Hefei, 230031, P. R. China
- Anhui Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, Hefei, 230031, P. R. China
| | - Pei-Hua Li
- Key Laboratory of Environmental Optics and Technology, and Institute of Intelligent Machines, Chinese Academy of Sciences, Hefei, 230031, P. R. China
| | - Shi-Hua Chen
- Key Laboratory of Environmental Optics and Technology, and Institute of Intelligent Machines, Chinese Academy of Sciences, Hefei, 230031, P. R. China
| | - Xiang-Yu Xiao
- Key Laboratory of Environmental Optics and Technology, and Institute of Intelligent Machines, Chinese Academy of Sciences, Hefei, 230031, P. R. China
| | - Xiang-Hu Tang
- Key Laboratory of Environmental Optics and Technology, and Institute of Intelligent Machines, Chinese Academy of Sciences, Hefei, 230031, P. R. China
| | - Chu-Hong Lin
- Key Laboratory of Environmental Optics and Technology, and Institute of Intelligent Machines, Chinese Academy of Sciences, Hefei, 230031, P. R. China
| | - Xing-Jiu Huang
- Key Laboratory of Environmental Optics and Technology, and Institute of Intelligent Machines, Chinese Academy of Sciences, Hefei, 230031, P. R. China
| | - Wen-Qing Liu
- Anhui Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, Hefei, 230031, P. R. China
| |
Collapse
|
6
|
Huang G, Liu X, Shi S, Li S, Xiao Z, Zhen W, Liu S, Wong PK. Hydrogen producing water treatment through mesoporous TiO2 nanofibers with oriented nanocrystals. CHINESE JOURNAL OF CATALYSIS 2020. [DOI: 10.1016/s1872-2067(19)63424-8] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
7
|
Ma X, Cheng Y, Jian H, Feng Y, Chang Y, Zheng R, Wu X, Wang L, Li X, Zhang H. Hollow, Rough, and Nitric Oxide-Releasing Cerium Oxide Nanoparticles for Promoting Multiple Stages of Wound Healing. Adv Healthc Mater 2019; 8:e1900256. [PMID: 31290270 DOI: 10.1002/adhm.201900256] [Citation(s) in RCA: 74] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2019] [Revised: 05/31/2019] [Indexed: 02/01/2023]
Abstract
Wound healing is a complex and sequential biological process that involves multiple stages. Although various nanomaterials are applied to accelerate the wound healing process, only a single stage is promoted during the process, lacking hierarchical stimulation. Herein, hollow CeO2 nanoparticles (NPs) with rough surface and l-arginine inside (Ah CeO2 NPs) are developed as a compact and programmable nanosystem for sequentially promoting the hemostasis, inflammation, and proliferation stages. The rough surface of Ah CeO2 NPs works as a nanobridge to rapidly closure the wounds, promoting the hemostasis stage. The hollow structure of Ah CeO2 NPs enables the multireflection of light inside particles, significantly enhancing the light harvest efficiency and electron-hole pair abundance. Simultaneously, the porous shell of Ah CeO2 NPs facilitates the electron-hole separation and reactive oxygen species production, preventing wound infection and promotion wound healing during the inflammation stage. The enzyme mimicking property of Ah CeO2 NPs can alleviate the oxidative injury in the wound, and the released l-arginine can be converted into nitric oxide (NO) under the catalysis of inducible NO synthase, both of which promote the proliferation stage. A series of in vitro and in vitro biological assessments corroborate the effectiveness of Ah CeO2 NPs in the wound healing process.
Collapse
Affiliation(s)
- Xiaomin Ma
- School of Chemistry and Life ScienceChangchun University of Technology Changchun 130012 China
| | - Yan Cheng
- Laboratory of Chemical BiologyChangchun Institute of Applied ChemistryChinese Academy of Sciences Changchun 130022 China
| | - Hui Jian
- Laboratory of Chemical BiologyChangchun Institute of Applied ChemistryChinese Academy of Sciences Changchun 130022 China
| | - Yanlin Feng
- Laboratory of Chemical BiologyChangchun Institute of Applied ChemistryChinese Academy of Sciences Changchun 130022 China
| | - Yun Chang
- Laboratory of Chemical BiologyChangchun Institute of Applied ChemistryChinese Academy of Sciences Changchun 130022 China
| | - Runxiao Zheng
- Laboratory of Chemical BiologyChangchun Institute of Applied ChemistryChinese Academy of Sciences Changchun 130022 China
| | - Xiaqing Wu
- Laboratory of Chemical BiologyChangchun Institute of Applied ChemistryChinese Academy of Sciences Changchun 130022 China
| | - Li Wang
- School of Chemistry and Life ScienceChangchun University of Technology Changchun 130012 China
| | - Xi Li
- School of Chemistry and Life ScienceChangchun University of Technology Changchun 130012 China
| | - Haiyuan Zhang
- Laboratory of Chemical BiologyChangchun Institute of Applied ChemistryChinese Academy of Sciences Changchun 130022 China
| |
Collapse
|
8
|
Xiao S, Wan Z, Zhou J, Li H, Zhang H, Su C, Chen W, Li G, Zhang D, Li H. Gas-Phase Photoelectrocatalysis for Breaking Down Nitric Oxide. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2019; 53:7145-7154. [PMID: 31067039 DOI: 10.1021/acs.est.9b00986] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
Photoelectrocatalysis (PEC) produces high-efficiency electron-hole separation by applying a bias voltage between semiconductor-based electrodes to achieve high photocatalytic reaction rates. However, using PEC to treat polluted gas in a gas-phase reaction is difficult because of the lack of a conductive medium. Herein, we report an efficient PEC system to oxidize NO gas by using parallel photoactive composites (TiO2 nanoribbons-carbon nanotubes) coated on stainless-steel mesh as photoanodes in a gas-phase chamber and Pt foil as the working electrode in a liquid-phase auxiliary cell. Carbon nanotubes (CNTs) were utilized as conductive scaffolds to enhance the interaction between TiO2 and stainless-steel skeletons for accelerated photogenerated electron transfer. Such a PEC system exhibited super-high performance for the treatment of indoor NO gas (550 ppb) with high selectivity for nitrate under UV-light irradiation owing to the conductive, intertwined network structure of the photoanode, fast photocarrier separation, and longer photogenerated hole lifetime. The photogenerated holes were proven to be the most important active sites for directly driving PEC oxidation of indoor NO gas, even in the absence of water vapor. This work created an efficient PEC air-purification filter for treating indoor polluted air under ambient conditions.
Collapse
Affiliation(s)
- Shuning Xiao
- International Joint Laboratory of Resource Chemistry SHNU-NUS-PU, Key Laboratory of Resource Chemistry of Ministry of Education, Shanghai Key Laboratory of Rare Earth Functional Materials , Shanghai Normal University , Shanghai , 200234 PRC
- SZU-NUS Collaborative Innovation Center for Optoelectronic Science & Technology, International Collaborative Laboratory of 2D Materials for Optoelectronics Science and Technology of Ministry of Education, College of Optoelectronic Engineering , Shenzhen University , Shenzhen , 518060 PRC
- Department of Chemistry and Physics , National University of Singapore , 3 Science Drive 3 , 117543 Singapore
| | - Zhe Wan
- International Joint Laboratory of Resource Chemistry SHNU-NUS-PU, Key Laboratory of Resource Chemistry of Ministry of Education, Shanghai Key Laboratory of Rare Earth Functional Materials , Shanghai Normal University , Shanghai , 200234 PRC
| | - Jiachen Zhou
- International Joint Laboratory of Resource Chemistry SHNU-NUS-PU, Key Laboratory of Resource Chemistry of Ministry of Education, Shanghai Key Laboratory of Rare Earth Functional Materials , Shanghai Normal University , Shanghai , 200234 PRC
| | - Han Li
- International Joint Laboratory of Resource Chemistry SHNU-NUS-PU, Key Laboratory of Resource Chemistry of Ministry of Education, Shanghai Key Laboratory of Rare Earth Functional Materials , Shanghai Normal University , Shanghai , 200234 PRC
| | - Huiqiang Zhang
- International Joint Laboratory of Resource Chemistry SHNU-NUS-PU, Key Laboratory of Resource Chemistry of Ministry of Education, Shanghai Key Laboratory of Rare Earth Functional Materials , Shanghai Normal University , Shanghai , 200234 PRC
| | - Chenliang Su
- SZU-NUS Collaborative Innovation Center for Optoelectronic Science & Technology, International Collaborative Laboratory of 2D Materials for Optoelectronics Science and Technology of Ministry of Education, College of Optoelectronic Engineering , Shenzhen University , Shenzhen , 518060 PRC
| | - Wei Chen
- Department of Chemistry and Physics , National University of Singapore , 3 Science Drive 3 , 117543 Singapore
| | - Guisheng Li
- International Joint Laboratory of Resource Chemistry SHNU-NUS-PU, Key Laboratory of Resource Chemistry of Ministry of Education, Shanghai Key Laboratory of Rare Earth Functional Materials , Shanghai Normal University , Shanghai , 200234 PRC
| | - Dieqing Zhang
- International Joint Laboratory of Resource Chemistry SHNU-NUS-PU, Key Laboratory of Resource Chemistry of Ministry of Education, Shanghai Key Laboratory of Rare Earth Functional Materials , Shanghai Normal University , Shanghai , 200234 PRC
| | - Hexing Li
- International Joint Laboratory of Resource Chemistry SHNU-NUS-PU, Key Laboratory of Resource Chemistry of Ministry of Education, Shanghai Key Laboratory of Rare Earth Functional Materials , Shanghai Normal University , Shanghai , 200234 PRC
- Shanghai University of Electric Power , 2588 Changyang Road , Shanghai , 200090 PRC
| |
Collapse
|
9
|
Controlled Synthesis of Mesoporous CeO2-WO3/TiO2 Microspheres Catalysts for the Selective Catalytic Reduction of NOx with NH3. CATALYSIS SURVEYS FROM ASIA 2019. [DOI: 10.1007/s10563-019-09278-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
|