1
|
Chen Y, Xing X, Hu C, Gao J, Cai W, Liu X, Lin Y, Zhuang S, Luo K, Zhu J. Synergistic effects of ozonation pretreatment and trace phosphate on water quality health risk and microbial stability in simulated drinking water distribution systems. JOURNAL OF HAZARDOUS MATERIALS 2025; 485:136913. [PMID: 39708596 DOI: 10.1016/j.jhazmat.2024.136913] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2024] [Revised: 11/22/2024] [Accepted: 12/15/2024] [Indexed: 12/23/2024]
Abstract
The proliferation and chlorine resistance of pathogenic bacteria in drinking water distribution systems (DWDSs) pose a serious threat to human health. In this study, the synergistic effects of ozonation pretreatment and trace phosphate on water quality health risk and microbial stability were investigated in the small-scale DWDSs simulated by biofilms annular reactors with cast iron coupons. The results indicated that ozonation of drinking water containing trace phosphate was equivalent to increasing microbial carbon and phosphorus sources, further leading to the rapid proliferation of opportunistic pathogens (OPs) in subsequent DWDSs. Under the influent condition of ozonation pretreatment and 0.6 mg/L phosphate, the gene copy numbers of living Legionella spp., Mycobacterium spp., and Acanthamoeba spp. reached up to 1.50 × 104, 1.21 × 104, and 2.29 × 104 gene copies/mL, respectively. The extracellular polymeric substances from suspended biofilms in DWDSs exhibited higher content, molecular weight, and flocculating efficiency, contributing to the improvement of microbial chlorine resistance. Meanwhile, more Fe3O4 appeared in the corrosion products, which enhanced the extracellular electron transfer via cytochrome c and weakened the electrostatic repulsion between corrosion products and microbes in DWDSs. Finally, more active OP growth and microbial metabolic activity occurred in DWDSs. This study revealed that ozonation pretreatment and trace phosphate, as a green technology and an inconspicuous nutrient, respectively, can trigger significant microbial health risks in subsequent DWDSs. Therefore, the phosphate in drinking water should be more strictly restricted when ozonation technology is used in waterworks, especially without a biofiltration treatment process.
Collapse
Affiliation(s)
- Youyi Chen
- Institute of Environmental Research at Greater Bay, Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Guangzhou University, Guangzhou 510006, China
| | - Xueci Xing
- Institute of Environmental Research at Greater Bay, Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Guangzhou University, Guangzhou 510006, China.
| | - Chun Hu
- Institute of Environmental Research at Greater Bay, Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Guangzhou University, Guangzhou 510006, China.
| | - Jingyu Gao
- Institute of Environmental Research at Greater Bay, Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Guangzhou University, Guangzhou 510006, China
| | - Wu Cai
- Institute of Environmental Research at Greater Bay, Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Guangzhou University, Guangzhou 510006, China
| | - Xinkai Liu
- Institute of Environmental Research at Greater Bay, Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Guangzhou University, Guangzhou 510006, China
| | - Yanliang Lin
- Institute of Environmental Research at Greater Bay, Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Guangzhou University, Guangzhou 510006, China
| | - Sumin Zhuang
- Institute of Environmental Research at Greater Bay, Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Guangzhou University, Guangzhou 510006, China
| | - Kaiyin Luo
- Institute of Environmental Research at Greater Bay, Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Guangzhou University, Guangzhou 510006, China
| | - Jiaqi Zhu
- Institute of Environmental Research at Greater Bay, Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Guangzhou University, Guangzhou 510006, China
| |
Collapse
|
2
|
Zhou Q, Huang J, Wen S, Lou Y, Qiu S, Li H, Zhou R, Tang J. Occurrence of pathogenic Mycobacteria avium and Pseudomonas aeruginosa in outdoor decorative fountain water and the associated microbial community. JOURNAL OF WATER AND HEALTH 2024; 22:1663-1676. [PMID: 39340379 DOI: 10.2166/wh.2024.117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Accepted: 07/31/2024] [Indexed: 09/30/2024]
Abstract
Outdoor decorative fountains usually attract residents to visit. However, opportunistic pathogens (OPs) can proliferate and grow in the stagnant fountain water, posing potential health risks to visitors due to the inhalation of spaying aerosols. In this study, the abundance of selected OPs and associated microbial communities in three large outdoor decorative fountain waters were investigated using quantitative PCR and 16S rRNA sequencing. The results indicated that Mycobacteria avium and Pseudomonas aeruginosa were consistently detected in all decorative fountain waters throughout the year. Redundancy analysis showed that OPs abundance was negatively correlated with water temperature but positively correlated with nutrient concentrations. The gene copy numbers of M. avium varied between 2.4 and 3.9 log10 (gene copies/mL), which were significantly lower than P. aeruginosa by several orders of magnitude, reaching 6.5-7.1 log10 (gene copies/mL) during winter. The analysis of taxonomic composition and prediction of functional potential also revealed pathogenic microorganisms and infectious disease metabolic pathways associated with microbial communities in different decorative fountain waters. This study provided a deeper understanding of the pathogenic conditions of the outdoor decorative fountain water, and future works should focus on accurately assessing the health risks posed by OPs in aerosols.
Collapse
Affiliation(s)
- Qiaomei Zhou
- College of Materials and Environmental Engineering, Hangzhou Dianzi University, Hangzhou 310018, China
| | - Jingang Huang
- College of Materials and Environmental Engineering, Hangzhou Dianzi University, Hangzhou 310018, China; China-Austria Belt and Road Joint Laboratory on Artificial Intelligence and Advanced Manufacturing, Hangzhou Dianzi University, Hangzhou 310018, China E-mail:
| | - Shilin Wen
- College of Materials and Environmental Engineering, Hangzhou Dianzi University, Hangzhou 310018, China
| | - Yucheng Lou
- College of Materials and Environmental Engineering, Hangzhou Dianzi University, Hangzhou 310018, China
| | - Shanshan Qiu
- College of Materials and Environmental Engineering, Hangzhou Dianzi University, Hangzhou 310018, China
| | - Huanxuan Li
- College of Materials and Environmental Engineering, Hangzhou Dianzi University, Hangzhou 310018, China
| | - Rongbing Zhou
- College of Materials and Environmental Engineering, Hangzhou Dianzi University, Hangzhou 310018, China
| | - Junhong Tang
- College of Materials and Environmental Engineering, Hangzhou Dianzi University, Hangzhou 310018, China
| |
Collapse
|
3
|
Oliveira IM, Gomes IB, Simões LC, Simões M. A review of research advances on disinfection strategies for biofilm control in drinking water distribution systems. WATER RESEARCH 2024; 253:121273. [PMID: 38359597 DOI: 10.1016/j.watres.2024.121273] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 01/31/2024] [Accepted: 02/05/2024] [Indexed: 02/17/2024]
Abstract
The presence of biofilms in drinking water distribution systems (DWDS) is responsible for water quality deterioration and a possible source of public health risks. Different factors impact the biological stability of drinking water (DW) in the distribution networks, such as the presence and concentration of nutrients, water temperature, pipe material composition, hydrodynamic conditions, and levels of disinfectant residual. This review aimed to evaluate the current state of knowledge on strategies for DW biofilm disinfection through a qualitative and quantitative analysis of the literature published over the last decade. A systematic review method was performed on the 562 journal articles identified through database searching on Web of Science and Scopus, with 85 studies selected for detailed analysis. A variety of disinfectants were identified for DW biofilm control such as chlorine, chloramine, UV irradiation, hydrogen peroxide, chlorine dioxide, ozone, and others at a lower frequency, namely, electrolyzed water, bacteriophages, silver ions, and nanoparticles. The disinfectants can impact the microbial communities within biofilms, reduce the number of culturable cells and biofilm biomass, as well as interfere with the biofilm matrix components. The maintenance of an effective residual concentration in the water guarantees long-term prevention of biofilm formation and improves the inactivation of detached biofilm-associated opportunistic pathogens. Additionally, strategies based on multi-barrier processes by optimization of primary and secondary disinfection combined with other water treatment methods improve the control of opportunistic pathogens, reduce the chlorine-tolerance of biofilm-embedded cells, as well as decrease the corrosion rate in metal-based pipelines. Most of the studies used benchtop laboratory devices for biofilm research. Even though these devices mimic the conditions found in real DWDS, future investigations on strategies for DW biofilm control should include the validity of the promising strategies against biofilms formed in real DW networks.
Collapse
Affiliation(s)
- Isabel Maria Oliveira
- LEPABE - Laboratory for Process Engineering, Environment, Biotechnology and Energy, Faculty of Engineering, University of Porto, Rua Dr Roberto Frias, 4200-465 Porto, Portugal; ALiCE - Associate Laboratory in Chemical Engineering, Faculty of Engineering, University of Porto, Rua Dr Roberto Frias, 4200-465 Porto, Portugal
| | - Inês Bezerra Gomes
- LEPABE - Laboratory for Process Engineering, Environment, Biotechnology and Energy, Faculty of Engineering, University of Porto, Rua Dr Roberto Frias, 4200-465 Porto, Portugal; ALiCE - Associate Laboratory in Chemical Engineering, Faculty of Engineering, University of Porto, Rua Dr Roberto Frias, 4200-465 Porto, Portugal
| | - Lúcia Chaves Simões
- CEB - Centre of Biological Engineering, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal; LABBELS - Associate Laboratory in Biotechnology, Bioengineering and Microelectromechanical Systems, Braga/Guimarães, Portugal
| | - Manuel Simões
- LEPABE - Laboratory for Process Engineering, Environment, Biotechnology and Energy, Faculty of Engineering, University of Porto, Rua Dr Roberto Frias, 4200-465 Porto, Portugal; ALiCE - Associate Laboratory in Chemical Engineering, Faculty of Engineering, University of Porto, Rua Dr Roberto Frias, 4200-465 Porto, Portugal.
| |
Collapse
|
4
|
Kalu CM, Mudau KL, Masindi V, Ijoma GN, Tekere M. Occurrences and implications of pathogenic and antibiotic-resistant bacteria in different stages of drinking water treatment plants and distribution systems. Heliyon 2024; 10:e26380. [PMID: 38434035 PMCID: PMC10906316 DOI: 10.1016/j.heliyon.2024.e26380] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2023] [Revised: 12/05/2023] [Accepted: 02/12/2024] [Indexed: 03/05/2024] Open
Abstract
Different stages of drinking water treatment plants (DWTPs) play specific roles in diverse contaminants' removal present in natural water sources. Although the stages are recorded to promote adequate treatment of water, the occurrence of pathogenic bacteria (PB) and antibiotic-resistant bacteria (ARB) in the treated water and the changes in their diversity and abundance as it passed down to the end users through the drinking water distribution systems (DWDSs), is a great concern, especially to human health. This could imply that the different stages and the distribution system provide a good microenvironment for their growth. Hence, it becomes pertinent to constantly monitor and document the diversity of PB and ARB present at each stage of the treatment and distribution system. This review aimed at documenting the occurrence of PB and ARB at different stages of treatment and distribution systems as well as the implication of their occurrence globally. An exhaustive literature search from Web of Science, Science-Direct database, Google Scholar, Academic Research Databases like the National Center for Biotechnology Information, Scopus, and SpringerLink was done. The obtained information showed that the different treatment stages and distribution systems influence the PB and ARB that proliferate. To minimize the human health risks associated with the occurrence of these PB, the present review, suggests the development of advanced technologies that can promote quick monitoring of PB/ARB at each treatment stage and distribution system as well as reduction of the cost of environomics analysis to promote better microbial analysis.
Collapse
Affiliation(s)
- Chimdi M. Kalu
- Department of Environmental Science, College of Agriculture and Environmental Sciences, University of South Africa, Florida, 1710, South Africa
| | - Khuthadzo L. Mudau
- Department of Environmental Science, College of Agriculture and Environmental Sciences, University of South Africa, Florida, 1710, South Africa
| | - Vhahangwele Masindi
- Department of Environmental Science, College of Agriculture and Environmental Sciences, University of South Africa, Florida, 1710, South Africa
- Magalies Water, Scientific Services, Research & Development Division, Brits, South Africa
| | - Grace N. Ijoma
- Department of Environmental Science, College of Agriculture and Environmental Sciences, University of South Africa, Florida, 1710, South Africa
| | - Memory Tekere
- Department of Environmental Science, College of Agriculture and Environmental Sciences, University of South Africa, Florida, 1710, South Africa
| |
Collapse
|
5
|
Wang M, Wang H, Hu C, Deng J, Shi B. Phthalate acid esters promoted the enrichment of chlorine dioxide-resistant bacteria and their functions related to human diseases in rural polyvinyl chloride distribution pipes. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 896:165282. [PMID: 37406691 DOI: 10.1016/j.scitotenv.2023.165282] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Revised: 06/09/2023] [Accepted: 07/01/2023] [Indexed: 07/07/2023]
Abstract
Polyvinyl chloride (PVC) pipes are widely used as drinking water distribution pipes in rural areas of China. However, whether phthalate acid esters (PAEs) released from PVC pipes will affect tap water quality is still unknown. The influence of released PAEs on the water quality was analysed in this study, especially after ClO2 disinfection. The results indicated that ClO2 disinfection could control the growth of total coliforms and heterotrophic bacteria (HPC). However, when the ClO2 residual decreased to below 0.10 mg/L, HPC and opportunistic pathogens, including Mycobacterium avium and Pseudomonas aeruginosa, increased significantly. In addition, after ClO2 disinfection, PAEs concentrations increased from 10.6-22.2 μg/L to 21.2-58.8 μg/L in different sampling cites. Linear discriminant analysis (LDA) effect size (LEfSe) and statistical analysis of metagenomic profiles (Stamp) showed that ClO2 disinfection induced the enrichment of Pseudomonas, Bradyrhizobium, and Mycobacterium and functions related to human diseases, such as pathogenic Escherichia coli infection, shigellosis, Staphylococcus aureus infection, and Vibrio cholerae infection. The released PAEs not only promoted the growth of these ClO2-resistant bacterial genera but also enhanced their functions related to human diseases. Moreover, these PAEs also induced the enrichment of other bacterial genera, such as Blastomonas, Dechloromonas, and Kocuria, and their functions, such as chronic myeloid leukaemia, African trypanosomiasis, leishmaniasis, hepatitis C and human T-cell leukaemia virus 1 infection. The released PAEs enhanced the microbial risk of the drinking water. These results are meaningful for guaranteeing water quality in rural areas of China.
Collapse
Affiliation(s)
- Min Wang
- Institute of Environmental and Municipal Engineering, North China University of Water Resources and Electric Power, Zhengzhou 450045, China; Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Haibo Wang
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China.
| | - Chisheng Hu
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jianmian Deng
- Institute of Environmental and Municipal Engineering, North China University of Water Resources and Electric Power, Zhengzhou 450045, China.
| | - Baoyou Shi
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
6
|
Oliveira IM, Gomes IB, Moniz T, Simões LC, Rangel M, Simões M. Realism-based assessment of the efficacy of potassium peroxymonosulphate on Stenotrophomonas maltophilia biofilm control. JOURNAL OF HAZARDOUS MATERIALS 2023; 460:132348. [PMID: 37625295 DOI: 10.1016/j.jhazmat.2023.132348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 08/04/2023] [Accepted: 08/17/2023] [Indexed: 08/27/2023]
Abstract
The potential of pentapotassium bis(peroxymonosulphate) bis(sulphate) (OXONE) to control biofilms in drinking water distribution systems (DWDS) was evaluated and compared to chlorine disinfection. Mature biofilms of drinking water (DW)-isolated Stenotrophomonas maltophilia were formed using a simulated DWDS with a rotating cylinder reactor (RCR). After 30 min of exposure, OXONE at 10 × minimum bactericidal concentration (MBC) caused a significant 4 log reduction of biofilm culturability in comparison to the unexposed biofilms and a decrease in the number of non-damaged cells below the detection limit (4.8 log cells/cm2). The effects of free chlorine were restricted to approximately 1 log reduction in both biofilm culturability and non-damaged cells. OXONE in synthetic tap water (STW) at 25 ºC was more stable over 40 days than free chlorine in the same conditions. OXONE solution exhibited a disinfectant decrease of about 10% of the initial concentration during the first 9 days, and after this time the values remained stable. Whereas possible reaction of chlorine with inorganic and organic substances in STW contributed to free chlorine depletion of approximately 48% of the initial concentration. Electron paramagnetic resonance (EPR) spectroscopy studies confirmed the presence of singlet oxygen and other free radicals during S. maltophilia disinfection with OXONE. Overall, OXONE constitutes a relevant alternative to conventional DW disinfection for effective biofilm control in DWDS.
Collapse
Affiliation(s)
- Isabel M Oliveira
- LEPABE - Laboratory for Process Engineering, Environment, Biotechnology and Energy, Faculty of Engineering, University of Porto, Rua Dr Roberto Frias, 4200-465 Porto, Portugal; ALiCE - Associate Laboratory in Chemical Engineering, Faculty of Engineering, University of Porto, Rua Dr Roberto Frias, 4200-465 Porto, Portugal
| | - Inês B Gomes
- LEPABE - Laboratory for Process Engineering, Environment, Biotechnology and Energy, Faculty of Engineering, University of Porto, Rua Dr Roberto Frias, 4200-465 Porto, Portugal; ALiCE - Associate Laboratory in Chemical Engineering, Faculty of Engineering, University of Porto, Rua Dr Roberto Frias, 4200-465 Porto, Portugal
| | - Tânia Moniz
- REQUIMTE, LAQV - Department of Chemistry and Biochemistry, Faculty of Sciences, University of Porto, Rua do Campo Alegre, s/n, 40169-007 Porto, Portugal; REQUIMTE, LAQV - Instituto de Ciências Biomédicas de Abel Salazar, University of Porto, Rua de Jorge Viterbo de Ferreira, 228, 4050-313 Porto, Portugal
| | - Lúcia Chaves Simões
- CEB - Centre of Biological Engineering, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal; LABBELS - Associate Laboratory in Biotechnology, Bioengineering and Microelectromechanical Systems, Braga/Guimarães, Portugal
| | - Maria Rangel
- REQUIMTE, LAQV - Instituto de Ciências Biomédicas de Abel Salazar, University of Porto, Rua de Jorge Viterbo de Ferreira, 228, 4050-313 Porto, Portugal
| | - Manuel Simões
- LEPABE - Laboratory for Process Engineering, Environment, Biotechnology and Energy, Faculty of Engineering, University of Porto, Rua Dr Roberto Frias, 4200-465 Porto, Portugal; ALiCE - Associate Laboratory in Chemical Engineering, Faculty of Engineering, University of Porto, Rua Dr Roberto Frias, 4200-465 Porto, Portugal.
| |
Collapse
|
7
|
Oliveira IM, Gomes IB, Plácido A, Simões LC, Eaton P, Simões M. The impact of potassium peroxymonosulphate and chlorinated cyanurates on biofilms of Stenotrophomonas maltophilia: effects on biofilm control, regrowth, and mechanical properties. BIOFOULING 2023; 39:691-705. [PMID: 37811587 DOI: 10.1080/08927014.2023.2254704] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Accepted: 08/27/2023] [Indexed: 10/10/2023]
Abstract
The activity of two chlorinated isocyanurates (NaDCC and TCCA) and peroxymonosulphate (OXONE) was evaluated against biofilms of Stenotrophomonas maltophilia, an emerging pathogen isolated from drinking water (DW), and for the prevention of biofilm regrowth. After disinfection of pre-formed 48 h-old biofilms, the culturability was reduced up to 7 log, with OXONE, TCCA, and NaDCC showing more efficiency than free chlorine against biofilms formed on stainless steel. The regrowth of biofilms previously exposed to OXONE was reduced by 5 and 4 log CFU cm-2 in comparison to the unexposed biofilms and biofilms exposed to free chlorine, respectively. Rheometry analysis showed that biofilms presented properties of viscoelastic solid materials, regardless of the treatment. OXONE reduced the cohesiveness of the biofilm, given the significant decrease in the complex shear modulus (G*). AFM analysis revealed that biofilms had a fractured appearance and smaller bacterial aggregates dispersed throughout the surface after OXONE exposure than the control sample. In general, OXONE has been demonstrated to be a promising disinfectant to control DW biofilms, with a higher activity than chlorine. The results also show the impact of the biofilm mechanical properties on the efficacy of the disinfectants in biofilm control.
Collapse
Affiliation(s)
- I M Oliveira
- LEPABE - Laboratory for Process Engineering, Environment, Biotechnology and Energy, Faculty of Engineering, University of Porto, Porto, Portugal
- ALiCE - Associate Laboratory in Chemical Engineering, Faculty of Engineering, University of Porto, Porto, Portugal
| | - I B Gomes
- LEPABE - Laboratory for Process Engineering, Environment, Biotechnology and Energy, Faculty of Engineering, University of Porto, Porto, Portugal
- ALiCE - Associate Laboratory in Chemical Engineering, Faculty of Engineering, University of Porto, Porto, Portugal
| | - A Plácido
- REQUIMTE/LAQV - Associated Laboratory for Green Chemistry of the Network of Chemistry and Technology, Department of Chemistry and Biochemistry, Faculty of Sciences, University of Porto, Porto, Portugal
| | - L C Simões
- CEB - Centre of Biological Engineering, University of Minho, Braga, Portugal
- LABBELS - Associate Laboratory in Biotechnology, Bioengineering and Microelectromechanical Systems, Braga/Guimarães, Portugal
| | - P Eaton
- REQUIMTE/LAQV - Associated Laboratory for Green Chemistry of the Network of Chemistry and Technology, Department of Chemistry and Biochemistry, Faculty of Sciences, University of Porto, Porto, Portugal
- The Bridge, School of Chemistry, University of Lincoln, Lincoln, UK
| | - M Simões
- LEPABE - Laboratory for Process Engineering, Environment, Biotechnology and Energy, Faculty of Engineering, University of Porto, Porto, Portugal
- ALiCE - Associate Laboratory in Chemical Engineering, Faculty of Engineering, University of Porto, Porto, Portugal
| |
Collapse
|
8
|
Zheng S, Lin T, Chen H, Zhang X, Jiang F. Characterization of young biofilm morphology, disinfection byproduct formation potential and toxicity of renewed water supply pipelines by phosphorus release from corroded pipes. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 884:163813. [PMID: 37121323 DOI: 10.1016/j.scitotenv.2023.163813] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 04/18/2023] [Accepted: 04/24/2023] [Indexed: 05/05/2023]
Abstract
The deterioration of drinking water quality due to corrosion of the water supply network has become inevitable and regular renewal of pipes has become a common means of doing so. Severely corroded pipes release certain nutrients (e.g., elemental phosphorus), however, little has been reported on the effect of old pipes on the young biofilm of new pipe sections and on ensuring water safety in the early stages of the water supply. The aim of our study was to model the effect of key phosphorus nutrients released from corroded old pipes on the morphological characteristics of young biofilms in new pipe sections, mediated disinfection byproducts (DBPs) production and their combined toxicity. Based on the experimental results, phosphorus showed significant differences in the morphological characteristics, spatial structure of extracellular polymers (EPS), functional abundance, disinfection byproduct formation potential (DBPsFP) and toxicity of young biofilms. Under residual chlorine (1.0 ± 0.2 mg/L) incubation, the functional abundance of young biofilm metabolism was dominant, particularly amino acid metabolism and carbohydrate metabolism. There is a dynamic balance between the trophic and shedding effects of phosphorus, where concentration changes affect young biofilm morphology and DBPFP. Relatively moderate phosphorus concentrations resulted in the highest density of PN/PS organic precursors in EPS and a clear advantage of DBPFP; relatively high phosphorus conditions had limited promotion of young biofilm, while membrane structure shedding was more pronounced, increasing young biofilm-mediated DBPs production. Nitrogen-containing disinfection byproducts (N-DBPs) in young biofilms had a clear toxicity advantage, with HANs and HNMs being key to controlling cytotoxicity and genotoxicity, respectively.
Collapse
Affiliation(s)
- Songyuan Zheng
- Ministry of Education Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Hohai University, Nanjing 210098, PR China; College of Environment, Hohai University, Nanjing 210098, PR China
| | - Tao Lin
- Ministry of Education Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Hohai University, Nanjing 210098, PR China; College of Environment, Hohai University, Nanjing 210098, PR China.
| | - Han Chen
- Ministry of Education Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Hohai University, Nanjing 210098, PR China; College of Environment, Hohai University, Nanjing 210098, PR China
| | - Xue Zhang
- Suzhou Water Supply Company, Suzhou 215002, China
| | - Fuchun Jiang
- Suzhou Water Supply Company, Suzhou 215002, China
| |
Collapse
|
9
|
Effect of UV Light and Sodium Hypochlorite on Formation and Destruction of Pseudomonas fluorescens Biofilm In Vitro. Processes (Basel) 2022. [DOI: 10.3390/pr10101901] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Pseudomonas fluorescens is one of the first colonizers of bacterial biofilm in water systems and a member of opportunistic premise plumbing pathogens (OPPPs). The aim of this study was to examine the effect of UV light and sodium hypochlorite on the formation and destruction of mature P. fluorescens biofilm on ceramic tiles. Planktonic bacteria or bacteria in mature biofilm were exposed to UV light (254 nm) for 5, 20 s. and to 0.4 mg/L sodium hypochlorite for 1 min. Mature biofilm was also exposed to increased concentration of sodium hypochlorite of 2 mg/L for 0.5, 1 and 2 h and combined with UV. Prolonged action of sodium hypochlorite and an increase in its concentration in combination with UV gave the best results in the inhibition of biofilm formation after the pre-treatment and destruction of mature biofilm. The effect of hyperchlorination in combination with UV radiation shows better results after a long exposure time, although even after 120 min there was no completely destroyed biofilm. Furthermore, the mechanism of the effect of combined methods should be explored as well as the importance of mechanical cleaning that is crucial in combating bacterial biofilm in swimming pools.
Collapse
|
10
|
Zhang H, Liu D, Zhao L, Wang J, Xie S, Liu S, Lin P, Zhang X, Chen C. Review on corrosion and corrosion scale formation upon unlined cast iron pipes in drinking water distribution systems. J Environ Sci (China) 2022; 117:173-189. [PMID: 35725069 DOI: 10.1016/j.jes.2022.04.024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Revised: 04/12/2022] [Accepted: 04/21/2022] [Indexed: 06/15/2023]
Abstract
The qualified finished water from water treatment plants (WTPs) may become discolored and deteriorated during transportation in drinking water distribution systems (DWDSs), which affected tap water quality seriously. This water stability problem often occurs due to pipe corrosion and the destabilization of corrosion scales. This paper provides a comprehensive review of pipe corrosion in DWDSs, including corrosion process, corrosion scale formation, influencing factors and monitoring technologies utilized in DWDSs. In terms of corrosion process, corrosion occurrence, development mechanisms, currently applied assays, and indices used to determine the corrosion possibility are summarized, as well as the chemical and bacterial influences. In terms of scale formation, explanations for the nature of corrosion and scale formation mechanisms are discussed and its typical multilayered structure is illustrated. Furthermore, the influences of water quality and microbial activity on scale transformation are comprehensively discussed. Corrosion-related bacteria at the genus level and their associated corrosion mechanism are also summarized. This review helps deepen the current understanding of pipe corrosion and scale formation in DWDSs, providing guidance for water supply utilities to ensure effective measures to maintain water quality stability and guarantee drinking water safety.
Collapse
Affiliation(s)
- Haiya Zhang
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China; State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Dibo Liu
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China
| | - Lvtong Zhao
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China
| | - Jun Wang
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China; Research Institute for Environmental Innovation (Suzhou), Tsinghua, Suzhou 215163, China
| | - Shuguang Xie
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China
| | - Shuming Liu
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China
| | - Pengfei Lin
- Research Institute for Environmental Innovation (Suzhou), Tsinghua, Suzhou 215163, China
| | - Xiaojian Zhang
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China; Research Institute for Environmental Innovation (Suzhou), Tsinghua, Suzhou 215163, China
| | - Chao Chen
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China; Research Institute for Environmental Innovation (Suzhou), Tsinghua, Suzhou 215163, China.
| |
Collapse
|
11
|
Wang H, Hu C, Shi B. The control of red water occurrence and opportunistic pathogens risks in drinking water distribution systems: A review. J Environ Sci (China) 2021; 110:92-98. [PMID: 34593198 DOI: 10.1016/j.jes.2021.03.018] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Accepted: 03/10/2021] [Indexed: 06/13/2023]
Abstract
Many problems in drinking water distribution systems (DWDSs) are caused by microbe, such as biofilm formation, biocorrosion and opportunistic pathogens growth. More iron release from corrosion scales may induce red water. Biofilm played great roles on the corrosion. The iron-oxidizing bacteria (IOB) promoted corrosion. However, when iron-reducing bacteria (IRB) and nitrate-reducing bacteria (NRB) became the main bacteria in biofilm, they could induce iron redox cycling in corrosion process. This process enhanced the precipitation of iron oxides and formation of more Fe3O4 in corrosion scales, which inhibited corrosion effectively. Therefore, the IRB and NRB in the biofilm can reduce iron release and red water occurrence. Moreover, there are many opportunistic pathogens in biofilm of DWDSs. The opportunistic pathogens growth in DWDSs related to the bacterial community changes due to the effects of micropollutants. Micropollutants increased the number of bacteria with antibiotic resistance genes (ARGs). Furthermore, extracellular polymeric substances (EPS) production was increased by the antibiotic resistant bacteria, leading to greater bacterial aggregation and adsorption, increasing the chlorine-resistance capability, which was responsible for the enhancement of the particle-associated opportunistic pathogens in DWDSs. Moreover, O3-biological activated carbon filtration-UV-Cl2 treatment could be used to control the iron release, red water occurrence and opportunistic pathogens growth in DWDSs.
Collapse
Affiliation(s)
- Haibo Wang
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Chun Hu
- Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Institute of Environmental Research at Greater Bay, Guangzhou University, Guangzhou 510006, China
| | - Baoyou Shi
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
12
|
Liang Z, Xu X, Cao R, Wan Q, Xu H, Wang J, Lin Y, Huang T, Wen G. Synergistic effect of ozone and chlorine on inactivating fungal spores: Influencing factors and mechanisms. JOURNAL OF HAZARDOUS MATERIALS 2021; 420:126610. [PMID: 34271445 DOI: 10.1016/j.jhazmat.2021.126610] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Revised: 06/18/2021] [Accepted: 07/07/2021] [Indexed: 06/13/2023]
Abstract
Effective control of fungal contamination in water is vital to provide healthy and safe drinking water for human beings. Although ozone was highly effective in inactivating fungi in water, it was limited by a lack of continuous disinfection ability in water supply system. In present study, the inactivation of fungal spores by combining ozone and chlorine was investigated. The synergistic effects of Aspergillus niger and Trichoderma harzianum spores reached 0.47- and 0.55-log within 10 min, respectively. The inactivation efficiency and the synergistic effect would be affected by disinfectant concentration, pH, and temperature. The combined inactivation caused more violent oxidative stimulation and more severe damage to the fungal spores than the individual inactivation based on the flow cytometry analysis and the scanning electron microscopy observation. The synergistic effect during the combined inactivation process was attributed to the generation of hydroxyl radicals by the reaction between ozone and chlorine and the promotion of chlorine penetration by the destruction of cell wall by ozone. The combined inactivation efficiency in natural water samples was reduced by 26.4-43.8% compared with that in PBS. The results of this study provided an efficient and feasible disinfection method for the control of fungi in drinking water.
Collapse
Affiliation(s)
- Zhiting Liang
- Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an 710055, PR China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, PR China
| | - Xiangqian Xu
- Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an 710055, PR China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, PR China
| | - Ruihua Cao
- Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an 710055, PR China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, PR China
| | - Qiqi Wan
- Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an 710055, PR China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, PR China
| | - Huining Xu
- Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an 710055, PR China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, PR China
| | - Jingyi Wang
- Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an 710055, PR China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, PR China
| | - Yingzi Lin
- School of Municipal and Environmental Engineering, Jilin Jianzhu University, Changchun 130118, PR China
| | - Tinglin Huang
- Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an 710055, PR China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, PR China
| | - Gang Wen
- Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an 710055, PR China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, PR China.
| |
Collapse
|
13
|
The role of Acanthamoeba spp. in biofilm communities: a systematic review. Parasitol Res 2021; 120:2717-2729. [PMID: 34292376 DOI: 10.1007/s00436-021-07240-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Accepted: 07/01/2021] [Indexed: 12/16/2022]
Abstract
Acanthamoeba spp. have always caused disease in immunosuppressed patients, but since 1986, they have become a worldwide public health issue by causing infection in healthy contact lens wearers. Amoebae of the Acanthamoeba genus are broadly distributed in nature, living either freely or as parasites, and are frequently associated with biofilms throughout the environment. These biofilms provide the parasite with protection against external aggression, thus favoring its increased pathogeny. This review aims to assess observational studies on the association between Acanthamoeba spp. and biofilms, opening potential lines of research on this severe ocular infection. A systematic literature search was conducted in May 2020 in the following databases: PubMed Central®/Medline, LILACS, The Cochrane Library, and EMBASE®. The studies were selected following the inclusion and exclusion criteria specifically defined for this review. Electronic research recovered 353 publications in the literature. However, none of the studies met the inclusion criterion of biofilm-producing Acanthamoeba spp., inferring that the parasite does not produce biofilms. Nonetheless, 78 studies were classified as potentially included regarding any association of Acanthamoeba spp. and biofilms. These studies were allocated across six different locations (hospital, aquatic, ophthalmic and dental environments, biofilms produced by bacteria, and other places). Acanthamoeba species use biofilms produced by other microorganisms for their benefit, in addition to them providing protection to and facilitating the dissemination of pathogens residing in them.
Collapse
|
14
|
Nisar MA, Ross KE, Brown MH, Bentham R, Whiley H. Legionella pneumophila and Protozoan Hosts: Implications for the Control of Hospital and Potable Water Systems. Pathogens 2020; 9:pathogens9040286. [PMID: 32326561 PMCID: PMC7238060 DOI: 10.3390/pathogens9040286] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2020] [Revised: 04/10/2020] [Accepted: 04/14/2020] [Indexed: 12/12/2022] Open
Abstract
Legionella pneumophila is an opportunistic waterborne pathogen of public health concern. It is the causative agent of Legionnaires’ disease (LD) and Pontiac fever and is ubiquitous in manufactured water systems, where protozoan hosts and complex microbial communities provide protection from disinfection procedures. This review collates the literature describing interactions between L. pneumophila and protozoan hosts in hospital and municipal potable water distribution systems. The effectiveness of currently available water disinfection protocols to control L. pneumophila and its protozoan hosts is explored. The studies identified in this systematic literature review demonstrated the failure of common disinfection procedures to achieve long term elimination of L. pneumophila and protozoan hosts from potable water. It has been demonstrated that protozoan hosts facilitate the intracellular replication and packaging of viable L. pneumophila in infectious vesicles; whereas, cyst-forming protozoans provide protection from prolonged environmental stress. Disinfection procedures and protozoan hosts also facilitate biogenesis of viable but non-culturable (VBNC) L. pneumophila which have been shown to be highly resistant to many water disinfection protocols. In conclusion, a better understanding of L. pneumophila-protozoan interactions and the structure of complex microbial biofilms is required for the improved management of L. pneumophila and the prevention of LD.
Collapse
|
15
|
Ma X, Li G, Chen R, Yu Y, Tao H, Zhang G, Shi B. Revealing the changes of bacterial community from water source to consumers tap: A full-scale investigation in eastern city of China. J Environ Sci (China) 2020; 87:331-340. [PMID: 31791506 DOI: 10.1016/j.jes.2019.07.017] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2019] [Revised: 07/23/2019] [Accepted: 07/24/2019] [Indexed: 06/10/2023]
Abstract
This study profiled the bacterial community variations of water from four water treatment systems, including coagulation, sedimentation, sand filtration, ozonation-biological activated carbon filtration (O3-BAC), disinfection, and the tap water after the distribution process in eastern China. The results showed that different water treatment processes affected the bacterial community structure in different ways. The traditional treatment processes, including coagulation, sedimentation and sand filtration, reduced the total bacterial count, while they had little effect on the bacterial community structure in the treated water (before disinfection). Compared to the traditional treatment process, O3-BAC reduced the relative abundance of Sphingomonas in the finished water. In addition, ozonation may play a role in reducing the relative abundance of Mycobacterium. NaClO and ClO2 had different effects on the bacterial community in the finished water. The relative abundance of some bacteria (e.g. Flavobacterium, Phreatobacter and Porphyrobacter) increased in the finished water after ClO2 disinfection. The relative abundance of Mycobacterium and Legionella, which have been widely reported as waterborne opportunistic pathogens, increased after NaClO disinfection. In addition, some microorganisms proliferated and grew in the distribution system, which could lead to turbidity increases in the tap water. Compared to those in the finished water, the relative abundance of Sphingomonas, Hyphomicrobium, Phreatobacter, Rheinheimera, Pseudomonas and Acinetobacter increased in the tap water disinfected with NaClO, while the relative abundance of Mycobacterium increased in the tap water disinfected with ClO2. Overall, this study provided the detailed variation in the bacterial community in the drinking water system.
Collapse
Affiliation(s)
- Xu Ma
- School of Environment & Natural Resource, Renmin University of China, Beijing 100872, China
| | - Guiwei Li
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Ruya Chen
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Ying Yu
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Hui Tao
- College of Environmental Science and Engineering, Hohai University, Nanjing 210098, China
| | - Guangming Zhang
- School of Environment & Natural Resource, Renmin University of China, Beijing 100872, China.
| | - Baoyou Shi
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
16
|
Ren J, Liu Y, Feng L, Liu C. Preparation and electrochemical performance of uniform RuO
2
/Ti and RuO
2
‐IrO
2
/Ti electrode for electrolysis of NaCl solution. CAN J CHEM ENG 2019. [DOI: 10.1002/cjce.23579] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Affiliation(s)
- Jie Ren
- School of Chemical Engineering and TechnologyChina University of Mining and TechnologyXuzhou Jiangsu 221116 China
| | - Yi‐Ling Liu
- School of Chemical Engineering and TechnologyChina University of Mining and TechnologyXuzhou Jiangsu 221116 China
| | - Li Feng
- School of Chemical Engineering and TechnologyChina University of Mining and TechnologyXuzhou Jiangsu 221116 China
| | - Chun‐Wei Liu
- School of Chemical Engineering and TechnologyChina University of Mining and TechnologyXuzhou Jiangsu 221116 China
| |
Collapse
|
17
|
|
18
|
Liu D, Jin J, Liang S, Zhang J. Characteristics of water quality and bacterial communities in three water supply pipelines. RSC Adv 2019; 9:4035-4047. [PMID: 35518077 PMCID: PMC9060443 DOI: 10.1039/c8ra08645a] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2018] [Accepted: 01/04/2019] [Indexed: 11/30/2022] Open
Abstract
Many cities in China have implemented urban water supply pipe network renovation projects; however, at the beginning of new pipeline replacements, customers often complain about water quality problems, such as red water, odour and other water quality problems. To overcome these frequent water quality problems, this study selected a commonly used ductile cast iron (DCI) pipe, stainless steel (SS) pipe and high-density polyethylene (HDPE) pipe for laboratory simulations of the water quality regularity of new pipes, the variations in pipe inner walls, and the presence of microbial communities. Based on the research results, combined with actual water sample analysis, the stabilisation time of the interaction between the tubings inner walls and bulk water was determined, to allow pipeline cleaning and water quality maintenance. The results showed that the water quality change in the DCI was the most significant, while the SS and the HDPE pipes showed consistent changes with severe initial deterioration, then later stabilisation to meet the required standard. The DCI inner wall changed from a loose porous particle shape to a relatively dense and irregular three-dimensional shape, with the constituent elements mainly being O and Ca. The SS inner wall had a uniform structure in the early stage, but are obvious spherical balls of different sizes formed later, with the elemental composition here mainly being C and O. The HDPE inner wall was smooth and had small perforations in the early stage, while the perforation in the middle and late stages increased to become rough and scale-like at a much later stage. The proportion of Proteobacteria in effluents (72.82% to 86.87%) was significantly increased compared with the influent (48.45%), while the proportion of Proteobacteria (86.87%) in the DCI was significantly higher than in the SS (74.28%) and HDPE pipes (81.68%). Moreover, compared with the influent (23.33%), the Bacteroidetes (2.79% to 3.32%) levels in the effluents were significantly reduced, indicating that the pipe material affects the microbial abundance in water. Factory water interacts with pipelines resulting in water quality deterioration. To stop this happening and to improve the selection of water supply pipes, it is important to study the water quality, the inner wall of the pipeline, and the microbial community.![]()
Collapse
Affiliation(s)
- Dongpo Liu
- Shenzhen Water (Group) Co., Ltd
- Shenzhen
- China
- School of Civil Engineering
- Guangzhou
| | - Juntao Jin
- Shenzhen Water (Group) Co., Ltd
- Shenzhen
- China
- Cooperative Research and Education Centre for Environment Technology of Tsinghua
- Kyoto University
| | - Sichen Liang
- Shenzhen Water (Group) Co., Ltd
- Shenzhen
- China
- Harbin Institute of Technology
- Harbin
| | - Jinsong Zhang
- Shenzhen Water (Group) Co., Ltd
- Shenzhen
- China
- School of Civil Engineering
- Guangzhou
| |
Collapse
|