1
|
Shen Y, Zhi G, Zhang Y, Jin W, Kong Y, Li Z, Zhang H. An investigative review of the expanded capabilities of thermal/optical techniques for measuring carbonaceous aerosols and beyond. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2025; 364:125363. [PMID: 39571715 DOI: 10.1016/j.envpol.2024.125363] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Revised: 11/17/2024] [Accepted: 11/19/2024] [Indexed: 11/26/2024]
Abstract
Carbonaceous aerosols primarily comprise organic carbon (OC) and black carbon (BC). Thermal-optical analysis (TOA) is the most commonly used method for separating carbonaceous aerosols into OC and EC (BC is referred to as elemental carbon EC, in this method). Advances in hardware design and algorithms have expanded the capabilities of TOA beyond just distinguishing OC and EC. However, a comprehensive understanding of the enhanced functionality of TOA is still lacking. This study provides the first comprehensive review of the TOA technique, highlighting expanded capabilities to measure brown carbon (BrC), mass-absorption efficiency, absorption enhancement, source contributions, and refined OC/EC split points. This review discusses the principles, advantages, and limitations of these advancements. Furthermore, the TOA system anticipates further advancements through integration with other instruments, establishing correlations between EC values obtained from different TOA instruments/protocols, correlating between BrC measurements from TOA and non-TOA methods, and developing an algorithm to quantify BrC from progressive absorption Ångström exponent (AAE) values. This review enhances the understanding of the TOA system and its implication for air quality and atmospheric radiation research.
Collapse
Affiliation(s)
- Yi Shen
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China; Institute of Atmospheric Environment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China
| | - Guorui Zhi
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China; Institute of Atmospheric Environment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China.
| | - Yuzhe Zhang
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China; Institute of Atmospheric Environment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China
| | - Wenjing Jin
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China; Institute of Atmospheric Environment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China.
| | - Yao Kong
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China; Institute of Atmospheric Environment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China
| | - Zhengying Li
- Beijing Municipal Ecological and Environmental Monitoring Center, Beijing, 100048, China
| | - Haitao Zhang
- College of Science, China University of Petroleum, Beijing, 102249, China
| |
Collapse
|
2
|
Ajtai T, Utry N, Pintér M, Rahman A, Kurilla B, Sárossy G, Deák L, Baladincz J, Raffai P, Szabó G, Bozóki Z. The investigation of diesel soot emission using instrument combination of multi-wavelength photoacoustic spectroscopy and scanning mobility particle sizer. Sci Rep 2024; 14:2254. [PMID: 38278878 PMCID: PMC10817988 DOI: 10.1038/s41598-024-52832-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Accepted: 01/24/2024] [Indexed: 01/28/2024] Open
Abstract
The parallel measurements of wavelength dependent optical absorption, particle number size distribution have made by a multi wavelength photoacoustic spectrometer (4λ-PAS) and scanning mobility particle sizer (SMPS) respectively at different modes of a diesel engine using two different types of fuel. The thermal evolution of the emission was also investigated using posterior temperature treatment of emission. The bimodal size distribution of emitted particles at a set reference temperature has been observed regardless of the applied fuel at idle. However, the emitted particulate assembly had lognormal size distribution falls into the accumulation mode at all other defined engine modes and both fuel types. The total number- and volume concentration (TNC and TVC) showed retrograde tendency with the increasing torque and rpm independently of the applied fuel types. The TNC values decreased up to 50% for both fuels with engine operation changes from idle engine mode(em#1) to low engine mode(em#2). With further increase in torque and rpm of engine, the change in TNC is negligible. On the other hand, the TVC remains more or less the same for idle to low engine mode transition and increased more than 60% for high mode (em#3) transition. The Optical Absorption Coefficient (OAC) values measured at the operational wavelengths of the 4λ-PAS instrument decreased at all wavelengths with increasing rpm and torque. The wavelength dependency quantified by Aerosol Ängström Exponent (AAE) was applied here for qualitative analysis of the carbonaceous emission and showed decreased values towards the higher engine speed and torque output of the engine. The proposed technique can be used as real-time, precise and accurate measurement of light absorption by DPM aerosols, which opens up novel possibilities for the volatility and thermal evolution investigation of diesel emissions.
Collapse
Affiliation(s)
- Tibor Ajtai
- Department of Optics and Quantum Electronics, University of Szeged, 9. Dóm Square, Szeged, 6720, Hungary
- HUN-REN-SZTE Research Group for Photoacoustic Monitoring of Environmental Processes, Dóm ter 9, Szeged, 6720, Hungary
| | - Noémi Utry
- Department of Optics and Quantum Electronics, University of Szeged, 9. Dóm Square, Szeged, 6720, Hungary
| | - Máté Pintér
- Department of Optics and Quantum Electronics, University of Szeged, 9. Dóm Square, Szeged, 6720, Hungary
| | - Abdul Rahman
- Department of Optics and Quantum Electronics, University of Szeged, 9. Dóm Square, Szeged, 6720, Hungary.
| | - Boldizsár Kurilla
- Department of Optics and Quantum Electronics, University of Szeged, 9. Dóm Square, Szeged, 6720, Hungary
| | - Gábor Sárossy
- MOL Ltd. Duna Refinery, Százhalombatta, 2440, Hungary
| | - László Deák
- MOL Ltd. Duna Refinery, Százhalombatta, 2440, Hungary
| | | | - Péter Raffai
- Department of Optics and Quantum Electronics, University of Szeged, 9. Dóm Square, Szeged, 6720, Hungary
| | - Gábor Szabó
- Department of Optics and Quantum Electronics, University of Szeged, 9. Dóm Square, Szeged, 6720, Hungary
| | - Zoltán Bozóki
- Department of Optics and Quantum Electronics, University of Szeged, 9. Dóm Square, Szeged, 6720, Hungary
- HUN-REN-SZTE Research Group for Photoacoustic Monitoring of Environmental Processes, Dóm ter 9, Szeged, 6720, Hungary
| |
Collapse
|
3
|
Wu B, Wu Z, Yao Z, Shen X, Cao X. Refined mass absorption cross-section of black carbon from typical non-road mobile machinery in China based on real-world measurements. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 908:168579. [PMID: 37967631 DOI: 10.1016/j.scitotenv.2023.168579] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 11/10/2023] [Accepted: 11/12/2023] [Indexed: 11/17/2023]
Abstract
Non-road mobile machinery (NRMM) is becoming a more prominent contribution of black carbon (BC), and mass absorption cross-section (MAC) as an essential parameter to characterize the BC optical property is still not clear. In this study, we explored the impacts of key factors on the MAC of BC based on real-world measurements from 41 typical NRMM. We characterized the organic carbon (OC) and elemental carbon (EC), and found MAC values of BC from NRMM increase as the OC/EC mass ratios increase, since the OC coating can enhance BC light absorption. With more stringent emission standards, the MAC values of all tested NRMM show a significant decreasing trend. Meanwhile, we found the absorption coefficients obtained by filter-based (bfilter) and in-situ-based (bin-situ) methods present good correlation for NRMM in this study, but bfilter are significantly higher than bin-situ when bfilter are above 40,000 Mm-1. Furthermore, we have refined the MAC values under different emission standards, and recommended a more appropriate MAC value (11.5 ± 3.4 m2/g) of NRMM at 550 nm wavelength, which is 1.5 times of the MAC value (7.5 m2/g) commonly used in previous studies. Our results will be indispensable for accurate BC quantification from NRMM and climate radiative effects prediction.
Collapse
Affiliation(s)
- Bobo Wu
- School of Ecology and Environment, Beijing Technology and Business University, Beijing 100048, China; State Environmental Protection Key Laboratory of Food Chain Pollution Control, Beijing Technology and Business University, Beijing 100048, China
| | - Zichun Wu
- School of Ecology and Environment, Beijing Technology and Business University, Beijing 100048, China
| | - Zhiliang Yao
- School of Ecology and Environment, Beijing Technology and Business University, Beijing 100048, China; State Environmental Protection Key Laboratory of Food Chain Pollution Control, Beijing Technology and Business University, Beijing 100048, China.
| | - Xianbao Shen
- School of Ecology and Environment, Beijing Technology and Business University, Beijing 100048, China; State Environmental Protection Key Laboratory of Food Chain Pollution Control, Beijing Technology and Business University, Beijing 100048, China
| | - Xinyue Cao
- School of Ecology and Environment, Beijing Technology and Business University, Beijing 100048, China; State Environmental Protection Key Laboratory of Food Chain Pollution Control, Beijing Technology and Business University, Beijing 100048, China
| |
Collapse
|
4
|
Luo L, Tian H, Liu H, Bai X, Liu W, Liu S, Wu B, Lin S, Zhao S, Hao Y, Sun Y, Hao J, Zhang K. Seasonal variations in the mass characteristics and optical properties of carbonaceous constituents of PM 2.5 in six cities of North China. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 268:115780. [PMID: 33120156 DOI: 10.1016/j.envpol.2020.115780] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2020] [Revised: 10/01/2020] [Accepted: 10/04/2020] [Indexed: 06/11/2023]
Abstract
Carbonaceous constituents have various adverse impacts on human health, visibility, and climate change. Although comprehensive studies on the characteristics of carbonaceous constituents have been conducted recently, systematic studies covering both the mass characteristics and light-absorption properties of carbonaceous constituents on a regional scale in China are quite limited. In this study, current seasonal measurements of organic carbon (OC) and elemental carbon (EC) in PM2.5 were investigated during autumn and winter (1-30 October 2017 and December 18, 2017 to January 17, 2018) in six selected cities located at the eastern foot of the Taihang Mountains: Beijing, Baoding, Shijiazhuang, Handan, Xinxiang, and Zhengzhou. Seasonal variations were similar when Beijing was excluded. The lowest concentrations of OC (18.33 ± 9.39 μg/m3) and EC (7.66 ± 5.64 μg/m3) were observed in Xinxiang (autumn) and Beijing (winter), respectively, while the highest concentrations of OC (38.43 ± 62.10 μg/m3) and EC (12.24 ± 24.67 μg/m3) occurred in Baoding during winter mainly due to elevated fuel combustion for space heating. The results of the potential source contribution function (PSCF) analysis suggested that border zones between several provinces in North China should be highlighted in order to strengthen pollution control. Moreover, by separating the optical properties of brown carbon from those of black carbon, we were able to estimate the contributions of brown carbon to the PM2.5 total light-absorption coefficient. The results show that the brown carbon absorption coefficient (at 405 nm) in winter at six sites accounted for 21.2%, 33.3%, 34.7%, 39.1%, 48.6%, and 23.3% of the PM2.5 light absorption, which are values that are comparable to the contribution of black carbon in Xinxiang. These results provide a more comprehensive understanding of carbonaceous constituents on a regional scale.
Collapse
Affiliation(s)
- Lining Luo
- State Key Laboratory of Environmental Simulation and Pollution Control, School of Environment, Beijing Normal University, Beijing, 100875, China; Center for Atmospheric Environmental Studies, Beijing Normal University, Beijing, 100875, China
| | - Hezhong Tian
- State Key Laboratory of Environmental Simulation and Pollution Control, School of Environment, Beijing Normal University, Beijing, 100875, China; Center for Atmospheric Environmental Studies, Beijing Normal University, Beijing, 100875, China.
| | - Huanjia Liu
- State Key Laboratory of Environmental Simulation and Pollution Control, School of Environment, Beijing Normal University, Beijing, 100875, China; Center for Atmospheric Environmental Studies, Beijing Normal University, Beijing, 100875, China
| | - Xiaoxuan Bai
- State Key Laboratory of Environmental Simulation and Pollution Control, School of Environment, Beijing Normal University, Beijing, 100875, China; Center for Atmospheric Environmental Studies, Beijing Normal University, Beijing, 100875, China
| | - Wei Liu
- State Key Laboratory of Environmental Simulation and Pollution Control, School of Environment, Beijing Normal University, Beijing, 100875, China; Center for Atmospheric Environmental Studies, Beijing Normal University, Beijing, 100875, China
| | - Shuhan Liu
- State Key Laboratory of Environmental Simulation and Pollution Control, School of Environment, Beijing Normal University, Beijing, 100875, China; Center for Atmospheric Environmental Studies, Beijing Normal University, Beijing, 100875, China
| | - Bobo Wu
- State Key Laboratory of Environmental Simulation and Pollution Control, School of Environment, Beijing Normal University, Beijing, 100875, China; Center for Atmospheric Environmental Studies, Beijing Normal University, Beijing, 100875, China
| | - Shumin Lin
- State Key Laboratory of Environmental Simulation and Pollution Control, School of Environment, Beijing Normal University, Beijing, 100875, China; Center for Atmospheric Environmental Studies, Beijing Normal University, Beijing, 100875, China
| | - Shuang Zhao
- State Key Laboratory of Environmental Simulation and Pollution Control, School of Environment, Beijing Normal University, Beijing, 100875, China; Center for Atmospheric Environmental Studies, Beijing Normal University, Beijing, 100875, China
| | - Yan Hao
- State Key Laboratory of Environmental Simulation and Pollution Control, School of Environment, Beijing Normal University, Beijing, 100875, China; Center for Atmospheric Environmental Studies, Beijing Normal University, Beijing, 100875, China
| | - Yujiao Sun
- College of Water Sciences, Beijing Normal University, Beijing, 100875, China
| | - Jiming Hao
- School of Environment, Tsinghua University, Beijing, 100084, China
| | - Kai Zhang
- Department of Epidemiology, Human Genetics and Environmental Sciences, The University of Texas Health Science Center at Houston School of Public Health, Houston, TX, 77030, USA
| |
Collapse
|
5
|
Black Carbon: The Concentration and Sources Study at the Nam Co Lake, the Tibetan Plateau from 2015 to 2016. ATMOSPHERE 2020. [DOI: 10.3390/atmos11060624] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
We measured black carbon (BC) with a seven-wavelength aethalometer (AE-31) at the Nam Co Lake (NCL), the hinterland of the Tibetan Plateau (TP) from May 2015 to April 2016. The daily average concentration of BC was 145 ± 85 ng m−3, increasing by 50% since 2006. The seasonal variation of BC shows higher concentrations in spring and summer and lower concentrations in autumn and winter, dominated by the adjacent sources and meteorological conditions. The diurnal variation of BC showed that its concentrations peaked at 9:00–16:00 (UTC + 8), significantly related to local human activities (e.g., animal-manure burning and nearby traffic due to the tourism industry). The concentration-weighted trajectory (CWT) analysis showed that the long-distance transport of BC from South Asia could also be a potential contributor to BC at the NCL, as well as the biomass burning by the surrounding residents. The analyses of the absorption coefficient and absorption Ångström exponent show the consistency of sourcing the BC at the NCL. We suggest here that urgent measures should be taken to protect the atmospheric environment at the NCL, considering the fast-increasing concentrations of BC as an indicator of fuel combustion.
Collapse
|