1
|
Yang J, Song J, Gao X, Li M, Qin H, Niu Y, Luan H, Chen X, Guo J, Yuan T, Liu W. Integrated toxicity of secondary, tertiary, wetland effluents on human stem cells triggered by ERα and PPARγ agonists. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 937:173419. [PMID: 38802024 DOI: 10.1016/j.scitotenv.2024.173419] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2024] [Revised: 04/23/2024] [Accepted: 05/19/2024] [Indexed: 05/29/2024]
Abstract
Residual pollutants in discharged and reused water pose both direct and indirect human exposure. However, health effects caused by whole effluent remain largely unknown due to the lack of human relevant model for toxicity test. Effluents from four secondary wastewater treatment plants (SWTPs), a tertiary wastewater treatment plant (TWTP) and a constructed wetland (CW) were evaluated for the integrated toxicity of the organic extractions. Multiple-endpoint human mesenchymal stem cells (MSCs) assay was used as an in vitro model relevant to human health. The effluents caused cytotoxicity, oxidative stress and genotoxicity in MSCs. The osteogenic and neurogenic differentiation were inhibited and the adipogenic differentiation were stimulated by some of the effluent extractions. The SWTP, TWTP and CW treatments reduced integrated biomarker response (IBR) by 26.3 %, 17.5 % and 33.3 % respectively, where the IBR values of final CW (8.3) and TWTP (8.2) effluents were relatively lower than SWTPs (9.1). Among multiple biomarkers, the inhibition of osteogenesis was the least reduced by wastewater treatment. Besides, ozone disinfection in tertiary treatment increased cytotoxicity and differentiation effects suggesting the generation of toxic products. The mRNA expressions of estrogen receptor alpha (ERα) and peroxisome proliferator-activated receptor gamma (PPARγ) were significantly upregulated by effluents. The inhibitory effects of effluents on neural differentiation were mitigated after antagonizing ERα and PPARγ in the cells. It is suggested that ERα and PPARγ agonists in effluents were largely accountable for the impairment of stem cell differentiation. Besides, the concentrations of n-C29H60, o-cresol, fluorene and phenanthrene in the effluents were significantly correlated with the intergrated stem cell toxicity. The present study provided toxicological evidence for the relation between water contamination and human health, with an insight into the key toxicity drivers. The necessity for deep water treatment and the potential means were suggested for improving water quality.
Collapse
Affiliation(s)
- Jing Yang
- Key Laboratory of Industrial Ecology and Environmental Engineering, School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China
| | - Jingyang Song
- Key Laboratory of Industrial Ecology and Environmental Engineering, School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China
| | - Xin Gao
- Key Laboratory of Industrial Ecology and Environmental Engineering, School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China
| | - Minghan Li
- Key Laboratory of Industrial Ecology and Environmental Engineering, School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China
| | - Hui Qin
- Key Laboratory of Industrial Ecology and Environmental Engineering, School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China
| | - Yuxin Niu
- Key Laboratory of Industrial Ecology and Environmental Engineering, School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China
| | - Haiyang Luan
- Key Laboratory of Industrial Ecology and Environmental Engineering, School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China
| | - Xiaofeng Chen
- Key Laboratory of Industrial Ecology and Environmental Engineering, School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China
| | - Junyan Guo
- Key Laboratory of Industrial Ecology and Environmental Engineering, School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China
| | - Tuwan Yuan
- Key Laboratory of Industrial Ecology and Environmental Engineering, School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China
| | - Wei Liu
- Key Laboratory of Industrial Ecology and Environmental Engineering, School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China.
| |
Collapse
|
2
|
Gao X, Yang J, Song J, Wu S, Li M, Li J, Chen X, Qin H, Luan H, Chen Z, Yu K, Liu W. Toxicity removal from contaminated water by constructed wetlands assessed using multiple biomarkers in human stem cell assays. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 925:171682. [PMID: 38494012 DOI: 10.1016/j.scitotenv.2024.171682] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2023] [Revised: 02/26/2024] [Accepted: 03/10/2024] [Indexed: 03/19/2024]
Abstract
Constructed wetlands (CWs) have been developed rapidly as a sustainable water treatment technique. However, the capability of CWs for remediating the contaminated water based on toxicity assessment remains largely unknown. Four surface flow CWs and two integrated surface-subsurface flow CWs, from five cities in central and eastern region of China were evaluated, concerning the adverse effects of effluents and the toxicity reduction efficiency. Human bone marrow mesenchymal stem cells (hBMSCs) were employed as a human relevant in vitro model. The influent extractions caused cytotoxicity in a dose-dependent manner. The non-cytotoxic dilutions of the influents enhanced the genotoxicity marker γ-H2AX and reactive oxygen species levels. In addition, the influent repressed the osteogenic and neurogenic differentiation, and stimulated the adipogenic differentiation. Cytotoxicity of the contaminated water was reduced by 54 %-86 % after treatment with CWs. CWs were effective to remove part of the sub-lethal effects, with lower reduction than cytotoxicity. The integrated biomarker response (IBR) value of the effluents from the six CWs is lower than that of four secondary and one tertiary wastewater treatment plants. The IBR of the six CWs influents were in the range of 8.6-10.6, with a reduction of 15-50 % after the pollution restoration in CWs. The two integrated surface-subsurface flow CWs achieved higher IBR removal than the four surface flow CWs, possibly due to improved treatment effects by the combined systems. Cytotoxic and genotoxic effects of polar fractions in the CW effluents were stronger than the medium-polar and the non-polar fractions. Besides, PPARγ agonists present in the effluents played crucial roles and ERα agonists may make modest contributions. The present study enhances understanding of the role of CWs in achieving safe wastewater reclamation and provides evidence for further improving toxicity reduction in CWs performance.
Collapse
Affiliation(s)
- Xin Gao
- Key Laboratory of Industrial Ecology and Environmental Engineering, Ministry of Education, School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China
| | - Jing Yang
- Key Laboratory of Industrial Ecology and Environmental Engineering, Ministry of Education, School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China
| | - Jingyang Song
- Key Laboratory of Industrial Ecology and Environmental Engineering, Ministry of Education, School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China
| | - Shanshan Wu
- Ministry of Water Resources Key Laboratory for Hydro-ecology and Hydraulic Heritage, College of Architecture and Landscape of Peking University, Beijing 100871, China
| | - Minghan Li
- Key Laboratory of Industrial Ecology and Environmental Engineering, Ministry of Education, School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China
| | - Jianing Li
- Ministry of Water Resources Key Laboratory for Hydro-ecology and Hydraulic Heritage, College of Architecture and Landscape of Peking University, Beijing 100871, China
| | - Xiaofeng Chen
- Key Laboratory of Industrial Ecology and Environmental Engineering, Ministry of Education, School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China
| | - Hui Qin
- Key Laboratory of Industrial Ecology and Environmental Engineering, Ministry of Education, School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China
| | - Haiyang Luan
- Key Laboratory of Industrial Ecology and Environmental Engineering, Ministry of Education, School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China
| | - Zhiqiang Chen
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology (SKLUWRE, HIT), Harbin 150090, China.
| | - Kongjian Yu
- Ministry of Water Resources Key Laboratory for Hydro-ecology and Hydraulic Heritage, College of Architecture and Landscape of Peking University, Beijing 100871, China.
| | - Wei Liu
- Key Laboratory of Industrial Ecology and Environmental Engineering, Ministry of Education, School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China.
| |
Collapse
|
3
|
Haslea ostrearia Pigment Marennine Affects Key Actors of Neuroinflammation and Decreases Cell Migration in Murine Neuroglial Cell Model. Int J Mol Sci 2023; 24:ijms24065388. [PMID: 36982463 PMCID: PMC10049552 DOI: 10.3390/ijms24065388] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Revised: 03/06/2023] [Accepted: 03/09/2023] [Indexed: 03/16/2023] Open
Abstract
Haslea ostrearia, a cosmopolitan marine pennate diatom, produces a characteristic blue pigment called marennine that causes the greening of filter-feeding organisms, such as oysters. Previous studies evidenced various biological activities of purified marennine extract, such as antibacterial, antioxidant and antiproliferative effects. These effects could be beneficial to human health. However, the specific biological activity of marennine remains to be characterized, especially regarding primary cultures of mammals. In the present study, we aimed to determine in vitro the effects of a purified extract of marennine on neuroinflammatory and cell migratory processes. These effects were assessed at non-cytotoxic concentrations of 10 and 50μg/mL on primary cultures of neuroglial cells. Marennine strongly interacts with neuroinflammatory processes in the immunocompetent cells of the central nervous system, represented by astrocytes and microglial cells. An anti-migratory activity based on a neurospheres migration assay has also been observed. These results encourage further study of Haslea blue pigment effects, particularly the identification of molecular and cellular targets affected by marennine, and strengthen previous studies suggesting that marennine has bioactivities which could be beneficial for human health applications.
Collapse
|
4
|
Dara D, Drabovich AP. Assessment of risks, implications, and opportunities of waterborne neurotoxic pesticides. J Environ Sci (China) 2023; 125:735-741. [PMID: 36375955 DOI: 10.1016/j.jes.2022.03.033] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Pesticides are a well-known family of chemicals that have contaminated water systems globally. Four common subfamilies of pesticides include organochlorines, organophosphates, pyrethroids, and carbamate insecticides which have been shown to adversely affect the human nervous system. Studies have shown a link between pesticide exposure and decreased viability, proliferation, migration, and differentiation of murine neural stem cells. Besides human exposure directly through water systems, additional factors such as pesticide bioaccumulation, biomagnification and potential synergism due to co-exposure to other environmental contaminants must be considered. A possible avenue to investigate the molecular mechanisms and biomolecules impacted by the various classes of pesticides includes the field of -omics. Discovery of the precise molecular mechanisms behind pesticide-mediated neurodegenerative disorders may facilitate development of targeted therapeutics. Likewise, discovery of pesticide biodegradation pathways may enable novel approaches for water system bioremediation using genetically engineered microorganisms. In this mini-review, we discuss recently established harmful impacts of various categories of pesticides on the nervous system and the application of -omics field for discovery, validation, and mitigation of pesticide neurotoxicity.
Collapse
Affiliation(s)
- Delaram Dara
- Division of Analytical and Environmental Toxicology, Department of Laboratory Medicine and Pathology, Faculty of Medicine and Dentistry, University of Alberta, Alberta T6G 2G3, Canada
| | - Andrei P Drabovich
- Division of Analytical and Environmental Toxicology, Department of Laboratory Medicine and Pathology, Faculty of Medicine and Dentistry, University of Alberta, Alberta T6G 2G3, Canada.
| |
Collapse
|
5
|
Arcega RD, Chen RJ, Chih PS, Huang YH, Chang WH, Kong TK, Lee CC, Mahmudiono T, Tsui CC, Hou WC, Hsueh HT, Chen HL. Toxicity prediction: An application of alternative testing and computational toxicology in contaminated groundwater sites in Taiwan. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2023; 328:116982. [PMID: 36502707 DOI: 10.1016/j.jenvman.2022.116982] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Revised: 11/15/2022] [Accepted: 12/04/2022] [Indexed: 06/17/2023]
Abstract
Groundwater contamination remains a global threat due to its toxic effects to humans and the environment. The remediation of contaminated groundwater sites can be costly, thus, identifying the priority areas of concern is important to reduce money spent on resources. In this study, we aimed to identify and rank the priority groundwater sites in a contaminated petrochemical district by combining alternative, non-animal approaches - chemical analysis, cell-based high throughput screening (HTS), and Toxicological Priority Index (ToxPi) computational toxicology tool. Groundwater samples collected from ten different sites in a contaminated district showed pollutant levels below the detection limit, however, hepatotoxic bioactivity was demonstrated in human hepatoma HepaRG cells. Integrating the pollutants information (i.e., pollutant characteristics and concentration data) with the bioactivity data of the groundwater samples, an evidence-based ranking of the groundwater sites for future remediation was established using ToxPi analysis. The currently presented combinatorial approach of screening groundwater sites for remediation purposes can further be refined by including relevant parameters, which can boost the utility of this approach for groundwater screening and future remediation.
Collapse
Affiliation(s)
- Rachelle D Arcega
- Department of Food Safety/Hygiene and Risk Management, College of Medicine, National Cheng Kung University, Tainan 701, Taiwan
| | - Rong-Jane Chen
- Department of Food Safety/Hygiene and Risk Management, College of Medicine, National Cheng Kung University, Tainan 701, Taiwan
| | - Pei-Shan Chih
- Department of Food Safety/Hygiene and Risk Management, College of Medicine, National Cheng Kung University, Tainan 701, Taiwan
| | - Yi-Hsuan Huang
- Department of Food Safety/Hygiene and Risk Management, College of Medicine, National Cheng Kung University, Tainan 701, Taiwan
| | - Wei-Hsiang Chang
- Department of Food Safety/Hygiene and Risk Management, College of Medicine, National Cheng Kung University, Tainan 701, Taiwan; Department of Environmental Trace Toxic Substances Research Center, College of Medicine, National Cheng Kung University, Tainan 701, Taiwan
| | - Ting-Khai Kong
- Department of Food Safety/Hygiene and Risk Management, College of Medicine, National Cheng Kung University, Tainan 701, Taiwan
| | - Ching-Chang Lee
- Department of Environmental Trace Toxic Substances Research Center, College of Medicine, National Cheng Kung University, Tainan 701, Taiwan; Department of Environmental and Occupational Health, College of Medicine, National Cheng Kung University, Tainan 701, Taiwan
| | - Trias Mahmudiono
- Department of Nutrition, Faculty of Public Health, Universitas Airlangga, Surabaya 60115, Indonesia
| | - Chun-Chih Tsui
- Toxic and Chemical Substances Bureau, Environmental Protection Administration Executive Yuan, Taipei City,106, Taiwan
| | - Wen-Che Hou
- Department of Environmental Engineering, National Cheng Kung University, Tainan City,701, Taiwan
| | - Hsin-Ta Hsueh
- Sustainable Environment Research Laboratories, National Cheng Kung University, Tainan City,701, Taiwan
| | - Hsiu-Ling Chen
- Department of Food Safety/Hygiene and Risk Management, College of Medicine, National Cheng Kung University, Tainan 701, Taiwan; Department of Nutrition, Faculty of Public Health, Universitas Airlangga, Surabaya 60115, Indonesia.
| |
Collapse
|
6
|
Luo H, Li J, Song B, Zhang B, Li Y, Zhou Z, Chang X. The binary combined toxicity of lithium, lead, and manganese on the proliferation of murine neural stem cells using two different models. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:5047-5058. [PMID: 35976582 DOI: 10.1007/s11356-022-22433-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Accepted: 08/03/2022] [Indexed: 06/15/2023]
Abstract
As persistent environmental pollutants, more than thirty metals impose a potential global threat to the environment and humans, which has raised scientific concerns. Although the toxic effects of metals had been extensively studied, there is a paucity of information on their mixture toxicity. In this study, we examined the individual and binary combined toxicity of three common metals such as lithium (Li), lead (Pb), and manganese (Mn) on the proliferation of murine neural stem cells (mNSCs), respectively. Li, Pb, and Mn reduced cell proliferation at the concentration of 5.00 mM, 2.50 μM, and 5.00 μM, respectively (all p < 0.050), in a dose-dependent manner of each metal solely on mNSCs with the cytotoxicity rank as Pb > Mn > Li. Furthermore, the interactions of metal mixtures on mNSCs were determined by using response-additivity and dose-additivity models. Pb + Mn mixtures showed a more than additive effect (synergistic) of toxicity in both two methods. In the dose-additivity method, Pb + Li and Li + Mn mixtures exhibited synergistic effects in the compound with a high ratio of Li (25.0% Pb/75.0% Li, 75.0% Li/25.0% Mn), whereas they are antagonistic in the lower or equal ratio of Li (such as 75.0% Pb/25.0% Li, 25.0% Li/75.0% Mn). Besides, the interactions of Li + Mn mixtures showed some discrepancies between different endpoints. In conclusion, our study highlights the complexity of the mixtures' interaction patterns and the possible neuroprotective effect of Li under certain conditions. In the future, more research on different levels of metal mixtures, especially Li metal, is necessary to evaluate their underlying interactions and contribute to establishing risk assessment systems.
Collapse
Affiliation(s)
- Huan Luo
- School of Public Health and Key Laboratory of Public Health Safety of the Ministry of Education, Fudan University, Room 233, Building 8, 130 Dongan Rd, 200032, Shanghai, People's Republic of China
| | - Jiayi Li
- School of Public Health and Key Laboratory of Public Health Safety of the Ministry of Education, Fudan University, Room 233, Building 8, 130 Dongan Rd, 200032, Shanghai, People's Republic of China
| | - Bo Song
- School of Public Health and Key Laboratory of Public Health Safety of the Ministry of Education, Fudan University, Room 233, Building 8, 130 Dongan Rd, 200032, Shanghai, People's Republic of China
| | - Bing Zhang
- School of Public Health and Key Laboratory of Public Health Safety of the Ministry of Education, Fudan University, Room 233, Building 8, 130 Dongan Rd, 200032, Shanghai, People's Republic of China
| | - Yixi Li
- School of Public Health and Key Laboratory of Public Health Safety of the Ministry of Education, Fudan University, Room 233, Building 8, 130 Dongan Rd, 200032, Shanghai, People's Republic of China
| | - Zhijun Zhou
- School of Public Health and Key Laboratory of Public Health Safety of the Ministry of Education, Fudan University, Room 233, Building 8, 130 Dongan Rd, 200032, Shanghai, People's Republic of China
| | - Xiuli Chang
- School of Public Health and Key Laboratory of Public Health Safety of the Ministry of Education, Fudan University, Room 233, Building 8, 130 Dongan Rd, 200032, Shanghai, People's Republic of China.
| |
Collapse
|
7
|
Mohammadi F, Bina B, Rahimi S, Janati M. Modelling of micropollutant fate in hybrid growth systems: model concepts, Peterson matrix, and application to a lab-scale pilot plant. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:68707-68723. [PMID: 35545750 DOI: 10.1007/s11356-022-20668-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Accepted: 05/03/2022] [Indexed: 06/15/2023]
Abstract
Modelling the fate of micropollutants in different wastewater treatment processes is of present concern. Moreover, during the last few years, there has been an increasing interest in the development of hybrid reactors which contain both suspended biomass and biofilm. Here, a new model developed which tries to determine the fate of micropollutants in hybrid reactors such as moving bed biofilm reactor (MBBR) and called the ASM-biofilm-MPs model considered the main mechanisms leading to the micropollutant removal (sorption/desorption, biodegradation, cometabolism) in hybrid reactors. This dynamic model describes the fate of micropollutants in a hybrid reactor using first-order kinetics for biotransformation and sorption/desorption equations. Also, it considered the reactions for carbon oxidation, nitrification, and denitrification in attached and suspended biomass under aerobic conditions. The mathematical model consists of three connected models for the simulation of micropollutants, suspended biomass, and biofilm. Biochemical conversions are evaluated according to the Activated Sludge Model No. 1 (ASM1) for both attached and suspended biomass. The model is applied for a laboratory MBBR, which fed with synthetic wastewater containing 4-nonylphenol (4-NP) as micropollutant, and accurately describes the experimental concentrations of COD, attached and suspended biomass, nitrogen, and 4-NP micropollutant obtained during 180 days working at different loadings. The differences between simulations and experiments in all operational periods for sCOD, NH4-N, NO3-N, and attached and suspended biomass concentrations were less than 15%, 10%, 10%, 5% and 5%, respectively. Finally, the contribution of adsorption and biodegradation mechanisms in the fate of 4-NP was calculated, when 4-NP concentration is set to 1 µg/L (biodegradation = 86.5%, sorption = 5%) and 50 µg/L (biodegradation = 55.9%, sorption = 34.7%).
Collapse
Affiliation(s)
- Farzaneh Mohammadi
- Department of Environmental Health Engineering, School of Health, Isfahan University of Medical Sciences, Isfahan, Iran.
- Environment Research Center, Research Institute for Primordial Prevention of Non-Communicable Disease, Isfahan University of Medical Sciences, Isfahan, Iran.
| | - Bijan Bina
- Department of Environmental Health Engineering, School of Health, Isfahan University of Medical Sciences, Isfahan, Iran
- Environment Research Center, Research Institute for Primordial Prevention of Non-Communicable Disease, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Somayeh Rahimi
- Department of Environmental Health, Islamic Azad University, Firoozabad branch, Firoozabad, Iran
| | - Mahsa Janati
- Department of Civil Engineering, Lakehead University, Thunder Bay, Canada
| |
Collapse
|
8
|
Luo YS, Chen Z, Hsieh NH, Lin TE. Chemical and biological assessments of environmental mixtures: A review of current trends, advances, and future perspectives. JOURNAL OF HAZARDOUS MATERIALS 2022; 432:128658. [PMID: 35290896 DOI: 10.1016/j.jhazmat.2022.128658] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/27/2021] [Revised: 02/21/2022] [Accepted: 03/07/2022] [Indexed: 05/28/2023]
Abstract
Considering the chemical complexity and toxicity data gaps of environmental mixtures, most studies evaluate the chemical risk individually. However, humans are usually exposed to a cocktail of chemicals in real life. Mixture health assessment remains to be a research area having significant knowledge gaps. Characterization of chemical composition and bioactivity/toxicity are the two critical aspects of mixture health assessments. This review seeks to introduce the recent progress and tools for the chemical and biological characterization of environmental mixtures. The state-of-the-art techniques include the sampling, extraction, rapid detection methods, and the in vitro, in vivo, and in silico approaches to generate the toxicity data of an environmental mixture. Application of these novel methods, or new approach methodologies (NAMs), has increased the throughput of generating chemical and toxicity data for mixtures and thus refined the mixture health assessment. Combined with computational methods, the chemical and biological information would shed light on identifying the bioactive/toxic components in an environmental mixture.
Collapse
Affiliation(s)
- Yu-Syuan Luo
- Institute of Food Safety and Health, College of Public Health, National Taiwan University, Taipei City, Taiwan.
| | - Zunwei Chen
- Program in Molecular and Integrative Physiological Sciences, Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, MA 02115, USA
| | - Nan-Hung Hsieh
- Interdisciplinary Faculty of Toxicology and Department of Veterinary Integrative Biosciences, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX 77843, USA
| | - Tzu-En Lin
- Institute of Biomedical Engineering, College of Electrical and Computer Engineering, National Yang Ming Chiao Tung University, Hsinchu, Taiwan
| |
Collapse
|
9
|
Masood MI, Naseem M, Warda SA, Tapia-Laliena MÁ, Rehman HU, Nasim MJ, Schäfer KH. Environment permissible concentrations of glyphosate in drinking water can influence the fate of neural stem cells from the subventricular zone of the postnatal mouse. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 270:116179. [PMID: 33348142 DOI: 10.1016/j.envpol.2020.116179] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Revised: 11/03/2020] [Accepted: 11/26/2020] [Indexed: 06/12/2023]
Abstract
The developing nervous system is highly vulnerable to environmental toxicants especially pesticides. Glyphosate pesticide induces neurotoxicity both in humans and rodents, but so far only when exposed to higher concentrations. A few studies, however, have also reported the risk of general toxicity of glyphosate at concentrations comparable to allowable limits set up by environmental protection authorities. In vitro data regarding glyphosate neurotoxicity at concentrations comparable to maximum permissible concentrations in drinking water is lacking. In the present study, we established an in vitro assay based upon neural stem cells (NSCs) from the subventricular zone of the postnatal mouse to decipher the effects of two maximum permissible concentrations of glyphosate in drinking water on the basic neurogenesis processes. Our results demonstrated that maximum permissible concentrations of glyphosate recognized by environmental protection authorities significantly reduced the cell migration and differentiation of NSCs as demonstrated by the downregulation of the expression levels of the neuronal ß-tubulin III and the astrocytic S100B genes. The expression of the cytoprotective gene CYP1A1 was downregulated whilst the expression of oxidative stresses indicator gene SOD1 was upregulated. The concentration comparable to non-toxic human plasma concentration significantly induced cytotoxicity and activated Ca2+ signalling in the differentiated culture. Our findings demonstrated that the permissible concentrations of glyphosate in drinking water recognized by environmental protection authorities are capable of inducing neurotoxicity in the developing nervous system.
Collapse
Affiliation(s)
- Muhammad Irfan Masood
- Division of Bioorganic Chemistry, School of Pharmacy, Saarland University, Saarbrücken, D-66123, Germany; Working Group Enteric Nervous System, University of Applied Sciences Kaiserslautern, Campus Zweibrücken, 66482, Germany; Institute of Pharmaceutical Sciences, University of Veterinary and Animal Sciences, Lahore, 54000, Pakistan.
| | - Mahrukh Naseem
- Department of Zoology, University of Balochistan, Quetta, 87550, Pakistan
| | - Salam A Warda
- Working Group Enteric Nervous System, University of Applied Sciences Kaiserslautern, Campus Zweibrücken, 66482, Germany
| | | | - Habib Ur Rehman
- Department of Physiology, University of Veterinary and Animal Sciences, Lahore, 54000, Pakistan
| | - Muhammad Jawad Nasim
- Division of Bioorganic Chemistry, School of Pharmacy, Saarland University, Saarbrücken, D-66123, Germany
| | - Karl Herbert Schäfer
- Working Group Enteric Nervous System, University of Applied Sciences Kaiserslautern, Campus Zweibrücken, 66482, Germany; Department of Pediatric Surgery Mannheim, University Medicine Mannheim, University of Heidelberg, Mannheim, 68167, Germany.
| |
Collapse
|