1
|
Zhang H, Liu Q, Zhou P, Zhang H, Xu L, Sun X, Xu J. Co/SH-based MOFs incorporated nanofiltration membranes for efficient selenium uptake in water purification. JOURNAL OF HAZARDOUS MATERIALS 2025; 485:136836. [PMID: 39672069 DOI: 10.1016/j.jhazmat.2024.136836] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Revised: 11/23/2024] [Accepted: 12/08/2024] [Indexed: 12/15/2024]
Abstract
Metal-Organic Frameworks (MOFs) with high adsorption capacity have shown potential in removing pollutants from water, particularly the toxic selenium (Se). However, MOFs face two challenges in the application of Se removal, that is low removal efficiency and unfavorable powder properties for recovery. In this study, a Co-MOF-74-SH with dual active adsorption sites was synthesized and subsequently immobilized into membrane to fabricate a multi-functional nanofiltration (NF) membrane for efficient Se removal and salt-salt separation. The strong cooperative interaction between the dual active Co/S sites and Se resulted in an impressive Se removal efficiency of 94.1 % for Co-MOF-74-SH. The adsorption energy and isosurface of electron density from DFT simulations showed the strong interaction between SeO32- and S sites in Co-MOF-74-SH. NF membrane with Co-MOF-74-SH incorporation was fabricated. This membrane showed Se removal of ∼99.6 %, surpassing original membrane of ∼74.4 %, which was attributed to synergetic mechanism of adsorption and separation. Simultaneously, the membrane exhibited excellent separation performance, with divalent/monovalent salt selectivity up to more than 80 as well as high water permeance of 15.80 L m-2 h-1 bar-1. This work not only broadens efficient adsorbents for Se removal, but also paves the way for membrane material for water purification and wastewater resource utilization.
Collapse
Affiliation(s)
- Hansi Zhang
- Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, College of Chemistry and Chemical Engineering, Ocean University of China, Qingdao, Shandong 266100, China
| | - Qingzhi Liu
- College of Chemistry and Pharmaceutical Science, Qingdao Agricultural University, 700 Changcheng Road, Qingdao, Shandong 266109, China
| | - Peilei Zhou
- Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, College of Chemistry and Chemical Engineering, Ocean University of China, Qingdao, Shandong 266100, China
| | - Huiting Zhang
- College of Chemistry and Pharmaceutical Science, Qingdao Agricultural University, 700 Changcheng Road, Qingdao, Shandong 266109, China
| | - Lishan Xu
- Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, College of Chemistry and Chemical Engineering, Ocean University of China, Qingdao, Shandong 266100, China
| | - Xiaoxia Sun
- Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, College of Chemistry and Chemical Engineering, Ocean University of China, Qingdao, Shandong 266100, China; College of Chemistry and Pharmaceutical Science, Qingdao Agricultural University, 700 Changcheng Road, Qingdao, Shandong 266109, China
| | - Jia Xu
- Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, College of Chemistry and Chemical Engineering, Ocean University of China, Qingdao, Shandong 266100, China.
| |
Collapse
|
2
|
Huang B, Dai M, Wen Z, Li W, Zi G, Luo L, Shi Z, Yang L. Influence of ammonium nitrate on the crystallisation of ammonium sulfate. ENVIRONMENTAL TECHNOLOGY 2024; 45:2196-2204. [PMID: 36606665 DOI: 10.1080/09593330.2023.2165972] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Accepted: 01/01/2023] [Indexed: 06/17/2023]
Abstract
This study aims to explore the influence mechanism of ammonium nitrate produced by ozone denitrification on the crystallisation of ammonium sulfate, a by-product of ammonia desulfurisation. The laser method was used to study the influence of ammonium nitrate on the solubility and metastable zone width of ammonium sulfate. An experiment on the influence of ammonium nitrate on the particle size of ammonium sulfate was designed, and the influence mechanism was explored through scanning electron microscopy and X-ray diffraction. The findings showed that the addition of ammonium nitrate increased the size and aspect ratio of ammonium sulfate crystals. The addition of ammonium nitrate inhibited the dissolution of ammonium sulfate and widened its metastable zone. The addition of ammonium nitrate covered the active sites of crystal nucleus growth, which inhibited the formation of crystal nuclei to a certain extent, and crystal growth dominated the crystallisation process. Moreover, the addition of ammonium nitrate induced the preferred orientation of the specific crystal plane of ammonium sulfate, and the addition of a small concentration of ammonium nitrate decreased the crystallinity of ammonium sulfate. The research results can provide a reference for crystallisation optimisation and quality improvement of ammonium sulfate in the ammonia desulfurisation process.
Collapse
Affiliation(s)
- Bangfu Huang
- Faculty of Metallurgical and Energy Engineering, Kunming University of Science and Technology, Kunming, People's Republic of China
- Clean Metallurgy Key Laboratory of Complex Iron Resources, University of Yunnan Province, Kunming, People's Republic of China
| | - Meng Dai
- Faculty of Metallurgical and Energy Engineering, Kunming University of Science and Technology, Kunming, People's Republic of China
- Clean Metallurgy Key Laboratory of Complex Iron Resources, University of Yunnan Province, Kunming, People's Republic of China
| | - Zhenjing Wen
- Faculty of Metallurgical and Energy Engineering, Kunming University of Science and Technology, Kunming, People's Republic of China
- Clean Metallurgy Key Laboratory of Complex Iron Resources, University of Yunnan Province, Kunming, People's Republic of China
| | - Wanjun Li
- Faculty of Metallurgical and Energy Engineering, Kunming University of Science and Technology, Kunming, People's Republic of China
- Clean Metallurgy Key Laboratory of Complex Iron Resources, University of Yunnan Province, Kunming, People's Republic of China
| | - Gaoyong Zi
- Faculty of Metallurgical and Energy Engineering, Kunming University of Science and Technology, Kunming, People's Republic of China
- Clean Metallurgy Key Laboratory of Complex Iron Resources, University of Yunnan Province, Kunming, People's Republic of China
| | - Liubin Luo
- Faculty of Metallurgical and Energy Engineering, Kunming University of Science and Technology, Kunming, People's Republic of China
- Clean Metallurgy Key Laboratory of Complex Iron Resources, University of Yunnan Province, Kunming, People's Republic of China
| | - Zhe Shi
- Faculty of Metallurgical and Energy Engineering, Kunming University of Science and Technology, Kunming, People's Republic of China
- Clean Metallurgy Key Laboratory of Complex Iron Resources, University of Yunnan Province, Kunming, People's Republic of China
| | - Linjing Yang
- Faculty of Metallurgical and Energy Engineering, Kunming University of Science and Technology, Kunming, People's Republic of China
| |
Collapse
|
3
|
Wang T, Qu H, Ravindra AV, Ma S, Hu J, Zhang H, Le T, Zhang L. Treatment of complex sulfur-containing solutions in ammonia desulfurization ammonium sulfate production by ultrasonic-assisted ozone technology. ULTRASONICS SONOCHEMISTRY 2023; 95:106386. [PMID: 37003211 PMCID: PMC10457592 DOI: 10.1016/j.ultsonch.2023.106386] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 03/10/2023] [Accepted: 03/23/2023] [Indexed: 06/19/2023]
Abstract
In this work, the cause of abnormal color in ammonium sulfate products formed by flue gas desulfurization is revealed by investigating the conversion relationship between different sulfur-containing ions and their behavior in a sulfuric acid medium. Both thiosulfate (S2O32-) and sulfite (SO32- & HSO3-) impurities affect the quality of ammonium sulfate. The S2O32- is the main reason for the yellowing of the product due to the formation of sulfur impurities in concentrated sulfuric acid. To address the yellowing of ammonium sulfate products, a unified technology (US/O3), using ozone (O3) and ultrasonic waves (US) simultaneously, is exploited to remove both thiosulfate and sulfite impurities from the mother liquor. The effect of different reaction parameters on the degree of removal of thiosulfate and sulfite is investigated. The synergistic effect of ultrasound and ozone on ion oxidation is further explored and demonstrated by the comparative experiments with O3 and US/O3. Under the optimized conditions, the thiosulfate and sulfite concentration in the solution is 2.07 and 5.93 g/L, respectively, and the degree of removal is 91.39 and 90.83%, respectively. The product obtained after evaporation and crystallization is pure white and meets the national standard requirements for ammonium sulfate products. Under the same conditions, the US/O3 process has apparent advantages, such as saving reaction time compared with the O3 process alone. Introducing an ultrasonically intensified field improves the generation of oxidation radicals ·OH, 1O2, and ·O2- in the solution. Furthermore, the effectiveness of different oxidation components in the decolorization process is studied by adding other radical shielding agents using the US/O3 process supplemented with EPR analysis. The order of the different oxidation components is O3(86.04%) > 1O2(6.53%) > •OH(4.45%) > •O2-(2.97%) for the oxidation of thiosulfate, and it is O3(86.28%) > •OH(7.49%) > 1O2(4.99%) > •O2-(1.25%) for the oxidation of sulfite.
Collapse
Affiliation(s)
- Tian Wang
- State Key Laboratory of Complex Non-ferrous Metal Resources Clean Utilization, Kunming University of Science and Technology, Kunming 650093, Yunnan, China; Faculty of Metallurgical and Energy Engineering, Kunming University of Science and Technology, Kunming 650093, Yunnan, China
| | - Hongtao Qu
- Yunnan Chihong Zinc and Germanium Co., Ltd., Qujing 655011, Yunnan, China
| | - A V Ravindra
- Department of Physics and Nanotechnology, SRM Institute of Science and Technology, Kattankulathur, Tamilnadu 603203, India
| | - Shaobin Ma
- Yunnan Chihong Zinc and Germanium Co., Ltd., Qujing 655011, Yunnan, China
| | - Jue Hu
- State Key Laboratory of Complex Non-ferrous Metal Resources Clean Utilization, Kunming University of Science and Technology, Kunming 650093, Yunnan, China; Faculty of Metallurgical and Energy Engineering, Kunming University of Science and Technology, Kunming 650093, Yunnan, China
| | - Hong Zhang
- Yunnan Chihong Zinc and Germanium Co., Ltd., Qujing 655011, Yunnan, China
| | - Thiquynhxuan Le
- State Key Laboratory of Complex Non-ferrous Metal Resources Clean Utilization, Kunming University of Science and Technology, Kunming 650093, Yunnan, China; Faculty of Metallurgical and Energy Engineering, Kunming University of Science and Technology, Kunming 650093, Yunnan, China.
| | - Libo Zhang
- State Key Laboratory of Complex Non-ferrous Metal Resources Clean Utilization, Kunming University of Science and Technology, Kunming 650093, Yunnan, China; Faculty of Metallurgical and Energy Engineering, Kunming University of Science and Technology, Kunming 650093, Yunnan, China.
| |
Collapse
|
4
|
Qi T, Zhang S, Zhang J, Li T, Xing L, Fang Z, An S, Xu Z, Xiao H, Wang L. In Situ Reconstruction of Active Catalysis Sites Triggered by Chromium Immobilization for Sulfite Oxidation. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:3905-3916. [PMID: 36812062 DOI: 10.1021/acs.est.2c09606] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Hexavalent chromium (Cr(VI)) is a highly toxic substance in wastewater, triggering grievous detriment to aquatic life and human health. Magnesium sulfite is spawned along with the desulfurization process in coal-fired power plants, which is usually disposed of as solid waste. Here, a "waste control by waste" method was proposed upon the redox of Cr(VI)-sulfite, in which highly toxic Cr(VI) is detoxicated and sequent enriched on a novel biochar-induced cobalt-based silica composite (BISC) due to the forced electron transfer from chromium to surface hydroxyl. The immobilized Cr on BISC gave rise to the reconstruction of catalytic active sites "Cr-O-Co", which further enhance its performance in sulfite oxidation by elevating O2 adsorption. As a result, the sulfite oxidation rate increased by 10 times compared with the non-catalysis benchmark together with the maximum chromium adsorption capacity being 120.3 mg/g. Therefore, this study provides a promising strategy to simultaneously control highly toxic Cr(VI) and sulfite, achieving high-grade sulfur resource recovery for wet magnesia desulfurization.
Collapse
Affiliation(s)
- Tieyue Qi
- Hebei Key Laboratory of Power Plant Flue Gas Multi-Pollutants Control, Department of Environmental Science and Engineering, North China Electric Power University, Baoding 071003, China
- MOE Key Laboratory of Resources and Environmental Systems Optimization, College of Environmental Science and Engineering, North China Electric Power University, Beijing 102206, China
| | - Shuo Zhang
- Hebei Key Laboratory of Power Plant Flue Gas Multi-Pollutants Control, Department of Environmental Science and Engineering, North China Electric Power University, Baoding 071003, China
- MOE Key Laboratory of Resources and Environmental Systems Optimization, College of Environmental Science and Engineering, North China Electric Power University, Beijing 102206, China
| | - Jingzhao Zhang
- Hebei Key Laboratory of Power Plant Flue Gas Multi-Pollutants Control, Department of Environmental Science and Engineering, North China Electric Power University, Baoding 071003, China
- MOE Key Laboratory of Resources and Environmental Systems Optimization, College of Environmental Science and Engineering, North China Electric Power University, Beijing 102206, China
| | - Tong Li
- Hebei Key Laboratory of Power Plant Flue Gas Multi-Pollutants Control, Department of Environmental Science and Engineering, North China Electric Power University, Baoding 071003, China
- MOE Key Laboratory of Resources and Environmental Systems Optimization, College of Environmental Science and Engineering, North China Electric Power University, Beijing 102206, China
| | - Lei Xing
- Hebei Key Laboratory of Power Plant Flue Gas Multi-Pollutants Control, Department of Environmental Science and Engineering, North China Electric Power University, Baoding 071003, China
- MOE Key Laboratory of Resources and Environmental Systems Optimization, College of Environmental Science and Engineering, North China Electric Power University, Beijing 102206, China
| | - Zhimo Fang
- Hebei Key Laboratory of Power Plant Flue Gas Multi-Pollutants Control, Department of Environmental Science and Engineering, North China Electric Power University, Baoding 071003, China
- MOE Key Laboratory of Resources and Environmental Systems Optimization, College of Environmental Science and Engineering, North China Electric Power University, Beijing 102206, China
| | - Shanlong An
- Hebei Key Laboratory of Power Plant Flue Gas Multi-Pollutants Control, Department of Environmental Science and Engineering, North China Electric Power University, Baoding 071003, China
- MOE Key Laboratory of Resources and Environmental Systems Optimization, College of Environmental Science and Engineering, North China Electric Power University, Beijing 102206, China
| | - Zhongfei Xu
- Hebei Key Laboratory of Power Plant Flue Gas Multi-Pollutants Control, Department of Environmental Science and Engineering, North China Electric Power University, Baoding 071003, China
- MOE Key Laboratory of Resources and Environmental Systems Optimization, College of Environmental Science and Engineering, North China Electric Power University, Beijing 102206, China
| | - Huining Xiao
- Department of Chemical Engineering, University of New Brunswick, Fredericton E3B 5A3, Canada
| | - Lidong Wang
- Hebei Key Laboratory of Power Plant Flue Gas Multi-Pollutants Control, Department of Environmental Science and Engineering, North China Electric Power University, Baoding 071003, China
- MOE Key Laboratory of Resources and Environmental Systems Optimization, College of Environmental Science and Engineering, North China Electric Power University, Beijing 102206, China
| |
Collapse
|
5
|
Zi G, Huang B, Wen Z, Li W, Luo L. Nucleation Thermodynamics and Nucleation Kinetics of (NH4)2SO4 under the Action of NH4Cl. J Mol Liq 2023. [DOI: 10.1016/j.molliq.2023.121514] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/25/2023]
|
6
|
Zhao G, Ding J, Ren J, Zhao Q, Fan H, Wang K, Gao Q, Chen X, Long M. Treasuring industrial sulfur by-products: A review on add-value to reductive sulfide and sulfite for contaminant removal and hydrogen production. JOURNAL OF HAZARDOUS MATERIALS 2022; 438:129462. [PMID: 35792429 DOI: 10.1016/j.jhazmat.2022.129462] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2022] [Revised: 06/07/2022] [Accepted: 06/23/2022] [Indexed: 06/15/2023]
Abstract
Reductive sulfur-containing by-products (S-BPs) released from industrial process mainly exist in the simple form of sulfide and sulfite. In this study, recent advances to remove and make full use of reductive S-BPs to achieve efficient contaminant removal and hydrogen production are critically reviewed. Sulfide, serves as both reductant and nucleophile, can form intermediates with the catalyst surface functional group through chemical interaction, efficiently promoting the catalytic reduction process to remove contaminants. Sulfite assisted catalytic process could be classified to the advanced reduction processes (ARPs) and advanced oxidation processes (AOPs), mainly depending on the presence of dissolved oxygen (DO) in the solution. During ARPs, sulfite could generate reductive active species including hydrated electron (eaq-), hydrogen radical (H·), and sulfite radical (SO3•-) under the irradiation of UV light, leading to the efficient reduction removal of a variety of contaminants. During AOPs, sulfite could first produce SO3•- under the action of the catalyst or energy, initiating a series of reactions to produce oxysulfur radicals. Various contaminants could be effectively removed under the role of these oxidizing active species. Sulfides and sulfites could also be removed along with promoting hydrogen production via photocatalytic and electrocatalytic processes. Besides, the present limitations and the prospects for future practical applications of the process with these S-BPs are proposed. Overall, this review gives a comprehensive summary and aims to provide new insights and thoughts in promoting contaminant removal and hydrogen production through taking full advantage of reductive S-BPs.
Collapse
Affiliation(s)
- Guanshu Zhao
- State Key Laboratory of Urban Water Resources and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Jing Ding
- State Key Laboratory of Urban Water Resources and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China.
| | - Jiayi Ren
- State Key Laboratory of Urban Water Resources and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Qingliang Zhao
- State Key Laboratory of Urban Water Resources and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China.
| | - Haojun Fan
- State Key Laboratory of Urban Water Resources and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Kun Wang
- State Key Laboratory of Urban Water Resources and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Qingwei Gao
- State Key Laboratory of Urban Water Resources and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Xueqi Chen
- State Key Laboratory of Urban Water Resources and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Mingce Long
- School of Environmental Science and Engineering, Key Laboratory of Thin Film and Microfabrication Technology (Ministry of Education), Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| |
Collapse
|
7
|
Li T, Xu H, Zhang Y, Zhang H, Hu X, Sun Y, Gu X, Luo J, Zhou D, Gao B. Treatment technologies for selenium contaminated water: A critical review. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 299:118858. [PMID: 35041898 DOI: 10.1016/j.envpol.2022.118858] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Revised: 01/11/2022] [Accepted: 01/13/2022] [Indexed: 06/14/2023]
Abstract
Selenium is an indispensable trace element for humans and other organisms; however, excessive selenium in water can jeopardize the aquatic environment. Investigations on the biogeochemical cycle of selenium have shown that anthropogenic activities such as mining, refinery, and coal combustion mainly contribute to aquatic selenium pollution, imposing tremendous risks on ecosystems and human beings. Various technologies thus have been developed recently to treat selenium contaminated water to reduce its environmental impacts. This work provides a critical review on the applications, characteristics, and latest developments of current treatment technologies for selenium polluted water. It first outlines the present status of the characteristics, sources, and toxicity of selenium in water. Selenium treatment technologies are then classified into three categories: 1) physicochemical separation including membrane filtration, adsorption, coagulation/precipitation, 2) redox decontamination including chemical reduction and catalysis, and 3) biological transformation including microbial treatment and constructed wetland. Details of these methods including their overall efficiencies, applicability, advantages and drawbacks, and latest developments are systematically analyzed and compared. Although all these methods are promising in treating selenium in water, further studies are still needed to develop sustainable strategies based on existing and new technologies. Perspectives on future research directions are laid out at the end.
Collapse
Affiliation(s)
- Tianxiao Li
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, 210023, People's Republic of China
| | - Hongxia Xu
- Key Laboratory of Surficial Geochemistry of Ministry of Education, School of Earth Sciences and Engineering, Hydrosciences Department, Nanjing University, Nanjing, 210023, People's Republic of China.
| | - Yuxuan Zhang
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, 210023, People's Republic of China
| | - Hanshuo Zhang
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, 210023, People's Republic of China
| | - Xin Hu
- State Key Laboratory of Analytical Chemistry for Life Science, Center of Material Analysis and School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210093, People's Republic of China
| | - Yuanyuan Sun
- Key Laboratory of Surficial Geochemistry of Ministry of Education, School of Earth Sciences and Engineering, Hydrosciences Department, Nanjing University, Nanjing, 210023, People's Republic of China
| | - Xueyuan Gu
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, 210023, People's Republic of China
| | - Jun Luo
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, 210023, People's Republic of China
| | - Dongmei Zhou
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, 210023, People's Republic of China
| | - Bin Gao
- Department of Agricultural and Biological Engineering, University of Florida, Gainesville, FL, 32611, USA
| |
Collapse
|
8
|
Liu S, Liu L, Su G, Zhao L, Peng H, Xue J, Tang A. Enhanced adsorption performance, separation, and recyclability of magnetic core-shell Fe3O4@PGMA-g-TETA-CSSNa microspheres for heavy metal removal. REACT FUNCT POLYM 2022. [DOI: 10.1016/j.reactfunctpolym.2021.105127] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
9
|
Li X, Han J, Liu Y, Dou Z, Zhang TA. Summary of research progress on industrial flue gas desulfurization technology. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2021.119849] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
|