1
|
Jiang Z, Liao L, Li X, Yang S, Li L, Wu P. The release of antimony from soils surrounding the smelters in Karst Areas and its Environmental Implications. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2025; 375:126249. [PMID: 40228728 DOI: 10.1016/j.envpol.2025.126249] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2024] [Revised: 04/01/2025] [Accepted: 04/11/2025] [Indexed: 04/16/2025]
Abstract
Antimony(Sb) in soil can be reintroduced into the environment through leaching processes driven by rainfall and surface runoff, raising concerns about secondary pollution. This study examined the release dynamics of Sb in carbonate-rich soils from an Sb smelting area in the karst region of southern China, aiming to elucidate the roles of pH, organic matter (OM), and geological conditions in Sb mobilization. The experiment was conducted under three different pH conditions (4.5, 6.0, and 7.5) and explores the influence of OM on the release behavior of Sb in the soil. Results indicated a characteristic release pattern for Sb in the soil solution, with an initial rapid increase, followed by a sharp decline, and a subsequent rise.The leaching rate of Sb was higher in neutral to weakly alkaline soil compared to acidic soils.The removal of soil OM enhanced Sb release by 3.21-4.09 times, with a significant inhibition rate reaching 50.01-76.86 %. The findings suggested Sb release kinetics followed a triphasic pattern consisting of rapid initial release, mid-term adsorption inhibition, and late-stage secondary release, which elucidated the underlying mechanisms of long-term leaching risks and provided a theoretical foundation for predicting contaminant dispersion. Soil OM effectively reduced Sb mobility through functional group complexation and soil aggregate formation, offering direct evidence for OM-based remediation strategies such as organic amendment applications. Neutral to weakly alkaline conditions (pH 6.0-7.5) significantly enhanced Sb release rates by promoting mineral desorption, indicating elevated contamination risks of Sb in karst region soils. This study emphasizes that priority should be given to increasing OM concentration and regulating pH buffering capacity to suppress Sb activity in karst areas, providing actionable scientific solutions for the remediation and management of Sb-contaminated sites.
Collapse
Affiliation(s)
- Zaiju Jiang
- College of Resources and Environmental Engineering, Guizhou University, Guiyang, 550025, China; Guizhou Coal Mine Geology and Geological Engineering Consulting Environmental Monitoring Center, Guiyang, 550081, China
| | - Lu Liao
- College of Resources and Environmental Engineering, Guizhou University, Guiyang, 550025, China; Chongyi County Agriculture and Rural Affairs Bureau, Chongyi, 341300, China
| | - Xuexian Li
- Key Laboratory of Karst Georesources and Environment(Guizhou University), Ministry of Education, Guiyang, 550025, China
| | - Shaozhang Yang
- College of Resources and Environmental Engineering, Guizhou University, Guiyang, 550025, China; Guizhou Coal Mine Geology and Geological Engineering Consulting Environmental Monitoring Center, Guiyang, 550081, China; Guizhou Qianmei Foundation Engineering Company, Guiyang, 550081, China
| | - Ling Li
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang, 550081, China.
| | - Pan Wu
- College of Resources and Environmental Engineering, Guizhou University, Guiyang, 550025, China; Key Laboratory of Karst Georesources and Environment(Guizhou University), Ministry of Education, Guiyang, 550025, China.
| |
Collapse
|
2
|
Zhu F, Zhang X, Peng X, He M, Kong L, Zhou G, Yan J, Zhang C, Peng H. Reductive Removal of Antimony from Wastewater by a UV/Sulfite Process: Targeted Recovery of Strategic Metalloid Antimony. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2025; 59:924-934. [PMID: 39807589 DOI: 10.1021/acs.est.4c09085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/16/2025]
Abstract
The removal of antimony from wastewater using traditional methods such as adsorption and membrane filtration generates large amounts of antimony-containing hazardous wastes, posing significant environmental threats. This study proposed a new treatment strategy to reductively remove and recover antimony from wastewater using an advanced UV/sulfite reduction process in the form of valuable strategic metalloid antimony (Sb(0)), thus preventing hazardous waste generation. The results indicated that more than 99.9% of Sb(V) and Sb(III) were removed from wastewater, reducing residual antimony concentration as low as 5 μg L-1 and obtaining Sb(0) product with a high purity of over 99.9 wt %. Mechanistic investigations revealed the reductive H• radicals and hydrated electrons (eaq-), along with oxidative SO3•- radicals generated by the photolysis of sulfite, in which H• and eaq- are responsible for the reduction of Sb(V) and Sb(III) to Sb(0). Additionally, although Sb(0) can be further reduced to stibine (SbH3) by H• and eaq-, the formed SbH3 rapidly decays and transforms back to Sb(0) through photolysis and oxidation by SO3•-. Thus, the proposed method can achieve the targeted reduction of Sb(III) and Sb(V) to Sb(0) but not to SbH3. This study provides a theoretical foundation for the recovery of antimony from wastewater.
Collapse
Affiliation(s)
- Feng Zhu
- National Engineering Research Center of Industrial Wastewater Detoxication and Resource Recovery, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- Environmental Protection Research Institute, Sinopec (Beijing) Research Institute of Chemical Industry Co., Ltd., Beijing 100013, China
- State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xinmiao Zhang
- Environmental Protection Research Institute, Sinopec (Beijing) Research Institute of Chemical Industry Co., Ltd., Beijing 100013, China
| | - Xianjia Peng
- National Engineering Research Center of Industrial Wastewater Detoxication and Resource Recovery, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Mengchang He
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing 100875, China
| | - Linghao Kong
- National Engineering Research Center of Industrial Wastewater Detoxication and Resource Recovery, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Guotao Zhou
- National Engineering Research Center of Industrial Wastewater Detoxication and Resource Recovery, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Jiaguo Yan
- Oilfield Chemicals Division, China Oilfield Services Limited (COSL), Tianjin 300450, China
| | - Chenlin Zhang
- Environmental Protection Research Institute, Sinopec (Beijing) Research Institute of Chemical Industry Co., Ltd., Beijing 100013, China
| | - Haizhu Peng
- Environmental Protection Research Institute, Sinopec (Beijing) Research Institute of Chemical Industry Co., Ltd., Beijing 100013, China
| |
Collapse
|
3
|
Ge J, Wu S, Wu H, Lin J, Cai Y, Zhou D, Gu X. Prediction of As and Cd dissolution in various soils under flooding condition. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 948:174853. [PMID: 39038669 DOI: 10.1016/j.scitotenv.2024.174853] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2024] [Revised: 07/10/2024] [Accepted: 07/15/2024] [Indexed: 07/24/2024]
Abstract
Although the mobility of arsenic (As) and cadmium (Cd) in soils during the flooding-drainage process has been intensively studied, predicting their dissolution among various soils still remains a challenge. After comprehensively monitoring multiple parameters related to As and Cd dissolution in 8 soils for a 60-day anaerobic incubation, the redundancy analysis (RDA) and structural equation model (SEM) were employed to identify the key factors and influencing pathways controlling the dynamic release of As and Cd. Results showed that pH alone explained 90.5 % Cd dissolution, while the dissolved-Fe(II) and 5 M-HCl extractable Fe(II) jointly only explained 50.6 % As dissolution. After data normalization, the ratio of Fe(II) to 5 M-HCl extracted total Fe (i.e. FetotII/Fetot) significantly improved the correlation to R2 = 0.824 (p < 0.001) with a fixed slope of 0.393 among the 8 soils. Our results highlight the crucial role played by the reduction degree of total iron contents in determining both the reduction and dissolution of As during flooding. In contrast, dissolved-Fe(II) was too vulnerable to soil properties to be a stable indicator of As dissolution. Therefore, we propose to replace the dissolved-Fe(II) with this novel ratio as the key index to quantitatively assess the kinetic change of As solubility potential across various soils under flooding conditions.
Collapse
Affiliation(s)
- Jingwen Ge
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Nanjing, China
| | - Song Wu
- Institute of Soil Science, Chinese Academy of Sciences, Nanjing, China.
| | - Haotian Wu
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Nanjing, China
| | - Jianyu Lin
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Nanjing, China
| | - Yijun Cai
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Nanjing, China
| | - Dongmei Zhou
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Nanjing, China
| | - Xueyuan Gu
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Nanjing, China.
| |
Collapse
|
4
|
Meng H, Hu S, Hong Z, Chi W, Chen G, Cheng K, Wang Q, Liu T, Li F, Liu K, Yang Y. Effects of zero-valent iron added in the flooding or drainage process on cadmium immobilization in an acid paddy soil. J Environ Sci (China) 2024; 138:19-31. [PMID: 38135388 DOI: 10.1016/j.jes.2023.03.032] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Revised: 03/23/2023] [Accepted: 03/23/2023] [Indexed: 12/24/2023]
Abstract
Zero-valent iron (ZVI) is a promising material for the remediation of Cd-contaminated paddy soils. However, the effects of ZVI added during flooding or drainage processes on cadmium (Cd) retention remain unclear. Herein, Cd-contaminated paddy soil was incubated for 40 days of flooding and then for 15 days of drainage, and the underlying mechanisms of Cd immobilization coupled with Fe/S/N redox processes were investigated. The addition of ZVI to the flooding process was more conducive to Cd immobilization. Less potential available Cd was detected by adding ZVI before flooding, which may be due to the increase in paddy soil pH and newly formed secondary Fe minerals. Moreover, the reductive dissolution of Fe minerals promoted the release of soil colloids, thereby increasing significantly the surface sites and causing Cd immobilization. Additionally, the addition of ZVI before flooding played a vital role in Cd retention after soil drainage. In contrast, the addition of ZVI in the drainage phase was not conducive to Cd retention, which might be due to the rapid decrease in soil pH that inhibited Cd adsorption and further immobilization on soil surfaces. The findings of this study demonstrated that Cd availability in paddy soil was largely reduced by adding ZVI during the flooding period and provide a novel insight into the mechanisms of ZVI remediation in Cd-contaminated paddy soils.
Collapse
Affiliation(s)
- Hanbing Meng
- Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China; National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Institute of Eco-environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou 510650, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Shiwen Hu
- National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Institute of Eco-environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou 510650, China
| | - Zebin Hong
- National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Institute of Eco-environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou 510650, China
| | - Wenting Chi
- National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Institute of Eco-environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou 510650, China
| | - Guojun Chen
- National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Institute of Eco-environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou 510650, China
| | - Kuan Cheng
- National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Institute of Eco-environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou 510650, China
| | - Qi Wang
- National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Institute of Eco-environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou 510650, China
| | - Tongxu Liu
- National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Institute of Eco-environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou 510650, China
| | - Fangbai Li
- National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Institute of Eco-environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou 510650, China
| | - Kexue Liu
- School of Resources and Planning, Guangzhou Xinhua University, Guangzhou 510310, China
| | - Yang Yang
- National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Institute of Eco-environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou 510650, China.
| |
Collapse
|
5
|
Hong Z, Hu S, Yang Y, Deng Z, Li X, Liu T, Li F. The key roles of Fe oxyhydroxides and humic substances during the transformation of exogenous arsenic in a redox-alternating acidic paddy soil. WATER RESEARCH 2023; 242:120286. [PMID: 37399690 DOI: 10.1016/j.watres.2023.120286] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2023] [Revised: 06/26/2023] [Accepted: 06/28/2023] [Indexed: 07/05/2023]
Abstract
Arsenic (As) from mine wastewater is a significant source for acidic paddy soil pollution, and its mobility can be influenced by alternating redox conditions. However, mechanistic and quantitative insights into the biogeochemical cycles of exogenous As in paddy soil are still lacking. Herein, the variations of As species in paddy soil spiking with As(III) or As(V) were investigated in the process of 40 d of flooding followed 20 d of drainage. During flooding process, available As was immobilized in paddy soil spiking As(III) and the immobilized As was activated in paddy soil spiking As(V) owing to deprotonation. The contributions of Fe oxyhydroxides and humic substances (HS) to As immobilization in paddy soil spiking As(III) were 80.16% and 18.64%, respectively. Whereas the contributions of Fe oxyhydroxides and HS to As activation in paddy soil spiking As(V) were 47.9% and 52.1%, respectively. After entering drainage, available As was mainly immobilized by Fe oxyhydroxides and HS and adsorbed As(III) was oxidized. The contribution of Fe oxyhydroxides to As fixation in paddy soil spiking As(III) and As(V) was 88.82% and 90.26%, respectively, and of HS to As fixation in paddy soil spiking As(III) and As(V) was 11.12% and 8.95%, respectively. Based on the model fitting results, the activation of Fe oxyhydroxides and HS bound As followed with available As(V) reduction were key processes during flooding. This may be because the dispersion of soil particles and release of soil colloids activated the adsorbed As. Immobilization of available As(III) by amorphous Fe oxyhydroxides followed with adsorbed As(III) oxidation were key processes during drainage. This may be ascribe to the occurrence of coprecipitation and As(III) oxidation mediated by reactive oxygen species from Fe(II) oxidation. The results are beneficial for a deeper understanding of As species transformation at the interface of paddy soil-water as well as an estimation pathway for the impacts of key biogeochemical cycles on exogenous As species under a redox-alternating condition.
Collapse
Affiliation(s)
- Zebin Hong
- Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China; National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Institute of Eco-environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou 510650, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Shiwen Hu
- National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Institute of Eco-environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou 510650, China
| | - Yang Yang
- National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Institute of Eco-environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou 510650, China
| | - Ziwei Deng
- National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Institute of Eco-environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou 510650, China; Guangdong Key Laboratory of Environmental Pollution and Health, School of Environment, Jinan University, Guangzhou, 510632, PR China
| | - Xiaomin Li
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou 510006, China
| | - Tongxu Liu
- National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Institute of Eco-environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou 510650, China.
| | - Fangbai Li
- National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Institute of Eco-environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou 510650, China
| |
Collapse
|
6
|
Liu YQ, Yang YP, Zhang LX, Wang LY, Jing CY, Duan GL, Zhu YG. Aluminum adsorption and antimonite oxidation dominantly regulate antimony solubility in soils. CHEMOSPHERE 2022; 309:136651. [PMID: 36181839 DOI: 10.1016/j.chemosphere.2022.136651] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Revised: 09/25/2022] [Accepted: 09/26/2022] [Indexed: 06/16/2023]
Abstract
Soil antimony (Sb) contamination occurs globally due to natural processes and human activities. Total Sb concentration in soils fails to assess its ecological risk, while determined by the concentration of available Sb, which is readily for biological uptake. Available Sb in different soils varied significantly according to soil properties. However, so far it is unknown how soil properties regulate Sb availability, and no model has been established to predict it through soil properties. In this study, 19 soils spiked with antimonite [Sb(III)] were used to identify the major factors controlling Sb availability and establish its predicting models. The results showed that available Sb in different soils varied largely depending on the contents of free aluminum (fAl), free iron (fFe) and electric conductivity (EC), which explained 33%, 27% and 24.9% of the total variation, respectively. During the first 42 days of soil aging, fAl and EC effectively predicted the concentrations of available Sb with R2 = 0.64, while during the later stages (70-150 d) of soil aging, fAl content was the unique parameter employed into the predicting model (R2 = 0.53). These results firstly demonstrate that the content of free aluminum (fAl) is the most important factor regulating Sb availability in soils, although the content of fAl is much lower than that of fFe. This finding can help to develop new remediation materials for Sb-contaminated soils. The prediction models can provide promising tools of assessing the ecological risk. In addition, Sb availability was also affected by the oxidation of Sb(III). After 150 days aging, 1-61% of Sb(III) was oxidized to pentavalent Sb [Sb(V)], which was significantly positively correlated with available Sb, suggesting that Sb(III) oxidization mobilizes Sb in soils. All these findings would help to understand Sb migration and transformation in soils, and to develop new strategies for remediating Sb-contaminated soils.
Collapse
Affiliation(s)
- Yan-Qing Liu
- State Key Lab of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yu-Ping Yang
- Key Laboratory for Northern Urban Agriculture of Ministry of Agriculture and Rural Affairs, Beijing University of Agriculture, Beijing, 102206, China
| | - Li-Xin Zhang
- State Key Lab of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Li-Ying Wang
- State Key Lab of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Chuan-Yong Jing
- State Key Lab of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Gui-Lan Duan
- State Key Lab of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; University of Chinese Academy of Sciences, Beijing, 100049, China.
| | - Yong-Guan Zhu
- State Key Lab of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; University of Chinese Academy of Sciences, Beijing, 100049, China; Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, 361021, China
| |
Collapse
|
7
|
Caplette JN, Gfeller L, Lei D, Liao J, Xia J, Zhang H, Feng X, Mestrot A. Antimony release and volatilization from rice paddy soils: Field and microcosm study. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 842:156631. [PMID: 35691353 DOI: 10.1016/j.scitotenv.2022.156631] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Revised: 06/01/2022] [Accepted: 06/07/2022] [Indexed: 06/15/2023]
Abstract
The fate of antimony (Sb) in submerged soils and the impact of common agricultural practices (e.g., manuring) on Sb release and volatilization is understudied. We investigated porewater Sb release and volatilization in the field and laboratory for three rice paddy soils. In the field study, the porewater Sb concentration (up to 107.1 μg L-1) was associated with iron (Fe) at two sites, and with pH, Fe, manganese (Mn), and sulfate (SO42-) at one site. The surface water Sb concentrations (up to 495.3 ± 113.7 μg L-1) were up to 99 times higher than the regulatory values indicating a potential risk to aquaculture and rice agriculture. For the first time, volatile Sb was detected in rice paddy fields using a validated quantitative method (18.1 ± 5.2 to 217.9 ± 160.7 mg ha-1 y-1). We also investigated the influence of two common rice agriculture practices (flooding and manuring) on Sb release and volatilization in a 56-day microcosm experiment using the same soils from the field campaign. Flooding induced an immediate, but temporary, Sb release into the porewater that declined with SO42-, indicating that SO42- reduction may reduce porewater Sb concentrations. A secondary Sb release, corresponding to Fe reduction in the porewater, was observed in some of the microcosms. Our results suggest flooding-induced Sb release into rice paddy porewaters is temporary but relevant. Manuring the soils did not impact the porewater Sb concentration but did enhance Sb volatilization. Volatile Sb (159.6 ± 108.4 to 2237.5 ± 679.7 ng kg-1 y-1) was detected in most of the treatments and was correlated with the surface water Sb concentration. Our study indicates that Sb volatilization could be occurring at the soil-water interface or directly in the surface water and highlights that future works should investigate this potentially relevant mechanism.
Collapse
Affiliation(s)
| | - L Gfeller
- Institute of Geography, University of Bern, Switzerland
| | - D Lei
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, PR China
| | - J Liao
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, PR China
| | - J Xia
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, PR China
| | - H Zhang
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, PR China
| | - X Feng
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, PR China.
| | - A Mestrot
- Institute of Geography, University of Bern, Switzerland.
| |
Collapse
|
8
|
Wu T, Cui X, Ata-Ul-Karim ST, Cui P, Liu C, Fan T, Sun Q, Gong H, Zhou D, Wang Y. The impact of alternate wetting and drying and continuous flooding on antimony speciation and uptake in a soil-rice system. CHEMOSPHERE 2022; 297:134147. [PMID: 35240148 DOI: 10.1016/j.chemosphere.2022.134147] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Revised: 02/21/2022] [Accepted: 02/25/2022] [Indexed: 06/14/2023]
Abstract
The accumulation of trace elements in rice, such as antimony (Sb), has drawn special attention owing to the potential increased risk to human health. However, the effects of two common irrigation methods, alternate wetting and drying and continuous flooding, on Sb behaviors and subsequent accumulation in rice is unclear. In this study a pot experiment with various Sb additions (0, 50, 200, 1000 mg Sb kg-1) was carried out with these two irrigation methods in two contrasting paddy soils (an Anthrosol and a Ferralic Cambisol). The dynamics of Sb in soil porewater indicated that continuous flooding generally immobilized more Sb than alternate wetting and drying, concomitant with a pronounced reduction of Sb(V) in porewater. However, a higher phytoavailable fraction of Sb was observed under continuous flooding. The content of Sb in the rice plant decreased in the order of root > shoot > husk > grain, and continuous flooding facilitated Sb accumulation in rice root and shoot as compared with alternate wetting and drying. The differences of Sb content in root, shoot, and husk between the two irrigation methods was smaller in aboveground parts, and almost no difference in Sb was observed in grain between the two methods. The findings of this study facilitates the understanding of Sb speciation and behavior in soils with these common yet different water management regimes.
Collapse
Affiliation(s)
- Tongliang Wu
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, 210008, China
| | - Xiaodan Cui
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, 210008, China; University of Chinese Academy of Sciences, Beijing, 100049, China; Geological Survey of Jiangsu Province, Nanjing, 210018, China
| | - Syed Tahir Ata-Ul-Karim
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, 210008, China
| | - Peixin Cui
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, 210008, China
| | - Cun Liu
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, 210008, China
| | - Tingting Fan
- Nanjing Institute of Environmental Science, State Environmental Protection Administration, Nanjing 210042, China
| | - Qian Sun
- College of Agricultural Science and Engineering, Hohai University, Nanjing, 210098, China
| | - Hua Gong
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, 210008, China
| | - Dongmei Zhou
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, 210023, China
| | - Yujun Wang
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, 210008, China; University of Chinese Academy of Sciences, Beijing, 100049, China.
| |
Collapse
|
9
|
Insight into the Adsorption Behaviors of Antimony onto Soils Using Multidisciplinary Characterization. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:ijerph19074254. [PMID: 35409945 PMCID: PMC8998344 DOI: 10.3390/ijerph19074254] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Revised: 03/28/2022] [Accepted: 03/30/2022] [Indexed: 02/04/2023]
Abstract
Antimony (Sb) pollution in soils is an important environmental problem, and it is imperative to investigate the migration and transformation behavior of Sb in soils. The adsorption behaviors and interaction mechanisms of Sb in soils were studied using integrated characterization techniques and the batch equilibrium method. The results indicated that the adsorption kinetics and isotherms of Sb onto soils were well fitted by the first-order kinetic, Langmuir, and Freundlich models, respectively, while the maximum adsorbed amounts of Sb (III) in soil 1 and soil 2 were 1314.46 mg/kg and 1359.25 mg/kg, respectively, and those of Sb (V) in soil 1 and soil 2 were 415.65 mg/kg and 535.97 mg/kg, respectively. In addition, pH ranging from 4 to 10 had little effect on the adsorption behavior of Sb. Moreover, it was found that Sb was mainly present in the residue fractions, indicating that Sb had high geochemical stability in soils. SEM analysis indicated that the distribution positions of Sb were highly coincident with Ca, which was mainly due to the existence of calcium oxides, such as calcium carbonate and calcium hydroxide, that affected Sb adsorption, and further resulted in Sb and Ca bearing co-precipitation. XPS analysis revealed the valence state transformation of Sb (III) and Sb (V), suggesting that Fe/Mn oxides and reactive oxygen species (ROS) served as oxidant or reductant to promote the occurrence of the Sb redox reaction. Sb was mobile and leachable in soils and posed a significant threat to surface soils, organisms, and groundwater. This work provides a fundamental understanding of Sb adsorption onto soils, as well as a theoretical guide for studies on the adsorption and migration behavior of Sb in soils.
Collapse
|