1
|
Müller S, Fiutowski J, Rasmussen MB, Balic Zunic T, Rubahn HG, Posth NR. Nanoplastic in aqueous environments: The role of chemo-electric properties for nanoplastic-mineral interaction. THE SCIENCE OF THE TOTAL ENVIRONMENT 2025; 964:178529. [PMID: 39848159 DOI: 10.1016/j.scitotenv.2025.178529] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Revised: 01/13/2025] [Accepted: 01/13/2025] [Indexed: 01/25/2025]
Abstract
Due to increasing plastic production, the continuous release of primary and secondary nanoplastic particles (NPs, <1 μm) has become an emerging contaminant in terrestrial environments. The fate and transport of NPs in subsurface environments remain poorly understood, largely due to the complex interplay of mineralogical, chemical, biological, and morphological heterogeneity. This study examines interactions between abundant subsurface minerals and NPs under controlled water chemistry (1 mM KCl, pH 5.5). These conditions minimize potential chemical effects from ions in solution, isolating the impact of mineral complexity. Surface-modified polystyrene nanoparticles (-COOH and -NH2 functional groups) are proxies for degradation products and organic associations found in environmental plastics. Experimental results are compared with theoretical predictions using DLVO (Derjaguin-Landau-Verwey-Overbeek) double-layer force models. Despite all studied minerals maintaining negative surface charges across varying pH, electrostatic double-layer (EDL) interactions played a minor role in NP attachment. Instead, mechanisms such as specific ion-binding interactions (mediated by trace metal ions), bridging via divalent ions, and hydrogen bonding were more significant. Evidence suggests that kinetic effects for most mineral-NP combinations persist beyond 24 h. This study highlights the critical role of biogeochemical and mineralogical composition in controlling NP attachment and release in subsurface environments, with implications for their transport and fate in aquifers.
Collapse
Affiliation(s)
- Sascha Müller
- Department of Biology, Functional Ecology, Lund University, Sweden; Department of Geosciences & Natural Resource Management, Geology, University of Copenhagen, Denmark.
| | - Jacek Fiutowski
- Mads Clausen Institute, NanoSYD, University Southern Denmark (SDU), Denmark
| | - Maja Bar Rasmussen
- Department of Geosciences & Natural Resource Management, Geology, University of Copenhagen, Denmark
| | - Tonci Balic Zunic
- Department of Geosciences & Natural Resource Management, Geology, University of Copenhagen, Denmark
| | | | - Nicole R Posth
- Department of Geosciences & Natural Resource Management, Geology, University of Copenhagen, Denmark
| |
Collapse
|
2
|
Wu F, Sun J, Meng F, Zhou J, Qi M, Lu X, Liu C. Cysteine-Facilitated Cr(VI) reduction by Fe(II/III)-bearing phyllosilicates: Enhancement from In-Situ Fe(II) generation. WATER RESEARCH 2024; 267:122548. [PMID: 39357156 DOI: 10.1016/j.watres.2024.122548] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Revised: 09/17/2024] [Accepted: 09/28/2024] [Indexed: 10/04/2024]
Abstract
Structural Fe in phyllosilicates represents a crucial and potentially renewable reservoir of electron equivalents for contaminants reduction in aquatic and soil systems. However, it remains unclear how in-situ modification of Fe redox states within Fe-bearing phyllosilicates, induced by electron shuttles such as naturally occurring organics, influences the fate of contaminants. Herein, this study investigated the processes and mechanism of Cr(VI) reduction on two typical Fe(II/III)-bearing phyllosilicates, biotite and chlorite, in the presence of cysteine (Cys) at circumneutral pH. The experimental results demonstrated that Cys markedly enhanced the rate and extent of Cr(VI) reduction by biotite/chlorite, likely because of the formation of Cr(V)-organic complexes and consequent electron transfer from Cys to Cr(V). The concomitant production of non-structural Fe(II) (including aqueous Fe(II), surface bound Fe(II), and Cys-Fe(II) complex) cascaded transferring electrons from Cys to surface Fe(III), which further contributed to Cr(VI) reduction. Notably, structural Fe(II) in phyllosilicates also facilitated Cr(VI) reduction by mediating electron transfer from Cys to structural Fe(III) and then to edge-sorbed Cr(VI). 57Fe Mössbauer analysis revealed that cis-coordinated Fe(II) in biotite and chlorite exhibits higher reductivity compared to trans-coordinated Fe(II). The Cr end-products were insoluble Cr(III)-organic complex and sub-nanometer Cr2O3/Cr(OH)3, associated with residual minerals as micro-aggregates. These findings highlight the significance of in-situ produced Fe(II) from Fe(II/III)-bearing phyllosilicates in the cycling of redox-sensitive contaminants in the environment.
Collapse
Affiliation(s)
- Fei Wu
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550081, China
| | - Jing Sun
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550081, China
| | - Fangyuan Meng
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550081, China
| | - Jimei Zhou
- The key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education & School of Public Health, Guizhou Medical University, Guiyang 550025, China
| | - Meng Qi
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550081, China
| | - Xiaoli Lu
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550081, China
| | - Chengshuai Liu
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550081, China; College of Natural Resources and Environment, South China Agricultural University, Guangzhou, 510650, China.
| |
Collapse
|
3
|
Dai Y, Yang S, Wu L, Cao H, Chen L, Zhong Q, Xu C, He H, Qi C. Converting peracetic acid activation by Fe 3O 4 from nonradical to radical pathway via the incorporation of L-cysteine. JOURNAL OF HAZARDOUS MATERIALS 2024; 465:133303. [PMID: 38141297 DOI: 10.1016/j.jhazmat.2023.133303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 12/11/2023] [Accepted: 12/15/2023] [Indexed: 12/25/2023]
Abstract
Recently, peracetic acid (PAA) based Fenton (-like) processes have received much attention in water treatment. However, these processes are limited by the sluggish Fe(III)/Fe(II) redox circulation efficiency. In this study, L-cysteine (L-Cys), an environmentally friendly electron donor, was applied to enhance the Fe3O4/PAA process for the sulfamethoxazole (SMX) abatement. Surprisingly, the L-Cys incorporation was found not only to enhance the SMX degradation rate constant by 3.2 times but also to switch the Fe(IV) dominated nonradical pathway into the •OH dominated radical pathway. Experiment and theoretical calculation result elucidated -NH2, -SH, and -COOH of L-Cys can increase Fe solubilization by binding to the Fe sites of Fe3O4, while -SH of L-Cys can promote the reduction of bounded/dissolved Fe(III). Similar SMX conversion pathways driven by the Fe3O4/PAA process with or without L-Cys were revealed. Excessive L-Cys or PAA, high pH and the coexisting HCO3-/H2PO4- exhibit inhibitory effects on SMX degradation, while Cl- and humic acid barely affect the SMX removal. This work advances the knowledge of the enhanced mechanism insights of L-Cys toward heterogeneous Fenton (-like) processes and provides experimental data for the efficient treatment of sulfonamide antibiotics in the water treatment.
Collapse
Affiliation(s)
- Yinhao Dai
- School of Environment, Jiangsu Province Engineering Research Center of Environmental Risk Prevention and Emergency Response Technology, Jiangsu Engineering Lab of Water and Soil Eco-remediation, Nanjing Normal University, Nanjing 210023, PR China
| | - Shaogui Yang
- School of Environment, Jiangsu Province Engineering Research Center of Environmental Risk Prevention and Emergency Response Technology, Jiangsu Engineering Lab of Water and Soil Eco-remediation, Nanjing Normal University, Nanjing 210023, PR China; Suzhou Furong Environmental Engineering Co., Ltd, Suzhou 215500, PR China
| | - Leliang Wu
- School of Environment, Jiangsu Province Engineering Research Center of Environmental Risk Prevention and Emergency Response Technology, Jiangsu Engineering Lab of Water and Soil Eco-remediation, Nanjing Normal University, Nanjing 210023, PR China
| | - Hui Cao
- School of Environment, Jiangsu Province Engineering Research Center of Environmental Risk Prevention and Emergency Response Technology, Jiangsu Engineering Lab of Water and Soil Eco-remediation, Nanjing Normal University, Nanjing 210023, PR China
| | - Longjiong Chen
- School of Environment, Jiangsu Province Engineering Research Center of Environmental Risk Prevention and Emergency Response Technology, Jiangsu Engineering Lab of Water and Soil Eco-remediation, Nanjing Normal University, Nanjing 210023, PR China
| | - Qiang Zhong
- School of Environment, Jiangsu Province Engineering Research Center of Environmental Risk Prevention and Emergency Response Technology, Jiangsu Engineering Lab of Water and Soil Eco-remediation, Nanjing Normal University, Nanjing 210023, PR China
| | - Chenmin Xu
- School of Environment, Jiangsu Province Engineering Research Center of Environmental Risk Prevention and Emergency Response Technology, Jiangsu Engineering Lab of Water and Soil Eco-remediation, Nanjing Normal University, Nanjing 210023, PR China
| | - Huan He
- School of Environment, Jiangsu Province Engineering Research Center of Environmental Risk Prevention and Emergency Response Technology, Jiangsu Engineering Lab of Water and Soil Eco-remediation, Nanjing Normal University, Nanjing 210023, PR China
| | - Chengdu Qi
- School of Environment, Jiangsu Province Engineering Research Center of Environmental Risk Prevention and Emergency Response Technology, Jiangsu Engineering Lab of Water and Soil Eco-remediation, Nanjing Normal University, Nanjing 210023, PR China.
| |
Collapse
|
4
|
Kubiak A, Pajewska-Szmyt M, Kotula M, Leśniewski B, Voronkina A, Rahimi P, Falahi S, Heimler K, Rogoll A, Vogt C, Ereskovsky A, Simon P, Langer E, Springer A, Förste M, Charitos A, Joseph Y, Jesionowski T, Ehrlich H. Spongin as a Unique 3D Template for the Development of Functional Iron-Based Composites Using Biomimetic Approach In Vitro. Mar Drugs 2023; 21:460. [PMID: 37755073 PMCID: PMC10532518 DOI: 10.3390/md21090460] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 08/20/2023] [Accepted: 08/21/2023] [Indexed: 09/28/2023] Open
Abstract
Marine sponges of the subclass Keratosa originated on our planet about 900 million years ago and represent evolutionarily ancient and hierarchically structured biological materials. One of them, proteinaceous spongin, is responsible for the formation of 3D structured fibrous skeletons and remains enigmatic with complex chemistry. The objective of this study was to investigate the interaction of spongin with iron ions in a marine environment due to biocorrosion, leading to the occurrence of lepidocrocite. For this purpose, a biomimetic approach for the development of a new lepidocrocite-containing 3D spongin scaffold under laboratory conditions at 24 °C using artificial seawater and iron is described for the first time. This method helps to obtain a new composite as "Iron-Spongin", which was characterized by infrared spectroscopy and thermogravimetry. Furthermore, sophisticated techniques such as X-ray fluorescence, microscope technique, and X-Ray diffraction were used to determine the structure. This research proposed a corresponding mechanism of lepidocrocite formation, which may be connected with the spongin amino acids functional groups. Moreover, the potential application of the biocomposite as an electrochemical dopamine sensor is proposed. The conducted research not only shows the mechanism or sensor properties of "Iron-spongin" but also opens the door to other applications of these multifunctional materials.
Collapse
Affiliation(s)
- Anita Kubiak
- Faculty of Chemistry, Adam Mickiewicz University, Uniwersytetu Poznańskiego 8, 61-614 Poznan, Poland; (M.K.); (B.L.)
- Center of Advanced Technology, Adam Mickiewicz University, Uniwersytetu Poznańskiego 10, 61-614 Poznan, Poland;
| | - Martyna Pajewska-Szmyt
- Center of Advanced Technology, Adam Mickiewicz University, Uniwersytetu Poznańskiego 10, 61-614 Poznan, Poland;
| | - Martyna Kotula
- Faculty of Chemistry, Adam Mickiewicz University, Uniwersytetu Poznańskiego 8, 61-614 Poznan, Poland; (M.K.); (B.L.)
- Center of Advanced Technology, Adam Mickiewicz University, Uniwersytetu Poznańskiego 10, 61-614 Poznan, Poland;
| | - Bartosz Leśniewski
- Faculty of Chemistry, Adam Mickiewicz University, Uniwersytetu Poznańskiego 8, 61-614 Poznan, Poland; (M.K.); (B.L.)
- Center of Advanced Technology, Adam Mickiewicz University, Uniwersytetu Poznańskiego 10, 61-614 Poznan, Poland;
| | - Alona Voronkina
- Institute of Electronic and Sensor Materials, TU Bergakademie Freiberg, Gustav-Zeuner-Str. 3, 09599 Freiberg, Germany; (A.V.); (P.R.); (S.F.); (Y.J.)
- Department of Pharmacy, National Pirogov Memorial Medical University, Vinnytsya, Pyrogov Street. 56, 21018 Vinnytsia, Ukraine
| | - Parvaneh Rahimi
- Institute of Electronic and Sensor Materials, TU Bergakademie Freiberg, Gustav-Zeuner-Str. 3, 09599 Freiberg, Germany; (A.V.); (P.R.); (S.F.); (Y.J.)
| | - Sedigheh Falahi
- Institute of Electronic and Sensor Materials, TU Bergakademie Freiberg, Gustav-Zeuner-Str. 3, 09599 Freiberg, Germany; (A.V.); (P.R.); (S.F.); (Y.J.)
| | - Korbinian Heimler
- Institute of Analytical Chemistry, TU Bergakademie Freiberg, Leipziger Str. 29, 09599 Freiberg, Germany; (K.H.); (A.R.); (C.V.)
| | - Anika Rogoll
- Institute of Analytical Chemistry, TU Bergakademie Freiberg, Leipziger Str. 29, 09599 Freiberg, Germany; (K.H.); (A.R.); (C.V.)
| | - Carla Vogt
- Institute of Analytical Chemistry, TU Bergakademie Freiberg, Leipziger Str. 29, 09599 Freiberg, Germany; (K.H.); (A.R.); (C.V.)
| | - Alexander Ereskovsky
- IMBE, CNRS, IRD, Aix Marseille University, Station Marine d’Endoume, Rue de la Batterie des Lions, 13007 Marseille, France;
| | - Paul Simon
- Max Planck Institute for Chemical Physics of Solids, Nöthnitzer Str. 40, 01187 Dresden, Germany;
| | - Enrico Langer
- Institute of Semiconductors and Microsystems, TU Dresden, Nöthnitzer Str. 64, 01187 Dresden, Germany;
| | - Armin Springer
- Department Life, Light & Matter, University of Rostock, Albert-Einstein-Str. 25, 18059 Rostock, Germany;
- Medical Biology and Electron Microscopy Centre, Rostock University Medical Center, Strempelstr. 14, 18057 Rostock, Germany
| | - Maik Förste
- Institute for Nonferrous Metallurgy and Purest Materials (INEMET), TU Bergakademie Freiberg, Leipziger Str. 34, D-09599 Freiberg, Germany; (M.F.); (A.C.)
| | - Alexandros Charitos
- Institute for Nonferrous Metallurgy and Purest Materials (INEMET), TU Bergakademie Freiberg, Leipziger Str. 34, D-09599 Freiberg, Germany; (M.F.); (A.C.)
| | - Yvonne Joseph
- Institute of Electronic and Sensor Materials, TU Bergakademie Freiberg, Gustav-Zeuner-Str. 3, 09599 Freiberg, Germany; (A.V.); (P.R.); (S.F.); (Y.J.)
| | - Teofil Jesionowski
- Faculty of Chemical Technology, Institute of Chemical Technology and Engineering, Poznan University of Technology, Berdychowo 4, 60-965 Poznan, Poland;
| | - Hermann Ehrlich
- Center of Advanced Technology, Adam Mickiewicz University, Uniwersytetu Poznańskiego 10, 61-614 Poznan, Poland;
- Faculty of Chemical Technology, Institute of Chemical Technology and Engineering, Poznan University of Technology, Berdychowo 4, 60-965 Poznan, Poland;
| |
Collapse
|
5
|
Fang L, Chi J, Shi Q, Wu Y, Li F. Facet-dependent electron transfer induces distinct arsenic reallocations on hematite. WATER RESEARCH 2023; 242:120180. [PMID: 37320876 DOI: 10.1016/j.watres.2023.120180] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Revised: 05/31/2023] [Accepted: 06/06/2023] [Indexed: 06/17/2023]
Abstract
The interfacial electron transfer (ET) between electron shuttling compounds and iron (Fe) oxyhydroxides plays a crucial role in the reductive dissolution of Fe minerals and the fate of surface-bound arsenic (As). However, the impact of exposed facets of highly crystalline hematite on reductive dissolution and As immobilization is poorly understood. In this study, we systematically investigated the interfacial processes of the electron shuttling compound cysteine (Cys) on various facets of hematite and the reallocations of surface-bound As(III) or As(V) on the respective surfaces. Our results demonstrate that the ET process between Cys and hematite generates Fe(II) and leads to reductive dissolution, with more Fe(II) generated on {001} facets of exposed hematite nanoplates (HNPs). Reductive dissolution of hematite leads to significantly enhanced As(V) reallocations on hematite. Nevertheless, upon the addition of Cys, a raipd release of As(III) can be halted by its prompt re-adsorption, leaving the extent of As(III) immobilization on hematite unchanged throughout the course of reductive dissolution. This is due to that Fe(II) can form new precipitates with As(V), a process that is facet-dependent and influenced by water chemistry. Electrochemical analysis reveals that HNPs exhibit higher conductivity and ET ability, which is beneficial for reductive dissolution and As reallocations on hematite. These findings highlight the facet-dependent reallocations of As(III) and As(V) facilitated by electron shuttling compounds and have implications for the biogeochemical processes of As in soil and subsurface environments.
Collapse
Affiliation(s)
- Liping Fang
- National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Institute of Eco-environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou 510650, China
| | - Jialin Chi
- National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Institute of Eco-environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou 510650, China
| | - Qiantao Shi
- Center for Environmental Systems, Stevens Institute of Technology, Hoboken, NJ 07030, United States
| | - Yundang Wu
- National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Institute of Eco-environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou 510650, China
| | - Fangbai Li
- National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Institute of Eco-environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou 510650, China.
| |
Collapse
|
6
|
Zhang R, Xu X, Lyu Y, Zhou Y, Chen Q, Sun W. Impacts of engineered nanoparticles and antibiotics on denitrification: Element cycling functional genes and antibiotic resistance genes. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2022; 241:113787. [PMID: 35738104 DOI: 10.1016/j.ecoenv.2022.113787] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2022] [Revised: 06/14/2022] [Accepted: 06/16/2022] [Indexed: 06/15/2023]
Abstract
The wide presence of antibiotics and minerals warrants their combined effects on the denitrification in natural aquatic environment. Herein, we investigated the effects of two antibiotics, sulfamethazine (SMZ) and chlortetracycline (CTC), on the reduction of NO3--N and accumulation of NO2--N in the absence and presence of engineered nanoparticles (NPs) (Al2O3, SiO2, and geothite) using 16 S rRNA sequencing and high-throughput quantitative PCR. The results showed that the addition of antibiotics inhibited the reduction of NO3--N by changing the bacterial community structure and reducing the abundance of denitrification genes, while engineered NPs promoted the denitrification by increasing the abundance of denitrification genes. In the binary systems, engineered NPs alleviated the inhibitory effect of antibiotics through enriching the denitrification genes and adsorbing antibiotics. Antibiotics and its combination with engineered NPs changed the composition of functional genes related to C, N, P, S metabolisms (p < 0.01). The addition of antibiotics and/or engineered NPs altered the bacterial community structure, which is dominated by the genera of Enterobacter (40.7-90.5%), Bacillus (4.9-58.5%), and Pseudomonas (0.21-12.7%). The significant relationship between denitrification, carbon metabolism genes, and antibiotic resistance genes revealed that the heterotrophic denitrifying bacteria may host the antibiotic resistance genes and denitrification genes simultaneously. The findings underscore the significance of engineered NPs in the toxicity assessment of pollutants, and provide a more realistic insight into the toxicity of antibiotics in the natural aquatic environment.
Collapse
Affiliation(s)
- Ruijie Zhang
- College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China; International Joint Laboratory for Regional Pollution Control, Ministry of Education, Beijing 100871, China; State Environmental Protection Key Laboratory of All Material Fluxes in River Ecosystems, Beijing 100871, China
| | - Xuming Xu
- College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China; International Joint Laboratory for Regional Pollution Control, Ministry of Education, Beijing 100871, China; State Environmental Protection Key Laboratory of All Material Fluxes in River Ecosystems, Beijing 100871, China
| | - Yitao Lyu
- College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China; International Joint Laboratory for Regional Pollution Control, Ministry of Education, Beijing 100871, China; State Environmental Protection Key Laboratory of All Material Fluxes in River Ecosystems, Beijing 100871, China; The Key Laboratory of Water and Sediment Sciences, Ministry of Education, Beijing 100871, China
| | - Ying Zhou
- College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China; International Joint Laboratory for Regional Pollution Control, Ministry of Education, Beijing 100871, China; State Environmental Protection Key Laboratory of All Material Fluxes in River Ecosystems, Beijing 100871, China; The Key Laboratory of Water and Sediment Sciences, Ministry of Education, Beijing 100871, China
| | - Qian Chen
- College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China; International Joint Laboratory for Regional Pollution Control, Ministry of Education, Beijing 100871, China; State Environmental Protection Key Laboratory of All Material Fluxes in River Ecosystems, Beijing 100871, China; The Key Laboratory of Water and Sediment Sciences, Ministry of Education, Beijing 100871, China
| | - Weiling Sun
- College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China; International Joint Laboratory for Regional Pollution Control, Ministry of Education, Beijing 100871, China; State Environmental Protection Key Laboratory of All Material Fluxes in River Ecosystems, Beijing 100871, China; The Key Laboratory of Water and Sediment Sciences, Ministry of Education, Beijing 100871, China.
| |
Collapse
|
7
|
Liu K, Li F, Pang Y, Fang L, Hocking R. Electron shuttle-induced oxidative transformation of arsenite on the surface of goethite and underlying mechanisms. JOURNAL OF HAZARDOUS MATERIALS 2022; 425:127780. [PMID: 34801297 DOI: 10.1016/j.jhazmat.2021.127780] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Revised: 10/25/2021] [Accepted: 11/10/2021] [Indexed: 06/13/2023]
Abstract
The redox process of electron shuttles like cysteine on iron minerals under aerobic conditions may largely determine the fate of arsenic (As) in soils, while the interfacial processes and underlying mechanisms are barely explored. This work systematically investigates the interfacial oxidation processes of As(III) on goethite induced by cysteine. Results show that the addition of cysteine significantly enhances the oxidation efficiency (~ 40%) of As(III) (C0: 10 mg/L) by goethite at pH 7 under aerobic conditions, which is 19.5 times of that without cysteine. cysteine induces Fe(III) reduction on the surface of goethite, and the generation absorbed Fe(II) species play an important role in As(III) oxidation. In particular, the further complexation of Fe(II) with cysteine is thermodynamically favorable for electron transfer, leading to an enhanced As(III) oxidation efficiency. The oxidation efficiency of As(III) in the goethite/cysteine system increases by increasing cysteine concentration and decreases by elevating pH conditions. In addition, evidence indicates that •O2- radicals account for approximately 80% of total oxidized As(III). Meanwhile, only 16% of As(III) oxidation can be attributed to the formed •OH radicals. This work provides new insight into the role of organic electron shuttling compounds in determining As cycling in soils.
Collapse
Affiliation(s)
- Kai Liu
- Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Institute of Eco-environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou 510650, China; National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangzhou 510650, China
| | - Fangbai Li
- Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Institute of Eco-environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou 510650, China; National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangzhou 510650, China
| | - Yan Pang
- Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Institute of Eco-environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou 510650, China; National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangzhou 510650, China
| | - Liping Fang
- Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Institute of Eco-environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou 510650, China; National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangzhou 510650, China.
| | - Rosalie Hocking
- Department of Chemistry and Biotechnology and Centre for Translational Atomaterials, Swinburne University of Technology, Hawthorn, Melbourne, VIC 3122, Australia
| |
Collapse
|