1
|
Zhang H, Wang Z, Lin H, Liu Y, Dai H, Deng J. Catalytic oxidation of volatile organic compounds over supported noble metal and single atom catalysts: A review. J Environ Sci (China) 2025; 155:858-888. [PMID: 40246514 DOI: 10.1016/j.jes.2024.10.024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Revised: 10/26/2024] [Accepted: 10/27/2024] [Indexed: 04/19/2025]
Abstract
Volatile organic compounds (VOCs) exhausted from industrial processes are the major atmospheric pollutants, which could destroy the ecological environment and make hazards to human health seriously. Catalytic oxidation is regarded as the most competitive strategy for the efficient elimination of low-concentration VOCs. Supported noble metal catalysts are preferred catalysts due to their excellent low-temperature catalytic activity. To further lower the cost of catalysts, single atom catalysts (SAC) have been fabricated and extensively studied for application in VOCs oxidation due to their 100 % atom-utilization efficiency and unique catalytic performance. In this review, we comprehensively summarize the recent advances in supported noble metal (e.g., Pt, Pd, Au, and Ag) catalysts and SAC for VOCs oxidation since 2015. Firstly, this paper focuses on some important influencing factors that affect the activity of supported noble metal catalysts, including particle size, valence state and dispersion of noble metals, properties of the support, metal oxide/ion modification, preparation method, and pretreatment conditions of catalysts. Secondly, we briefly summarize the catalytic performance of SAC for typical VOCs. Finally, we conclude the key influencing factors and provide the prospects and challenges of VOCs oxidation.
Collapse
Affiliation(s)
- Honghong Zhang
- Beijing Key Laboratory for Green Catalysis and Separation, Key Laboratory of Beijing on Regional Air Pollution Control, Key Laboratory of Advanced Functional Materials, Education Ministry of China, Department of Chemical Engineering and Technology, College of Materials Science and Engineering, Beijing University of Technology, Beijing 100124, China
| | - Zhiwei Wang
- Beijing Key Laboratory for Green Catalysis and Separation, Key Laboratory of Beijing on Regional Air Pollution Control, Key Laboratory of Advanced Functional Materials, Education Ministry of China, Department of Chemical Engineering and Technology, College of Materials Science and Engineering, Beijing University of Technology, Beijing 100124, China.
| | - Hongxia Lin
- Beijing Key Laboratory for Green Catalysis and Separation, Key Laboratory of Beijing on Regional Air Pollution Control, Key Laboratory of Advanced Functional Materials, Education Ministry of China, Department of Chemical Engineering and Technology, College of Materials Science and Engineering, Beijing University of Technology, Beijing 100124, China
| | - Yuxi Liu
- Beijing Key Laboratory for Green Catalysis and Separation, Key Laboratory of Beijing on Regional Air Pollution Control, Key Laboratory of Advanced Functional Materials, Education Ministry of China, Department of Chemical Engineering and Technology, College of Materials Science and Engineering, Beijing University of Technology, Beijing 100124, China
| | - Hongxing Dai
- Beijing Key Laboratory for Green Catalysis and Separation, Key Laboratory of Beijing on Regional Air Pollution Control, Key Laboratory of Advanced Functional Materials, Education Ministry of China, Department of Chemical Engineering and Technology, College of Materials Science and Engineering, Beijing University of Technology, Beijing 100124, China
| | - Jiguang Deng
- Beijing Key Laboratory for Green Catalysis and Separation, Key Laboratory of Beijing on Regional Air Pollution Control, Key Laboratory of Advanced Functional Materials, Education Ministry of China, Department of Chemical Engineering and Technology, College of Materials Science and Engineering, Beijing University of Technology, Beijing 100124, China
| |
Collapse
|
2
|
Bokhary KA, Maqsood F, Amina M, Aldarwesh A, Mofty HK, Al-yousef HM. Grapefruit Extract-Mediated Fabrication of Photosensitive Aluminum Oxide Nanoparticle and Their Antioxidant and Anti-Inflammatory Potential. NANOMATERIALS 2022; 12:nano12111885. [PMID: 35683744 PMCID: PMC9182307 DOI: 10.3390/nano12111885] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/17/2022] [Revised: 05/18/2022] [Accepted: 05/24/2022] [Indexed: 02/05/2023]
Abstract
Aluminum oxide nanoparticles (Al2O3 NPs) were synthesized using a simple, eco-friendly green synthesis approach in an alkaline medium from the extract of grapefruit peel waste. The pre-synthesized, nano-crystalline Al2O3 NPs were characterized by using spectroscopic (UV-vis, FTIR, XRD, and EDX) and microscopic (SEM and TEM) techniques. The formed Al2O3 NPs exhibited a pronounced absorption peak at 278 nm in the UV-vis spectrum. The average particle size of the as-prepared Al2O3 NPs was evaluated to be 57.34 nm, and the atomic percentages of O and Al were found to be 54.58 and 45.54, respectively. The fabricated Al2O3 NPs were evaluated for antioxidant, anti-inflammatory, and immunomodulatory properties. The Al2O3 NPs showed strong antioxidant potential towards all the four tested assays. The anti-inflammatory and immunomodulatory potential of Al2O3 NPs was investigated by measuring the production of nitric oxide and superoxide anion (O2•-), as well as proinflammatory cytokines tumour necrosis factor (TNF-α, IL-6) and inhibition of nuclear factor kappa B (NF- κB). The results revealed that Al2O3 NPs inhibited the production of O2•- (99.4%) at 100 μg mL-1 concentrations and intracellular NO•- (55%), proinflammatory cytokines IL-6 (83.3%), and TNF-α (87.9%) at 50 μg mL-1 concentrations, respectively. Additionally, the Al2O3 NPs inhibited 41.8% of nuclear factor kappa B at 20 μg mL-1 concentrations. Overall, the outcomes of current research studies indicated that Al2O3 NPs possess anti-inflammatory and immunomodulatory properties and could be used to treat chronic and acute anti-inflammatory conditions.
Collapse
Affiliation(s)
- Kholoud A. Bokhary
- Department of Optometry and Vision Science, College of Applied Medical Science, King Saud University, Riyadh 11451, Saudi Arabia; (K.A.B.); (F.M.); (A.A.); (H.K.M.)
| | - Farah Maqsood
- Department of Optometry and Vision Science, College of Applied Medical Science, King Saud University, Riyadh 11451, Saudi Arabia; (K.A.B.); (F.M.); (A.A.); (H.K.M.)
| | - Musarat Amina
- Department of Pharmacognosy, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia;
- Correspondence:
| | - Amal Aldarwesh
- Department of Optometry and Vision Science, College of Applied Medical Science, King Saud University, Riyadh 11451, Saudi Arabia; (K.A.B.); (F.M.); (A.A.); (H.K.M.)
| | - Hanan K. Mofty
- Department of Optometry and Vision Science, College of Applied Medical Science, King Saud University, Riyadh 11451, Saudi Arabia; (K.A.B.); (F.M.); (A.A.); (H.K.M.)
| | - Hanan M. Al-yousef
- Department of Pharmacognosy, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia;
| |
Collapse
|