1
|
Dorman DC, McGough D, Aschner M, Levy L, Gross P. Hazard classification of manganese salts based on animal neurotoxicity data: case study for specific target organ toxicity - repeated exposure (STOT-RE). JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART B, CRITICAL REVIEWS 2025:1-56. [PMID: 40289256 DOI: 10.1080/10937404.2025.2476418] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/30/2025]
Abstract
Specific Target Organ Toxicity - Repeated Exposure (STOT-RE) is a hazard class in both Globally Harmonized System and Classification, Labelling and Packaging (CLP) Regulation in the European Union (EU) legislation on hazard classification labeling and packaging of substances and mixtures. This legislation, used for the chemical safety assessment under the EU Registration, Evaluation, Authorisation and Restriction of Chemicals (REACH), evaluates long-term exposure of chemicals on human or animals and designates three categories of classification - STOT RE 1 (potential to produce significant toxicity to humans); STOT RE 2 (presumed to be toxic to humans), or not classified. Human epidemiologic studies identified neurologic effects as the most sensitive adverse health effect following repeated manganese (Mn) exposure. However, there are inadequate human studies to assess the neurotoxicity and STOT-RE classification of the chloride, sulfate, and nitrate forms of Mn. This review summarizes peer-reviewed studies with original data identified from searches of PubMed and OECD studies submitted as part of the REACH information requirement. This review included peer-reviewed studies that exhibited a duration of ≥21 days, including oral or inhalation exposure, and reported neurobehavioral, neurochemical or neuropathologic outcomes. A total of 75, 6, and 0 investigations met the inclusion criteria for this review for the chloride, sulfate, and nitrate forms of Mn, respectively. Based upon retrieved data or read-across principles a proposed classification of these Mn salts, following repeated oral or inhaled exposure, is STOT RE 2, target organ, the brain.
Collapse
Affiliation(s)
- David C Dorman
- College of Veterinary Medicine, North Carolina State University, Raleigh, NC, USA
| | | | - Michael Aschner
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Len Levy
- School of Water, Energy and Environment (SWEE), Cranfield University, Cranfield, USA
| | - Peggy Gross
- College of Veterinary Medicine, North Carolina State University, Raleigh, NC, USA
| |
Collapse
|
2
|
Chen L, An S, Liu Y, Jiang Q, Ge Y, Yu G. Lead exposure disrupts cytoskeletal arrangement and perturbs glucose metabolism in nerve cells through activation of the RhoA/ROCK signaling pathway. J Trace Elem Med Biol 2025; 89:127663. [PMID: 40315746 DOI: 10.1016/j.jtemb.2025.127663] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/26/2025] [Revised: 04/20/2025] [Accepted: 04/24/2025] [Indexed: 05/04/2025]
Abstract
Lead (Pb) is a heavy metal environmental pollutant with strong biological toxicity. Our previous study suggested that Pb may impair learning and memory by disrupting cytoskeletal structure and inhibiting the expression of synaptic plasticity-related proteins in mice. However, the exact mechanism of Pb-induced cytoskeletal damage remains unclear. In this study, Neuro-2a cells and Kunming mice were used to explore the neurotoxic mechanism of Pb. The actin dynamics were observed via laser confocal microscopy. The ATP levels and ATPase activity in Neuro-2a cells was measured. In addition, the mRNA and protein expression levels of RhoA/ROCK/Cofilin signaling pathway in brain tissues and Neuro-2a cells was measured, and the mRNA expression levels of glucose metabolism rate-limiting enzymes were detected. Our results showed that Pb induces nerve cell damage and cytoskeletal abnormalities. Western blot and qRT-PCR analyses revealed that Pb activated the RhoA/ROCK/Cofilin signaling pathway. Additionally, ATPase activity significantly decreased following Pb treatment, whereas ATP levels markedly increased in the 50 μM Pb group. In addition, Pb disrupts brain glucose metabolism through affect the transcription of rate-limiting enzymes of glucose metabolism. Overall, these findings suggest that Pb activates the RhoA/ROCK/Cofilin signaling pathway, leading to cytoskeletal damage. Moreover, Pb exposure alters glucose metabolism enzyme activity and ATP production, disrupting the balance between F-actin and G-actin and ultimately affecting neuronal structure and function. These results may provide a better understanding of lead-induced nerve damage.
Collapse
Affiliation(s)
- Lingli Chen
- Postdoctoral Research Station in Biological Sciences, Henan Normal University, Xinxiang, China; College of Animal Science and Veterinary Medicine, Henan Institute of Science and Technology, Xinxiang, China
| | - Siyuan An
- College of Animal Science and Veterinary Medicine, Henan Institute of Science and Technology, Xinxiang, China
| | - Yuye Liu
- College of Animal Science and Veterinary Medicine, Henan Institute of Science and Technology, Xinxiang, China
| | - Qian Jiang
- College of Animal Science and Veterinary Medicine, Henan Institute of Science and Technology, Xinxiang, China
| | - Yaming Ge
- College of Animal Science and Veterinary Medicine, Henan Institute of Science and Technology, Xinxiang, China.
| | - Guoying Yu
- Postdoctoral Research Station in Biological Sciences, Henan Normal University, Xinxiang, China; Pingyuan Laboratory, Henan International Joint Laboratory of Pulmonary Fibrosis, Henan Center for Outstanding Overseas Scientists of Organ Fibrosis, State Key Laboratory of Cell Differentiation and Regulation, College of Life Science, Henan Normal University, Xinxiang, China.
| |
Collapse
|
3
|
Wang S, Qin M, Fan X, Jiang C, Hou Q, Ye Z, Zhang X, Yang Y, Xiao J, Wallace K, Rastegar-Kashkooli Y, Peng Q, Jin D, Wang J, Wang M, Ding R, Tao J, Kim YT, Bhawal UK, Wang J, Chen X, Wang J. The role of metal ions in stroke: Current evidence and future perspectives. Ageing Res Rev 2024; 101:102498. [PMID: 39243890 DOI: 10.1016/j.arr.2024.102498] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 07/24/2024] [Accepted: 09/04/2024] [Indexed: 09/09/2024]
Abstract
Metal ions play a pivotal role in maintaining optimal brain function within the human body. Nevertheless, the accumulation of these ions can result in irregularities that lead to brain damage and dysfunction. Disruptions of metal ion homeostasis can result in various pathologies, including inflammation, redox dysregulation, and blood-brain barrier disruption. While research on metal ions has chiefly focused on neurodegenerative diseases, little attention has been given to their involvement in the onset and progression of stroke. Recent studies have identified cuproptosis and confirmed ferroptosis as significant factors in stroke pathology, underscoring the importance of metal ions in stroke pathology, including abnormal ion transport, neurotoxicity, blood-brain barrier damage, and cell death. Additionally, it provides an overview of contemporary metal ion chelators and detection techniques, which may offer novel approaches to stroke treatment.
Collapse
Affiliation(s)
- Shaoshuai Wang
- Department of Pain Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450000, China; Department of Human Anatomy, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, Henan 450001, China; Non-commissioned Officer School of Army Medical University, Shijiazhuang, Hebei 050000, China
| | - Mengzhe Qin
- Department of Pain Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450000, China
| | - Xiaochong Fan
- Department of Pain Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450000, China
| | - Chao Jiang
- Department of Neurology, People's Hospital of Zhengzhou University, Zhengzhou, Henan 450000, China
| | - Qingchuan Hou
- Department of Human Anatomy, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, Henan 450001, China
| | - Ziyi Ye
- Department of Human Anatomy, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, Henan 450001, China
| | - Xinru Zhang
- Department of Human Anatomy, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, Henan 450001, China
| | - Yunfan Yang
- Department of Human Anatomy, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, Henan 450001, China
| | - Jingyu Xiao
- Department of Human Anatomy, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, Henan 450001, China
| | - Kevin Wallace
- College of Mathematical and Natural Sciences, University of Maryland, College Park, MD 20742, USA
| | - Yousef Rastegar-Kashkooli
- Department of Human Anatomy, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, Henan 450001, China; School of International Education, Zhengzhou University, Zhengzhou, Henan 450001, China
| | - Qinfeng Peng
- Department of Human Anatomy, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, Henan 450001, China
| | - Dongqi Jin
- Department of Human Anatomy, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, Henan 450001, China
| | - Junyang Wang
- Department of Human Anatomy, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, Henan 450001, China
| | - Menglu Wang
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, Henan 450001, China
| | - Ruoqi Ding
- Department of Human Anatomy, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, Henan 450001, China
| | - Jin Tao
- Department of Human Anatomy, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, Henan 450001, China
| | - Yun Tai Kim
- Division of Functional Food Research, Korea Food Research Institute, 245, Nongsaengmyeong-ro, Iseo-myeon, Wanju-gun, Jeollabuk-do 55365, Republic of Korea; Department of Food Biotechnology, Korea University of Science & Technology, 217 Gajeong-ro, Yuseong-gu, Daejeon 34113, Republic of Korea
| | - Ujjal K Bhawal
- Center for Global Health Research, Saveetha Dental College, Saveetha Institute of Medical and Technical Sciences, Chennai, Tamil Nadu 600077, India; Research Institute of Oral Science, Nihon University School of Dentistry at Matsudo, Chiba 271-8587, Japan
| | - Junmin Wang
- Department of Human Anatomy, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, Henan 450001, China.
| | - Xuemei Chen
- Department of Human Anatomy, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, Henan 450001, China.
| | - Jian Wang
- Department of Pain Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450000, China; Department of Human Anatomy, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, Henan 450001, China.
| |
Collapse
|
4
|
Leon M, Troscianko ET, Woo CC. Inflammation and olfactory loss are associated with at least 139 medical conditions. Front Mol Neurosci 2024; 17:1455418. [PMID: 39464255 PMCID: PMC11502474 DOI: 10.3389/fnmol.2024.1455418] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Accepted: 09/16/2024] [Indexed: 10/29/2024] Open
Abstract
Olfactory loss accompanies at least 139 neurological, somatic, and congenital/hereditary conditions. This observation leads to the question of whether these associations are correlations or whether they are ever causal. Temporal precedence and prospective predictive power suggest that olfactory loss is causally implicated in many medical conditions. The causal relationship between olfaction with memory dysfunction deserves particular attention because this sensory system has the only direct projection to memory centers. Mechanisms that may underlie the connections between medical conditions and olfactory loss include inflammation as well as neuroanatomical and environmental factors, and all 139 of the medical conditions listed here are also associated with inflammation. Olfactory enrichment shows efficacy for both prevention and treatment, potentially mediated by decreasing inflammation.
Collapse
Affiliation(s)
- Michael Leon
- Department of Neurobiology and Behavior, University of California, Irvine, Irvine, CA, United States
- Center for the Neurobiology of Learning and Memory, University of California, Irvine, Irvine, CA, United States
- Institute for Memory Impairments and Neurological Disorders, University of California, Irvine, Irvine, CA, United States
| | - Emily T. Troscianko
- The Oxford Research Centre in the Humanities, University of Oxford, Oxford, United Kingdom
| | - Cynthia C. Woo
- Department of Neurobiology and Behavior, University of California, Irvine, Irvine, CA, United States
- Center for the Neurobiology of Learning and Memory, University of California, Irvine, Irvine, CA, United States
| |
Collapse
|
5
|
Zheng XW, Fang YY, Lin JJ, Luo JJ, Li SJ, Aschner M, Jiang YM. Signal Transduction Associated with Mn-induced Neurological Dysfunction. Biol Trace Elem Res 2024; 202:4158-4169. [PMID: 38155332 DOI: 10.1007/s12011-023-03999-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/09/2023] [Accepted: 12/04/2023] [Indexed: 12/30/2023]
Abstract
Manganese (Mn) is a heavy metal that occurs widely in nature and has a vital physiological role in growth and development. However, excessive exposure to Mn can cause neurological damage, especially cognitive dysfunction, such as learning disability and memory loss. Numerous studies on the mechanisms of Mn-induced nervous system damage found that this metal targets a variety of metabolic pathways, for example, endoplasmic reticulum stress, apoptosis, neuroinflammation, cellular signaling pathway changes, and neurotransmitter metabolism interference. This article reviews the latest research progress on multiple signaling pathways related to Mn-induced neurological dysfunction.
Collapse
Affiliation(s)
- Xiao-Wei Zheng
- Toxicology Department, School of Public Health, Guangxi Medical University, 22 Shuang-Yong Rd., Nanning, 530021, Guangxi, China
- Key Laboratory of Prevention and Control of Highly Prevalent Diseases in Guangxi Colleges and Universities, Medical University of Guangxi, Nanning, 530021, China
| | - Yuan-Yuan Fang
- Toxicology Department, School of Public Health, Guangxi Medical University, 22 Shuang-Yong Rd., Nanning, 530021, Guangxi, China
- Key Laboratory of Prevention and Control of Highly Prevalent Diseases in Guangxi Colleges and Universities, Medical University of Guangxi, Nanning, 530021, China
| | - Jun-Jie Lin
- Toxicology Department, School of Public Health, Guangxi Medical University, 22 Shuang-Yong Rd., Nanning, 530021, Guangxi, China
- Key Laboratory of Prevention and Control of Highly Prevalent Diseases in Guangxi Colleges and Universities, Medical University of Guangxi, Nanning, 530021, China
| | - Jing-Jing Luo
- Toxicology Department, School of Public Health, Guangxi Medical University, 22 Shuang-Yong Rd., Nanning, 530021, Guangxi, China
- Key Laboratory of Prevention and Control of Highly Prevalent Diseases in Guangxi Colleges and Universities, Medical University of Guangxi, Nanning, 530021, China
| | - Shao-Jun Li
- Toxicology Department, School of Public Health, Guangxi Medical University, 22 Shuang-Yong Rd., Nanning, 530021, Guangxi, China.
- Key Laboratory of Prevention and Control of Highly Prevalent Diseases in Guangxi Colleges and Universities, Medical University of Guangxi, Nanning, 530021, China.
| | - Michael Aschner
- The Department of Molecular Pharmacology at Albert Einstein College of Medicine, Bronx, NY, 10461, USA
| | - Yue-Ming Jiang
- Toxicology Department, School of Public Health, Guangxi Medical University, 22 Shuang-Yong Rd., Nanning, 530021, Guangxi, China.
- Key Laboratory of Prevention and Control of Highly Prevalent Diseases in Guangxi Colleges and Universities, Medical University of Guangxi, Nanning, 530021, China.
| |
Collapse
|
6
|
Xie YH, Song HX, Peng JC, Li SJ, Ou SY, Aschner M, Jiang YM. Treatment of manganese and lead poisoning with sodium para-aminosalicylic acid: A contemporary update. Toxicol Lett 2024; 398:69-81. [PMID: 38909920 DOI: 10.1016/j.toxlet.2024.06.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 05/08/2024] [Accepted: 06/17/2024] [Indexed: 06/25/2024]
Abstract
Sodium para-aminosalicylic acid (PAS-Na) treatment for manganese (Mn) intoxication has shown efficacy in experimental and clinical studies, giving rise to additional studies on its efficacy for lead (Pb) neurotoxicity and its associated mechanisms of neuroprotection. The difference between PAS-Na and other metal complexing agents, such as edetate calcium sodium (CaNa2-EDTA), is firstly that PAS-Na can readily pass through the blood-brain barrier (BBB), and complex and facilitate the excretion of manganese and lead. Secondly, PAS-Na has anti-inflammatory effects. Recent studies have broadened the understanding on the mechanisms associated with efficacy of PAS-Na. The latter has been shown to modulate multifarious manganese- and lead- induced neurotoxicity, via its anti-apoptotic and anti-inflammatory effects, as well as its ability to inhibit pyroptosis, and regulate abnormal autophagic processes. These observations provide novel scientific bases and new concepts for the treatment of lead, mercury, copper, thallium, as well as other toxic encephalopathies, and implicate PAS-Na as a compound with greater prospects for clinical medical application.
Collapse
Affiliation(s)
- Yu-Han Xie
- Department of Toxicology, School of Public Health, Guangxi Medical University, Nanning 530021, China; Guangxi Colleges and Universities Key Laboratory of Prevention and Control of Highly Prevalent Diseases, Guangxi Medical University, Nanning 530021, China
| | - Han-Xiao Song
- Department of Toxicology, School of Public Health, Guangxi Medical University, Nanning 530021, China; Guangxi Colleges and Universities Key Laboratory of Prevention and Control of Highly Prevalent Diseases, Guangxi Medical University, Nanning 530021, China
| | - Jian-Chao Peng
- Department of Toxicology, School of Public Health, Guangxi Medical University, Nanning 530021, China; Guangxi Colleges and Universities Key Laboratory of Prevention and Control of Highly Prevalent Diseases, Guangxi Medical University, Nanning 530021, China
| | - Shao-Jun Li
- Department of Toxicology, School of Public Health, Guangxi Medical University, Nanning 530021, China; Guangxi Colleges and Universities Key Laboratory of Prevention and Control of Highly Prevalent Diseases, Guangxi Medical University, Nanning 530021, China
| | - Shi-Yan Ou
- Department of Toxicology, School of Public Health, Guangxi Medical University, Nanning 530021, China; Guangxi Colleges and Universities Key Laboratory of Prevention and Control of Highly Prevalent Diseases, Guangxi Medical University, Nanning 530021, China
| | - Michael Aschner
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Yue-Ming Jiang
- Department of Toxicology, School of Public Health, Guangxi Medical University, Nanning 530021, China; Guangxi Colleges and Universities Key Laboratory of Prevention and Control of Highly Prevalent Diseases, Guangxi Medical University, Nanning 530021, China.
| |
Collapse
|
7
|
Wei L, He H, Yang S, Shi Q, Wang X, Huang L, Lu J, Shen Y, Zhi K, Xiang J, Chen C, Mo J, Zheng Z, Zou Y, Yang X, Tang S, Li X, Lu C. Synergistic suppression of BDNF via epigenetic mechanism deteriorating learning and memory impairment caused by Mn and Pb co-exposure. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 277:116365. [PMID: 38657452 DOI: 10.1016/j.ecoenv.2024.116365] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 04/11/2024] [Accepted: 04/20/2024] [Indexed: 04/26/2024]
Abstract
Microglia, the resident immune cells of the central nervous system (CNS), play a dual role in neurotoxicity by releasing the NLR Family Pyrin Domain Containing 3 (NLRP3) inflammasome and brain-derived neurotrophic factor (BDNF) in response to environmental stress. Suppression of BDNF is implicated in learning and memory impairment induced by exposure to manganese (Mn) or lead (Pb) individually. Methyl CpG Binding Protein 2 (MeCp2) and its phosphorylation status are related to BDNF suppression. Protein phosphatase2A (PP2A), a member of the serine/threonine phosphatases family, dephosphorylates substrates based on the methylation state of its catalytic C subunit (PP2Ac). However, the specific impairment patterns and molecular mechanisms resulting from co-exposure to Mn and Pb remain unclear. Therefore, the purpose of this study was to explore the effects of Mn and Pb exposure, alone and in combination, on inducing neurotoxicity in the hippocampus of mice and BV2 cells, and to determine whether simultaneous exposure to both metals exacerbate their toxicity. Our findings reveal that co-exposure to Mn and Pb leads to severe learning and memory impairment in mice, which correlates with the accumulation of metals in the hippocampus and synergistic suppression of BDNF. This suppression is accompanied by up-regulation of the epigenetic repressor MeCp2 and its phosphorylation status, as well as demethylation of PP2Ac. Furthermore, inhibition of PP2Ac demethylation using ABL127, an inhibitor for its protein phosphatase methylesterase1 (PME1), or knockdown of MeCp2 via siRNA transfection in vitro effectively increases BDNF expression and mitigates BV2 cell damage induced by Mn and Pb co-exposure. We also observe abnormal activation of microglia characterized by enhanced release of the NLRP3 inflammasome, Casepase-1 and pro-inflammatory cytokines IL-1β, in the hippocampus of mice and BV2 cells. In summary, our experiments demonstrate that simultaneous exposure to Mn and Pb results in more severe hippocampus-dependent learning and memory impairment, which is attributed to epigenetic suppression of BDNF mediated by PP2A regulation.
Collapse
Affiliation(s)
- Lancheng Wei
- School of Public Health, Guangxi Medical University, Nanning 530021, China
| | - Hongjian He
- School of Public Health, Guangxi Medical University, Nanning 530021, China
| | - Shuting Yang
- School of Public Health, Guangxi Medical University, Nanning 530021, China
| | - Qianqian Shi
- School of Public Health, Guangxi Medical University, Nanning 530021, China
| | - Xinhang Wang
- School of Basic Medical Sciences, Guangxi Medical University, Nanning 530021, China; Key Laboratory of Basic Research on Regional Diseases (Guangxi Medical University) , Education Department of Guangxi Zhuang Autonomous Region, Nanning 530021, China
| | - Liyuan Huang
- School of Public Health, Guangxi Medical University, Nanning 530021, China
| | - Jianyong Lu
- School of Public Health, Guangxi Medical University, Nanning 530021, China
| | - Yinghui Shen
- School of Public Health, Guangxi Medical University, Nanning 530021, China
| | - Kaikai Zhi
- School of Public Health, Guangxi Medical University, Nanning 530021, China
| | - Junni Xiang
- School of Public Health, Guangxi Medical University, Nanning 530021, China
| | - Chengying Chen
- School of Basic Medical Sciences, Guangxi Medical University, Nanning 530021, China
| | - Jiao Mo
- School of Public Health, Guangxi Medical University, Nanning 530021, China
| | - Zhijian Zheng
- School of Public Health, Guangxi Medical University, Nanning 530021, China
| | - Yunfeng Zou
- School of Public Health, Guangxi Medical University, Nanning 530021, China; Guangxi Key Laboratory of Environment and Health Research, Guangxi Medical University, Nanning 530021, China
| | - Xiaobo Yang
- School of Public Health, Guangxi Medical University, Nanning 530021, China; Guangxi Key Laboratory of Environment and Health Research, Guangxi Medical University, Nanning 530021, China
| | - Shen Tang
- School of Basic Medical Sciences, Guangxi Medical University, Nanning 530021, China; Key Laboratory of Basic Research on Regional Diseases (Guangxi Medical University) , Education Department of Guangxi Zhuang Autonomous Region, Nanning 530021, China.
| | - Xiyi Li
- School of Public Health, Guangxi Medical University, Nanning 530021, China; Guangxi Key Laboratory of Environment and Health Research, Guangxi Medical University, Nanning 530021, China.
| | - Cailing Lu
- School of Public Health, Guangxi Medical University, Nanning 530021, China; Guangxi Key Laboratory of Environment and Health Research, Guangxi Medical University, Nanning 530021, China.
| |
Collapse
|
8
|
Deng X, Guo Y, Jin X, Si H, Dai K, Deng M, He J, Hao C, Yao W. Manganese accumulation in red blood cells as a biomarker of manganese exposure and neurotoxicity. Neurotoxicology 2024; 102:1-11. [PMID: 38461971 DOI: 10.1016/j.neuro.2024.03.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Revised: 02/29/2024] [Accepted: 03/08/2024] [Indexed: 03/12/2024]
Abstract
Although overexposure to manganese (Mn) is known to cause neurotoxic damage, effective exposure markers for assessing Mn loading in Mn-exposed workers are lacking. Here, we construct a Mn-exposed rat model to perform correlation analysis between Mn-induced neurological damage and Mn levels in various biological samples. We combine this analysis with epidemiological investigation to assess whether Mn concentrations in red blood cells (MnRBCs) and urine (MnU) can be used as valid exposure markers. The results show that Mn exposure resulted in neurotoxic damage in rats and that MnRBCs correlated well with neurological damage, showing potential as a novel Mn exposure biomarker. These findings provide a basis for health monitoring of Mn-exposed workers and the development of more appropriate biological exposure limits.
Collapse
Affiliation(s)
- Xuedan Deng
- Department of Occupational Health and Environmental Health, College of Public Health, Zhengzhou University, Zhengzhou, Henan 450001, China
| | - Yonghua Guo
- Department of Occupational Health and Environmental Health, College of Public Health, Zhengzhou University, Zhengzhou, Henan 450001, China
| | - Xiaofei Jin
- Department of Ultrasound, The Third Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, Henan 450001, China
| | - Huifang Si
- Department of Occupational Health and Environmental Health, College of Public Health, Zhengzhou University, Zhengzhou, Henan 450001, China
| | - Kai Dai
- Department of Occupational Health and Environmental Health, College of Public Health, Zhengzhou University, Zhengzhou, Henan 450001, China
| | - Meng Deng
- Department of Occupational Health and Environmental Health, College of Public Health, Zhengzhou University, Zhengzhou, Henan 450001, China
| | - Jing He
- Department of Occupational Health and Environmental Health, College of Public Health, Zhengzhou University, Zhengzhou, Henan 450001, China
| | - Changfu Hao
- Department of Child and Adolescence Health, College of Public Health, Zhengzhou University, Zhengzhou, Henan 450001, China.
| | - Wu Yao
- Department of Occupational Health and Environmental Health, College of Public Health, Zhengzhou University, Zhengzhou, Henan 450001, China.
| |
Collapse
|
9
|
Adedara IA, Mohammed KA, Canzian J, Ajayi BO, Farombi EO, Emanuelli T, Rosemberg DB, Aschner M. Utility of zebrafish-based models in understanding molecular mechanisms of neurotoxicity mediated by the gut-brain axis. ADVANCES IN NEUROTOXICOLOGY 2024; 11:177-208. [PMID: 38741945 PMCID: PMC11090488 DOI: 10.1016/bs.ant.2024.02.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2024]
Abstract
The gut microbes perform several beneficial functions which impact the periphery and central nervous systems of the host. Gut microbiota dysbiosis is acknowledged as a major contributor to the development of several neuropsychiatric and neurological disorders including bipolar disorder, depression, anxiety, Parkinson's disease, Alzheimer's disease, attention deficit hyperactivity disorder, and autism spectrum disorder. Thus, elucidation of how the gut microbiota-brain axis plays a role in health and disease conditions is a potential novel approach to prevent and treat brain disorders. The zebrafish (Danio rerio) is an invaluable vertebrate model that possesses conserved brain and intestinal features with those of humans, thus making zebrafish a valued model to investigate the interplay between the gut microbiota and host health. This chapter describes current findings on the utility of zebrafish in understanding molecular mechanisms of neurotoxicity mediated via the gut microbiota-brain axis. Specifically, it highlights the utility of zebrafish as a model organism for understanding how anthropogenic chemicals, pharmaceuticals and bacteria exposure affect animals and human health via the gut-brain axis.
Collapse
Affiliation(s)
- Isaac A. Adedara
- Department of Food Science and Technology, Center of Rural Sciences, Federal University of Santa Maria, Santa Maria, RS, Brazil
| | - Khadija A. Mohammed
- Laboratory of Experimental Neuropsychobiology, Department of Biochemistry and Molecular Biology, Federal University of Santa Maria, Santa Maria, RS, Brazil
- Graduate Program in Biological Sciences: Toxicological Biochemistry, Federal University of Santa Maria, Santa Maria, RS, Brazil
| | - Julia Canzian
- Laboratory of Experimental Neuropsychobiology, Department of Biochemistry and Molecular Biology, Federal University of Santa Maria, Santa Maria, RS, Brazil
- Graduate Program in Biological Sciences: Toxicological Biochemistry, Federal University of Santa Maria, Santa Maria, RS, Brazil
| | - Babajide O. Ajayi
- Graduate Program in Biological Sciences: Toxicological Biochemistry, Federal University of Santa Maria, Santa Maria, RS, Brazil
- Department of Chemical Sciences, Faculty of Natural Sciences, Ajayi Crowther University, Oyo, Nigeria
| | - Ebenezer O. Farombi
- Drug Metabolism and Toxicology Research Laboratories, Department of Biochemistry, College of Medicine, University of Ibadan, Ibadan, Nigeria
| | - Tatiana Emanuelli
- Department of Food Science and Technology, Center of Rural Sciences, Federal University of Santa Maria, Santa Maria, RS, Brazil
| | - Denis B. Rosemberg
- Laboratory of Experimental Neuropsychobiology, Department of Biochemistry and Molecular Biology, Federal University of Santa Maria, Santa Maria, RS, Brazil
- Graduate Program in Biological Sciences: Toxicological Biochemistry, Federal University of Santa Maria, Santa Maria, RS, Brazil
- The International Zebrafish Neuroscience Research Consortium (ZNRC), Slidell, LA, United States
| | - Michael Aschner
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, NY, United States
| |
Collapse
|
10
|
Murumulla L, Bandaru LJM, Challa S. Heavy Metal Mediated Progressive Degeneration and Its Noxious Effects on Brain Microenvironment. Biol Trace Elem Res 2024; 202:1411-1427. [PMID: 37462849 DOI: 10.1007/s12011-023-03778-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Accepted: 07/13/2023] [Indexed: 02/13/2024]
Abstract
Heavy metals, including lead (Pb), cadmium (Cd), arsenic (As), cobalt (Co), copper (Cu), manganese (Mn), zinc (Zn), and others, have a significant impact on the development and progression of neurodegenerative diseases in the human brain. This comprehensive review aims to consolidate the recent research on the harmful effects of different metals on specific brain cells such as neurons, microglia, astrocytes, and oligodendrocytes. Understanding the potential influence of these metals in neurodegeneration is crucial for effectively combating the ongoing advancement of these diseases. Metal-induced neurodegeneration involves molecular mechanisms such as apoptosis induction, dysregulation of metabolic and signaling pathways, metal imbalance, oxidative stress, loss of synaptic transmission, pathogenic peptide aggregation, and neuroinflammation. This review provides valuable insights by compiling the supportive evidence from recent research findings. Additionally, we briefly discuss the modes of action of natural neuroprotective compounds. While this comprehensive review aims to consolidate the recent research on the harmful effects of various metals on specific brain cells, it may not cover all studies and findings related to metal-induced neurodegeneration. Studies that are done using bioinformatics tools, microRNAs, long non-coding RNAs, emerging disease models, and studies based on the modes of exposure to toxic metals are a future prospect to be explored.
Collapse
Affiliation(s)
- Lokesh Murumulla
- Cell Biology Division, National Institute of Nutrition, Indian Council of Medical Research (ICMR), Hyderabad-500007, Hyderabad, Telangana, India
| | - Lakshmi Jaya Madhuri Bandaru
- Cell Biology Division, National Institute of Nutrition, Indian Council of Medical Research (ICMR), Hyderabad-500007, Hyderabad, Telangana, India
| | - Suresh Challa
- Cell Biology Division, National Institute of Nutrition, Indian Council of Medical Research (ICMR), Hyderabad-500007, Hyderabad, Telangana, India.
| |
Collapse
|
11
|
Zhong Q, Zhou W, Lin J, Sun W, Qin Y, Li X, Xu H. Independent and Combined Associations of Blood Manganese, Cadmium and Lead Exposures with the Systemic Immune-Inflammation Index in Adults. TOXICS 2023; 11:659. [PMID: 37624164 PMCID: PMC10457758 DOI: 10.3390/toxics11080659] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Revised: 07/27/2023] [Accepted: 07/28/2023] [Indexed: 08/26/2023]
Abstract
Manganese (Mn), cadmium (Cd) and lead (Pb) have toxic effects on the immune system. However, their independent and combined effects on immune-inflammation responses are unclear. In recent years, the systemic immune-inflammation index (SII) has been developed as an integrated and novel inflammatory indicator. A retrospective cross-sectional study of 2174 adults ≥20 years old from the National Health and Nutrition Examination Survey (NHANES) 2015-2016 was conducted. Generalized linear models were used to evaluate the independent and combined associations of SII with blood Mn, Cd and Pb levels. As continuous variables, both blood Cd and Mn showed dose-dependent relationships with the SII before and after adjusting for all potential confounding factors. Metal concentrations were then converted into categorical variables. Compared with the adults in the lowest Cd or Mn tertile, those in the highest tertile had higher risks of elevated SII. Furthermore, co-exposure to Mn and Cd also showed a positive relationship with the SII after adjusting for all confounding factors. However, the single effect of Pb exposure and the joint effect of Pb and other metal exposures on the SII were not observed. This study provides important epidemiological evidence of the associations of SII with single and co-exposure effects of blood Mn, Cd, and Pb.
Collapse
Affiliation(s)
- Qiya Zhong
- School of Public Health, Sun Yat-sen University, Guangzhou 510080, China;
| | - Wenxin Zhou
- School of Public Health, Hangzhou Medical College, Hangzhou 310013, China; (W.Z.); (J.L.); (W.S.); (Y.Q.)
| | - Jiaqi Lin
- School of Public Health, Hangzhou Medical College, Hangzhou 310013, China; (W.Z.); (J.L.); (W.S.); (Y.Q.)
| | - Wen Sun
- School of Public Health, Hangzhou Medical College, Hangzhou 310013, China; (W.Z.); (J.L.); (W.S.); (Y.Q.)
| | - Yao Qin
- School of Public Health, Hangzhou Medical College, Hangzhou 310013, China; (W.Z.); (J.L.); (W.S.); (Y.Q.)
| | - Xiang Li
- School of Nursing, Yanbian University, Yanji 133000, China;
| | - Huadong Xu
- School of Public Health, Hangzhou Medical College, Hangzhou 310013, China; (W.Z.); (J.L.); (W.S.); (Y.Q.)
| |
Collapse
|
12
|
Ma Z, Liu K, Zhang RF, Xie ZX, Liu W, Deng Y, Li X, Xu B. Manganese-induced α-synuclein overexpression promotes the accumulation of dysfunctional synaptic vesicles and hippocampal synaptotoxicity by suppressing Rab26-dependent autophagy in presynaptic neurons. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 858:159753. [PMID: 36341850 DOI: 10.1016/j.scitotenv.2022.159753] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2022] [Revised: 10/02/2022] [Accepted: 10/23/2022] [Indexed: 06/16/2023]
Abstract
Manganese (Mn) overexposure induces learning and memory impairments in mice by disrupting the functions of synapses and synaptic vesicles (SVs) in the hippocampus, which is associated with α-synuclein (α-Syn) overexpression. Rab26-dependent autophagy is a key signaling step required for impaired SV clearance; however, it is unclear whether Mn-induced α-Syn overexpression is linked to dysregulated Rab26-dependent autophagy in presynaptic neurons. In this study, we developed manganism models in male C57BL/6 mice and hippocampal primary neurons to observe the associations between Mn-induced α-Syn overexpression and impaired SV accumulation. The results of the in vivo experiments showed that 100 and 200 μmol/kg Mn exposure significantly impaired memory and synaptic plasticity in the mice, which was related to the accumulation of impaired SVs in the hippocampus. Consistent with the in vivo outcomes, the level of in vitro injured SVs in the 50 and 100 μmol/L Mn-exposed neuron group were higher than that in the control group. Moreover, 100 μmol/L Mn suppressed the initiation of Rab26-dependent autophagy at the synapse. Then, we transfected neurons with LV-α-Syn short hairpin RNA (shRNA) and exposed the neurons to Mn for an additional 24 h. Surprisingly, the area of colocalization between Rab26 and Atg16L1 and the expression level of LC3II-positive SVs were both higher in Mn-exposed LV-α-Syn shRNA-transfected neurons than those in Mn-treated normal or Mn-treated LV-scrambled shRNA-transfected neurons. Thus, Mn-induced α-Syn overexpression was responsible for the dysregulation of Rab26-dependent autophagy, thereby promoting the accumulation of injured SVs, and causing synaptotoxicity and cognitive and memory deficits in mice.
Collapse
Affiliation(s)
- Zhuo Ma
- Department of Environmental Health, School of Public Health, China Medical University, People's Republic of China
| | - Kuan Liu
- Department of Environmental Health, School of Public Health, China Medical University, People's Republic of China
| | - Rui-Feng Zhang
- Department of Environmental Health, School of Public Health, China Medical University, People's Republic of China
| | - Zi-Xin Xie
- Department of Environmental Health, School of Public Health, China Medical University, People's Republic of China
| | - Wei Liu
- Department of Environmental Health, School of Public Health, China Medical University, People's Republic of China
| | - Yu Deng
- Department of Environmental Health, School of Public Health, China Medical University, People's Republic of China
| | - Xin Li
- Department of Occupational Health, School of Public Health, China Medical University, No. 77 Puhe Road, Shenyang North New Area, 110122 Shenyang, Liaoning Province, People's Republic of China.
| | - Bin Xu
- Department of Environmental Health, School of Public Health, China Medical University, People's Republic of China.
| |
Collapse
|
13
|
Mo J, Liu X, Huang Y, He R, Zhang Y, Huang H. Developmental origins of adult diseases. MEDICAL REVIEW (BERLIN, GERMANY) 2022; 2:450-470. [PMID: 37724166 PMCID: PMC10388800 DOI: 10.1515/mr-2022-0027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Accepted: 10/11/2022] [Indexed: 09/20/2023]
Abstract
The occurrence and mechanisms of developmental adult diseases have gradually attracted attention in recent years. Exposure of gametes and embryos to adverse environments, especially during plastic development, can alter the expression of certain tissue-specific genes, leading to increased susceptibility to certain diseases in adulthood, such as diabetes, cardiovascular disease, neuropsychiatric, and reproductive system diseases, etc. The occurrence of chronic disease in adulthood is partly due to genetic factors, and the remaining risk is partly due to environmental-dependent epigenetic information alteration, including DNA methylation, histone modifications, and noncoding RNAs. Changes in this epigenetic information potentially damage our health, which has also been supported by numerous epidemiological and animal studies in recent years. Environmental factors functionally affect embryo development through epimutation, transmitting diseases to offspring and even later generations. This review mainly elaborated on the concept of developmental origins of adult diseases, and revealed the epigenetic mechanisms underlying these events, discussed the theoretical basis for the prevention and treatment of related diseases.
Collapse
Affiliation(s)
- Jiaying Mo
- Department of Obstetrics and Gynecology, The Fourth Affiliated Hospital, International Institutes of Medicine, Zhejiang University School of Medicine, Yiwu, Zhejiang Province, China
- The Key Laboratory of Reproductive Genetics (Zhejiang University), Ministry of Education, Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, China
| | - Xuanqi Liu
- The Key Laboratory of Reproductive Genetics (Zhejiang University), Ministry of Education, Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, China
| | - Yutong Huang
- The Key Laboratory of Reproductive Genetics (Zhejiang University), Ministry of Education, Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, China
| | - Renke He
- Department of Obstetrics and Gynecology, The Fourth Affiliated Hospital, International Institutes of Medicine, Zhejiang University School of Medicine, Yiwu, Zhejiang Province, China
- The Key Laboratory of Reproductive Genetics (Zhejiang University), Ministry of Education, Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, China
| | - Yu Zhang
- Obstetrics and Gynecology Hospital, Institute of Reproduction and Development, Fudan University, Shanghai, China
| | - Hefeng Huang
- Department of Obstetrics and Gynecology, The Fourth Affiliated Hospital, International Institutes of Medicine, Zhejiang University School of Medicine, Yiwu, Zhejiang Province, China
- The Key Laboratory of Reproductive Genetics (Zhejiang University), Ministry of Education, Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, China
- Obstetrics and Gynecology Hospital, Institute of Reproduction and Development, Fudan University, Shanghai, China
- Research Units of Embryo Original Diseases, Chinese Academy of Medical Sciences (No. 2019RU056), Shanghai, China
| |
Collapse
|