1
|
Frazier CF, Harris TD, DelSontro T, Grossart HP, Sturm BSM, Murry JM, Ising A. Phytoplankton abundance and methane emissions are minimally impacted by environmentally-relevant glyphosate concentrations in small-scale outdoor mesocosms. WATER RESEARCH 2025; 283:123764. [PMID: 40354775 DOI: 10.1016/j.watres.2025.123764] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2025] [Revised: 04/30/2025] [Accepted: 05/01/2025] [Indexed: 05/14/2025]
Abstract
Glyphosate is one of the most widely applied agrochemicals in North America and can be directly transported via runoff into non-target aquatic habitats. Yet, our understanding of how this herbicide affects aquatic ecosystems is limited; past studies have often focused on single species effects and/or used herbicide concentrations several orders of magnitude higher than what has been reported in contaminated aquatic systems. Further, glyphosate in aquatic systems has the potential to alter greenhouse gas emissions (methane) if it is broken down for phosphate utilization by bacteria under specific environmental conditions (i.e., oxygen, nutrient concentrations). In this study, we assessed the temporal changes in nutrients, phytoplankton, copy number of genes associated with breakdown of glyphosate or production of methane (phnJ, mcrA), and methane concentrations in 12-day mesocosms with amendments of glyphosate, nitrogen, and/or phosphorus. We found glyphosate at environmentally-relevant concentrations (∼4 ug/L) did not confer changes in overall ratios and total concentrations of nutrients, or abundance of any major phytoplankton group (cyanobacteria, diatoms, green algae), methane concentration or flux, or gene copy numbers of phnJ and mcrA. Our results suggest that the relatively low concentrations of glyphosate we used (relative to levels used in toxicological studies) did not cause major changes over short time periods in mesocosms, and that the potential for glyphosate to increase greenhouse gas emissions in aquatic systems requires specific conditions to occur and may not be universal in contaminated systems.
Collapse
Affiliation(s)
- Christopher F Frazier
- Kansas Biological Survey and Center for Ecological Research, University of Kansas, 2101 Constant Ave., Lawrence, KS, 66047, USA.
| | - Ted D Harris
- Kansas Biological Survey and Center for Ecological Research, University of Kansas, 2101 Constant Ave., Lawrence, KS, 66047, USA
| | - Tonya DelSontro
- Department of Earth and Environmental Sciences, University of Waterloo, Waterloo, ON, Canada
| | - Hans-Peter Grossart
- Plankton and Microbial Ecology, Leibniz-Institute of Freshwater Ecology and Inland Fisheries, Stechlin, Germany; Institute of Biochemistry and Biology, Potsdam University, Potsdam, Germany
| | - Belinda S M Sturm
- Department of Civil, Environmental & Architectural Engineering, University of Kansas, USA
| | - Jalynn M Murry
- Department of Biology and Chemistry, Baker University, Baldwin City, KS, USA; Baldwin High School, Baldwin City, KS, USA
| | | |
Collapse
|
2
|
Druce E, Maberly SC, Sánchez-Baracaldo P. Wide-ranging organic nitrogen diets of freshwater picocyanobacteria. THE ISME JOURNAL 2025; 19:wrae236. [PMID: 39987554 PMCID: PMC11851481 DOI: 10.1093/ismejo/wrae236] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Revised: 10/18/2024] [Accepted: 02/20/2025] [Indexed: 02/25/2025]
Abstract
Freshwater picocyanobacteria (Syn/Pro clade) contribute substantially to the primary production of inland waters, especially when nitrogen is limiting or co-limiting. Nevertheless, they remain poorly understood ecologically and genomically, with research on their nitrogen acquisition mainly focused on inorganic sources. However, dissolved organic nitrogen is often a major component of the freshwater nitrogen pool and it is increasingly evident that many forms are bioavailable. Comparative genomic analyses, axenic growth assays, and proteomic analyses were used here to investigate organic nitrogen acquisition mechanisms in the Syn/Pro clade. Comparative analysis of the genomes of 295 freshwater and marine strains of picocyanobacteria identified a large diversity of amino acid transporters, the absence of degradation pathways for five amino acids (asparagine, phenylalanine, serine, tryptophan, and tyrosine), and alternative mechanisms for chitin assimilation (direct chitin catabolism vs initial acetylation to chitosan and subsequent degradation). Growth assays demonstrated the widespread bioavailability of amino acids, including basic amino acids though the known basic amino acid transporter is not encoded. This suggests further genetic components are involved, either through extracellular catabolism or the presence of novel transporters. Proteomic analysis demonstrates the dual utilization of nitrogen and carbon from the amino acid substrate and provides evidence for a mild stress response through the up-regulation of lysine biosynthesis and FtsH1, potentially caused by accumulation of secondary metabolites. Our results are relevant to understanding how picocyanobacteria have come to thrive in dissolved organic nitrogen-rich oligotrophic environments and explores how their different molecular capabilities may influence communities between habitats.
Collapse
Affiliation(s)
- Elliot Druce
- School of Geographical Sciences, University of Bristol, University Road, Bristol BS8 1SS, United Kingdom
| | - Stephen C Maberly
- Lake Ecosystems Group, UK Centre for Ecology & Hydrology, Lancaster Environment Centre, Lancaster LA1 4AP, United Kingdom
| | - Patricia Sánchez-Baracaldo
- School of Geographical Sciences, University of Bristol, University Road, Bristol BS8 1SS, United Kingdom
| |
Collapse
|
3
|
Chávez Montes RA, Mary MA, Rashel RH, Fokar M, Herrera-Estrella L, Lopez-Arredondo D, Patiño R. Hormetic and transcriptomic responses of the toxic alga Prymnesium parvum to glyphosate. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 954:176451. [PMID: 39317257 DOI: 10.1016/j.scitotenv.2024.176451] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2024] [Revised: 09/18/2024] [Accepted: 09/19/2024] [Indexed: 09/26/2024]
Abstract
Growth of the toxic alga Prymnesium parvum is hormetically stimulated with environmentally relevant concentrations of glyphosate. The mechanisms of glyphosate hormesis in this species, however, are unknown. We evaluated the transcriptomic response of P. parvum to glyphosate at concentrations that stimulate maximum growth and where growth is not different from control values, the zero-equivalent point (ZEP). Maximum growth occurred at 0.1 mg l-1 and the ZEP was 2 mg l-1. At 0.1 mg l-1, upregulated transcripts outnumbered downregulated transcripts by one order of magnitude. Gene Ontology enrichment and Kyoto Encyclopedia of Genes and Genomes pathway analyses indicated that the upregulated transcriptome is primarily associated with metabolism and biosynthesis. Transcripts encoding heat shock proteins and co-chaperones were among the most strongly upregulated, and several others were associated with translation, Redox homeostasis, cell replication, and photosynthesis. Although most of the same transcripts were also upregulated at concentrations ≥ZEP, the proportion of downregulated transcripts greatly increased as glyphosate concentrations increased. At the ZEP, downregulated transcripts were associated with photosynthesis, cell replication, and anion transport, indicating that specific interference with these processes is responsible for the nullification of hormetic growth. Transcripts encoding the herbicidal target of glyphosate, 5-enolpyruvylshikimate-3-phosphate synthase (EPSPS), were upregulated at concentrations ≥ZEP but not at 0.1 mg l-1, indicating that disruption of EPSPS activity occurred at high concentrations and that nullification of hormetic growth involves the direct interaction of glyphosate with this enzyme. Results of this study may contribute to a better understanding of glyphosate hormesis and of anthropogenic factors that influence P. parvum biogeography and bloom formation.
Collapse
Affiliation(s)
- Ricardo A Chávez Montes
- Institute of Genomics for Crop Abiotic Stress Tolerance, Plant and Soil Science Department, Texas Tech University, Lubbock, TX, USA
| | - Mousumi A Mary
- Department of Biological Sciences and Texas Cooperative Fish and Wildlife Research Unit, Texas Tech University, Lubbock, TX, USA
| | - Rakib H Rashel
- Department of Biological Sciences and Texas Cooperative Fish and Wildlife Research Unit, Texas Tech University, Lubbock, TX, USA
| | - Mohamed Fokar
- Center for Biotechnology and Biochemistry, Texas Tech University, Lubbock, TX, USA
| | - Luis Herrera-Estrella
- Institute of Genomics for Crop Abiotic Stress Tolerance, Plant and Soil Science Department, Texas Tech University, Lubbock, TX, USA
| | - Damar Lopez-Arredondo
- Institute of Genomics for Crop Abiotic Stress Tolerance, Plant and Soil Science Department, Texas Tech University, Lubbock, TX, USA
| | - Reynaldo Patiño
- U.S. Geological Survey and Texas Cooperative Fish and Wildlife Research Unit, Texas Tech University, Lubbock, TX, USA.
| |
Collapse
|
4
|
Ma Z, Ai D, Ge Z, Wu T, Zhang J. Chlormequat inhibits Vallisneria natans growth and shapes the epiphytic biofilm microbial community. WATER ENVIRONMENT RESEARCH : A RESEARCH PUBLICATION OF THE WATER ENVIRONMENT FEDERATION 2024; 96:e11148. [PMID: 39440543 DOI: 10.1002/wer.11148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Revised: 09/26/2024] [Accepted: 10/10/2024] [Indexed: 10/25/2024]
Abstract
Submerged macrophytes can overgrow and negatively affect freshwater ecosystems. This study aimed to investigate the use of chlormequat (CQ) to regulate submerged Vallisneria natans growth as well as its impact on the microbial community of epiphytic biofilms. V. natans height under CQ dosages of 20, 100, and 200 mg/L decreased within 21 days by 12.57%, 30.07%, and 44.62%, respectively, while chlorophyll content increased by 1.94%, 20.39%, and 38.83%. At 100 mg/L, CQ reduced the diversity of bacteria in the biofilm attached to V. natans leaves but increased the diversity of the eukaryotic microbial community. CQ strongly inhibited Cyanobacteria; compared with the control group, the treatment group experienced a significant reduction from 36.54% to 2.61%. Treatment significantly inhibited Gastrotricha and Rotifera, two dominant phyla of eukaryotes in the leaf biofilm, reducing their relative abundances by 17.41% and 6.48%, respectively. CQ significantly changed the leaf biofilm microbial community correlation network. The treatment group exhibited lower modularity (2.012) compared with the control group (2.249); however, the central network of the treated group contained a higher number of microbial genera (13) than the control group (4), highlighting the significance of eukaryotic genera in the network. The results obtained from this study provide invaluable scientific context and technical understanding pertinent to the restoration of submerged macrophytes within aquatic ecosystems. PRACTITIONER POINTS: Chlormequat reduced the plant height but increased leaf chlorophyll content. Chlormequat reduced biofilm bacterial diversity but increased eukaryotic diversity. Chlormequat affected the bacterial-fungal association networks in biofilms.
Collapse
Affiliation(s)
- Zihang Ma
- National Observations and Research Station for Wetland Ecosystems of the Yangtze Estuary, Department of Environmental Science and Engineering, Fudan University, Shanghai, China
| | - Dan Ai
- National Observations and Research Station for Wetland Ecosystems of the Yangtze Estuary, Department of Environmental Science and Engineering, Fudan University, Shanghai, China
| | - Zuhan Ge
- National Observations and Research Station for Wetland Ecosystems of the Yangtze Estuary, Department of Environmental Science and Engineering, Fudan University, Shanghai, China
| | - Tao Wu
- National Observations and Research Station for Wetland Ecosystems of the Yangtze Estuary, Department of Environmental Science and Engineering, Fudan University, Shanghai, China
| | - Jibiao Zhang
- National Observations and Research Station for Wetland Ecosystems of the Yangtze Estuary, Department of Environmental Science and Engineering, Fudan University, Shanghai, China
- Shanghai Shifang Ecology and Landscape Co., Ltd., Shanghai, China
| |
Collapse
|
5
|
Jiao Y, Jia J, Gu J, Wang S, Zhou Q, Li H, Li L. Insights into the enhanced adsorption of glyphosate by dissolved organic matter in farmland Mollisol: effects and mechanisms of action. ENVIRONMENTAL GEOCHEMISTRY AND HEALTH 2024; 46:459. [PMID: 39348086 DOI: 10.1007/s10653-024-02210-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Accepted: 09/01/2024] [Indexed: 10/01/2024]
Abstract
Dissolved organic matter (DOM) is easy to combine with residual pesticides and affect their morphology and environmental behavior. Given that the binding mechanism between DOM and the typical herbicide glyphosate in soil is not yet clear, this study used adsorption experiments, multispectral techniques, density functional theory, and pot experiments to reveal the interaction mechanism between DOM and glyphosate on Mollisol in farmland and their impact on the environment. The results show that the adsorption of glyphosate by Mollisol is a multilayer heterogeneous chemical adsorption process. After adding DOM, due to the early formation of DOM and glyphosate complex, the adsorption process gradually became dominated by single-layer chemical adsorption, and the adsorption capacity increased by 1.06 times. Glyphosate can quench the endogenous fluorescence of humic substances through a static quenching process dominated by hydrogen bonds and van der Waals forces, and instead enhance the fluorescence intensity of protein substances by affecting the molecular environment of protein molecules. The binding of glyphosate to protein is earlier, of which affinity stronger than that of humic acid. In this process, two main functional groups (C-O in aromatic groups and C-O in alcohols, ethers and esters) exist at the binding sites of glyphosate and DOM. Moreover, the complexation of DOM and glyphosate can effectively alleviate the negative impact of glyphosate on the soil. This study has certain theoretical guidance significance for understanding the environmental behavior of glyphosate and improving the sustainable utilization of Mollisol.
Collapse
Affiliation(s)
- Yaqi Jiao
- College of Advanced Agriculture and Ecological Environment, Heilongjiang University, Harbin, 150006, People's Republic of China
| | - Junxin Jia
- College of Advanced Agriculture and Ecological Environment, Heilongjiang University, Harbin, 150006, People's Republic of China
| | - Jiaying Gu
- College of Advanced Agriculture and Ecological Environment, Heilongjiang University, Harbin, 150006, People's Republic of China
| | - Sa Wang
- College of Advanced Agriculture and Ecological Environment, Heilongjiang University, Harbin, 150006, People's Republic of China
| | - Qin Zhou
- College of Advanced Agriculture and Ecological Environment, Heilongjiang University, Harbin, 150006, People's Republic of China
| | - Hui Li
- College of Advanced Agriculture and Ecological Environment, Heilongjiang University, Harbin, 150006, People's Republic of China
| | - Li Li
- College of Advanced Agriculture and Ecological Environment, Heilongjiang University, Harbin, 150006, People's Republic of China.
| |
Collapse
|
6
|
Zheng C, Yang J, Wang Y, Ahmed W, Khan A, Li J, Weng J, Mehmood S, Li W. Comprehensive Assessment of Herbicide Toxicity on Navicula sp. Algae: Effects on Growth, Chlorophyll Content, Antioxidant System, and Lipid Metabolism. Mar Drugs 2024; 22:387. [PMID: 39330268 PMCID: PMC11433268 DOI: 10.3390/md22090387] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Revised: 08/24/2024] [Accepted: 08/27/2024] [Indexed: 09/28/2024] Open
Abstract
This study investigated the effects of herbicide exposure on Navicula sp. (MASCC-0035) algae, focusing on growth density, chlorophyll content, antioxidant system, and lipid metabolism. Navicula cultures were exposed to different concentrations of atrazine (ATZ), glyphosate (Gly), and acetochlor (ACT) for 96 h. Results showed a significant decrease in cell numbers, with higher herbicide concentrations having the most noticeable impacts. For instance, Gly-G2 had reduced cell populations by 21.00% at 96 h. Chlorophyll content varied, with Gly having a greater impact on chlorophyll a compared to ATZ and ACT. Herbicide exposure also affected the antioxidant system, altering levels of soluble sugar, soluble protein, and reactive oxygen species (ROS). Higher herbicide rates increased soluble sugar content (e.g., ATZ, Gly, and ACT-G2 had increased by 14.03%, 19.88%, and 19.83%, respectively, at 72 h) but decreased soluble protein content, notably in Gly-G2 by 11.40%, indicating cellular stress. Lipid metabolism analysis revealed complex responses, with changes in free proline, fatty acids, and lipase content, each herbicide exerting distinct effects. These findings highlight the multifaceted impacts of herbicide exposure on Navicula algae, emphasizing the need for further research to understand ecological implications and develop mitigation strategies for aquatic ecosystems.
Collapse
Affiliation(s)
- Chunyan Zheng
- College of Ecology, Hainan University, Haikou 570100, China
- Center for Eco-Environment Restoration Engineering of Hainan Province, Hainan University, Haikou 570228, China
| | - Jie Yang
- College of Ecology, Hainan University, Haikou 570100, China
- Center for Eco-Environment Restoration Engineering of Hainan Province, Hainan University, Haikou 570228, China
| | - Yunting Wang
- College of Ecology, Hainan University, Haikou 570100, China
- Center for Eco-Environment Restoration Engineering of Hainan Province, Hainan University, Haikou 570228, China
| | - Waqas Ahmed
- College of Ecology, Hainan University, Haikou 570100, China
- Center for Eco-Environment Restoration Engineering of Hainan Province, Hainan University, Haikou 570228, China
| | - Amir Khan
- Department of Medicine, Hainan Medical University, Haikou 571100, China
| | - Jiannan Li
- College of Ecology, Hainan University, Haikou 570100, China
- Center for Eco-Environment Restoration Engineering of Hainan Province, Hainan University, Haikou 570228, China
| | - Jiechang Weng
- Hainan Provincial Ecological and Environmental Monitoring Center, Haikou 570228, China
| | - Sajid Mehmood
- College of Ecology, Hainan University, Haikou 570100, China
- Center for Eco-Environment Restoration Engineering of Hainan Province, Hainan University, Haikou 570228, China
| | - Weidong Li
- College of Ecology, Hainan University, Haikou 570100, China
- Center for Eco-Environment Restoration Engineering of Hainan Province, Hainan University, Haikou 570228, China
| |
Collapse
|
7
|
Bodean MF, Regaldo L, Mayora G, Mora C, Giri F, Gervasio S, Popielarz A, Repetti MR, Licursi M. Effects of herbicides and fertilization on biofilms of Pampean lotic systems: A microcosm study. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 917:170238. [PMID: 38280601 DOI: 10.1016/j.scitotenv.2024.170238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 12/02/2023] [Accepted: 01/15/2024] [Indexed: 01/29/2024]
Abstract
We experimentally assessed the impact of the application of herbicides and fertilizers derived from agricultural activity through the individual and simultaneous addition of glyphosate, atrazine, and nutrients (nitrogen 'N' and phosphorus 'P') on the biofilm community and their resilience when the experimental factors were removed. We hypothesize that i) the presence of agrochemicals negatively affects the biofilm community leading to the simplification of the community structure; ii) the individual or simultaneous addition of herbicides and nutrients produces differential responses in the biofilm; and iii) the degree of biofilm recovery differs according to the treatment applied. Environmentally relevant concentrations of glyphosate (0.7 mgL-1), atrazine (44 μgL-1), phosphorus (1 mg P L-1 [KH2PO4]), and nitrogen (3 mg N L-1[NaNO3]) were used. Chlorophyll a, ash-free dry weight, abundance of main biofilm groups and nutrient contents in biofilm were analyzed. At initial exposure time, all treatments were dominated by Cyanobacteria; through the exposure period, it was observed a progressive replacement by Bacillariophyceae. This replacement occurred on day 3 for the control and was differentially delayed in all herbicides and/or nutrient treatments in which the abundance of cyanobacteria remains significant yet in T5. A significant correlation was observed between the abundance of cyanobacteria and the concentration of atrazine, suggesting that this group is less sensitive than diatoms. The presence of agrochemicals exerted differential effects on the different algal groups. Herbicides contributed to phosphorus and nitrogen inputs. The most frequently observed interactions between experimental factors (nutrients and herbicides) was additivity excepting for species richness (antagonistic effect). In the final recovery time, no significant differences were found between the treatments and the control in most of the evaluated parameters, evincing the resilience of the community.
Collapse
Affiliation(s)
- María Florencia Bodean
- Instituto Nacional de Limnología 'INALI', Consejo Nacional de Investigaciones Científicas y Técnicas - Universidad Nacional del Litoral (CONICET-UNL), Ciudad Universitaria, Santa Fe, Argentina
| | - Luciana Regaldo
- Facultad de Humanidades y Ciencias (FHUC, UNL-CONICET), Ciudad Universitaria, Santa Fe, Argentina
| | - Gisela Mayora
- Instituto Nacional de Limnología 'INALI', Consejo Nacional de Investigaciones Científicas y Técnicas - Universidad Nacional del Litoral (CONICET-UNL), Ciudad Universitaria, Santa Fe, Argentina
| | - Celeste Mora
- Instituto Nacional de Limnología 'INALI', Consejo Nacional de Investigaciones Científicas y Técnicas - Universidad Nacional del Litoral (CONICET-UNL), Ciudad Universitaria, Santa Fe, Argentina
| | - Federico Giri
- Instituto Nacional de Limnología 'INALI', Consejo Nacional de Investigaciones Científicas y Técnicas - Universidad Nacional del Litoral (CONICET-UNL), Ciudad Universitaria, Santa Fe, Argentina; Facultad de Humanidades y Ciencias (FHUC, UNL-CONICET), Ciudad Universitaria, Santa Fe, Argentina
| | - Susana Gervasio
- Instituto Nacional de Tecnología (INTEC, CONICET - UNL), Parque Tecnológico Litoral Centro, Santa Fe, Argentina
| | - Andrea Popielarz
- Instituto Nacional de Tecnología (INTEC, CONICET - UNL), Parque Tecnológico Litoral Centro, Santa Fe, Argentina
| | | | - Magdalena Licursi
- Instituto Nacional de Limnología 'INALI', Consejo Nacional de Investigaciones Científicas y Técnicas - Universidad Nacional del Litoral (CONICET-UNL), Ciudad Universitaria, Santa Fe, Argentina.
| |
Collapse
|
8
|
Martínez-Ruiz EB, Agha R, Spahr S, Wolinska J. Widely used herbicide metolachlor can promote harmful bloom formation by stimulating cyanobacterial growth and driving detrimental effects on their chytrid parasites. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 344:123437. [PMID: 38272168 DOI: 10.1016/j.envpol.2024.123437] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 01/19/2024] [Accepted: 01/22/2024] [Indexed: 01/27/2024]
Abstract
Metolachlor (MET) is a widely used herbicide that can adversely affect phytoplanktonic non-target organisms, such as cyanobacteria. Chytrids are zoosporic fungi ubiquitous in aquatic environments that parasitize cyanobacteria and can keep their proliferation in check. However, the influence of organic pollutants on the interaction between species, including parasitism, and the associated ecological processes remain poorly understood. Using the host-parasite system consisting of the toxigenic cyanobacterium Planktothrix agardhii and its chytrid parasite Rhizophydium megarrhizum, we investigated the effects of environmentally relevant concentrations of MET on host-parasite interactions under i) continuous exposure of chytrids and cyanobacteria, and ii) pre-exposure of chytrids. During a continuous exposure, the infection prevalence and intensity were not affected, but chytrid reproductive structures were smaller at the highest tested MET concentration. In the parasite's absence, MET promoted cyanobacteria growth possibly due to a hormesis effect. In the pre-exposure assay, MET caused multi- and transgenerational detrimental effects on parasite fitness. Chytrids pre-exposed to MET showed reduced infectivity, intensity, and prevalence of the infection, and their sporangia size was reduced. Thus, pre-exposure of the parasite to MET resulted in a delayed decline of the cyanobacterial cultures upon infection. After several parasite generations without MET exposure, the parasite recovered its initial fitness, indicating that detrimental effects are transient. This study demonstrates that widely used herbicides, such as MET, could favor cyanobacterial bloom formation both directly, by promoting cyanobacteria growth, and indirectly, by inhibiting their chytrid parasites, which are known to play a key role as top-down regulators of cyanobacteria. In addition, we evidence the relevance of addressing multi-organism systems, such as host-parasite interactions, in toxicity assays. This approach offers a more comprehensive understanding of the effects of pollutants on aquatic ecosystems.
Collapse
Affiliation(s)
- Erika Berenice Martínez-Ruiz
- Department of Evolutionary and Integrative Ecology, Leibniz Institute of Freshwater Ecology and Inland Fisheries (IGB), Berlin, Germany.
| | - Ramsy Agha
- Department of Evolutionary and Integrative Ecology, Leibniz Institute of Freshwater Ecology and Inland Fisheries (IGB), Berlin, Germany
| | - Stephanie Spahr
- Department of Ecohydrology and Biogeochemistry, Leibniz Institute of Freshwater Ecology and Inland Fisheries (IGB), Berlin, Germany
| | - Justyna Wolinska
- Department of Evolutionary and Integrative Ecology, Leibniz Institute of Freshwater Ecology and Inland Fisheries (IGB), Berlin, Germany; Department of Biology, Chemistry, Pharmacy, Institute of Biology, Freie Universität Berlin, Germany
| |
Collapse
|
9
|
Zhang Q, Lei C, Jin M, Qin G, Yu Y, Qiu D, Wang Y, Zhang Z, Zhang Z, Lu T, Peijnenburg WJGM, Gillings M, Yao Z, Qian H. Glyphosate Disorders Soil Enchytraeid Gut Microbiota and Increases Its Antibiotic Resistance Risk. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:2089-2099. [PMID: 38235689 DOI: 10.1021/acs.jafc.3c05436] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/19/2024]
Abstract
Pesticides promote the stable development of intensive global agriculture. Nevertheless, their residues in the soil can cause ecological and human health risks. Glyphosate is a popular herbicide and is generally thought to be ecologically safe and nontoxic, but this conclusion has been questioned. Herein, we investigated the interaction among soil fauna (Enchytraeus crypticus) exposed to glyphosate and found that glyphosate induced oxidative stress and detoxification responses in E. crypticus and disturbed their lipid metabolism and digestive systems. We further demonstrated that glyphosate disordered the gut microbiota of E. crypticus and increased the abundance of resistance determinants with significant human health risks. Empirical tests and structural equation models were then used to confirm that glyphosate could cause E. crypticus to generate reactive oxygen species, indirectly interfering with their gut microbiota. Our study provides important implications for deciphering the mechanisms of the ecotoxicity of pesticides under the challenge of worldwide pesticide contamination.
Collapse
Affiliation(s)
- Qi Zhang
- College of Environment, Zhejiang University of Technology, Hangzhou 310032, P. R. China
| | - Chaotang Lei
- College of Environment, Zhejiang University of Technology, Hangzhou 310032, P. R. China
| | - Mingkang Jin
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Guoyan Qin
- College of Environment, Zhejiang University of Technology, Hangzhou 310032, P. R. China
| | - Yitian Yu
- College of Environment, Zhejiang University of Technology, Hangzhou 310032, P. R. China
| | - Danyan Qiu
- College of Environment, Zhejiang University of Technology, Hangzhou 310032, P. R. China
| | - Yan Wang
- College of Environment, Zhejiang University of Technology, Hangzhou 310032, P. R. China
| | - Ziyao Zhang
- College of Environment, Zhejiang University of Technology, Hangzhou 310032, P. R. China
| | - Zhenyan Zhang
- College of Environment, Zhejiang University of Technology, Hangzhou 310032, P. R. China
| | - Tao Lu
- College of Environment, Zhejiang University of Technology, Hangzhou 310032, P. R. China
| | - W J G M Peijnenburg
- Institute of Environmental Sciences (CML), Leiden University, RA Leiden 2300, The Netherlands
- Center for Safety of Substances and Products, National Institute of Public Health and the Environment (RIVM), P.O. Box 1, Bilthoven 3720 BA, The Netherlands
| | - Michael Gillings
- ARC Centre of Excellence in Synthetic Biology, Faculty of Science and Engineering, Macquarie University, Macquarie Park, New South Wales 2109, Australia
| | - Ziang Yao
- College of Life Science, Dalian Minzu University, Dalian, Liaoning 116600, PR China
| | - Haifeng Qian
- College of Environment, Zhejiang University of Technology, Hangzhou 310032, P. R. China
| |
Collapse
|
10
|
Kanda T, Srivastava R, Yadav S, Singh N, Prajapati R, Singh PK, Yadav S, Atri N. Pretilachlor-induced physiological, biochemical and morphological changes in Indian paddy field agroecosystem inhabited Anabaena doliolum. ENVIRONMENTAL RESEARCH 2023; 238:117201. [PMID: 37775005 DOI: 10.1016/j.envres.2023.117201] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 09/24/2023] [Accepted: 09/25/2023] [Indexed: 10/01/2023]
Abstract
Pretilachlor is a systemic, pre-emergence herbicide applied in the paddy fields to kill narrow and broadleaf weeds. The present study evaluates the toxicity of pretilachlor on the non-target diazotrophic free-living cyanobacterium Anabaena doliolum, commonly found in the paddy fields of eastern Uttar Pradesh (India) and used as a biofertilizer. A.doliolum was subjected to several doses (0, 2, 5, 7, 10, 20 and 40 μg/ml) of pretilachlor and its effects were examined in terms of alterations in cellular morphology, ultrastructure, physiology, and biochemical attributes. The treatment of pretilachlor decreased the growth, total pigment content and photosynthetic efficiency of the test organism in a dose-dependent manner. The decline in growth was observed on 20th day at 2, 5, 7, 10, 20 and 40 μg/ml of pretilachlor concentration by 4, 9, 26, 47, 71 and 92%, respectively. Furthermore, Chlorophyll a and phycocyanin levels were noticeably declined. As a result, the photosynthetic performance also registered a similar decline as measured by chlorophyll fluorescence. However, carotenoid content increased by 13%, 41% and 53% at 5, 10 and 20 μg/ml on 5th day reflecting its protective property. A marked increase in fluorescence intensity and malondialdehyde content by 2.65 and 2.45 folds at 10 and 20 μg/ml on 7th day was registered. The enzymatic antioxidants (SOD and CAT) and a concurrent increase in glutathione reductase activity were registered (1.75 and 2.11-fold at 20 and 40 μg/ml on 5th day), indicating pretilachlor mediated ROS generation. Moreover, ultrastructural studies done by SEM and TEM revealed plasma membrane and thylakoid membrane damage and fragmentation. These findings have contributed to the broader comprehension of the stress responses triggered by pretilachlor in cyanobacteria. Moreover, they can aid in the evaluation of the detrimental impact of pretilachlor on A. doliolum, given their crucial function as a nitrogen contributor in paddy fields.
Collapse
Affiliation(s)
- Tripti Kanda
- Department of Botany, MMV, Banaras Hindu University, Varanasi, U.P., 221005, India
| | - Rupanshee Srivastava
- Department of Botany, MMV, Banaras Hindu University, Varanasi, U.P., 221005, India
| | - Sadhana Yadav
- Department of Botany, MMV, Banaras Hindu University, Varanasi, U.P., 221005, India
| | - Nidhi Singh
- Department of Botany, MMV, Banaras Hindu University, Varanasi, U.P., 221005, India
| | - Rajesh Prajapati
- Department of Botany, Government College of Art's and Commerce, Beohari, Shahdol, M.P, 48774, India
| | - Prashant Kumar Singh
- Department of Biotechnology, Mizoram University (A Central University), Pacchunga University College Campus, Aizawl, 796001, Mizoram, India
| | - Shivam Yadav
- Department of Botany, University of Allahabad, Prayagraj, U.P., 211002, India.
| | - Neelam Atri
- Department of Botany, MMV, Banaras Hindu University, Varanasi, U.P., 221005, India.
| |
Collapse
|
11
|
Yang Y, Wang H, Yan S, Wang T, Zhang P, Zhang H, Wang H, Hansson LA, Xu J. Chemodiversity of Cyanobacterial Toxins Driven by Future Scenarios of Climate Warming and Eutrophication. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:11767-11778. [PMID: 37535835 DOI: 10.1021/acs.est.3c02257] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/05/2023]
Abstract
Climate change and eutrophication are two environmental threats that can alter the structure of freshwater ecosystems and their service functions, but we know little about how ecosystem structure and function will evolve in future scenarios of climate warming. Therefore, we created different experimental climate scenarios, including present-day conditions, a 3.0 °C increase in mean temperature, and a "heatwaves" scenario (i.e., an increase in temperature variability) to assess the effects of climate change on phytoplankton communities under simultaneous stress from eutrophication and herbicides. We show that the effects of climate warming, particularly heatwaves, are associated with elevated cyanobacterial abundances and toxin production, driven by a change from mainly nontoxic to toxic Microcystis spp. The reason for higher cyanobacterial toxin concentrations is likely an increase in abundances because under the dual pressures of climate warming and eutrophication individual Microcystis toxin-producing ability decreased. Eutrophication and higher temperatures significantly increased the biomass of Microcystis, leading to an increase in the cyanobacterial toxin concentrations. In contrast, warming alone did not produce higher cyanobacterial abundances or cyanobacterial toxin concentrations likely due to the depletion of the available nutrient pool. Similarly, the herbicide glyphosate alone did not affect abundances of any phytoplankton taxa. In the case of nutrient enrichment, cyanobacterial toxin concentrations were much higher than under warming alone due to a strong boost in biomass of potential cyanobacterial toxin producers. From a broader perspective our study shows that in a future warmer climate, nutrient loading has to be reduced if toxic cyanobacterial dominance is to be controlled.
Collapse
Affiliation(s)
- Yalan Yang
- State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan University, Haikou, Hainan 570228, P. R. China
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, P. R. China
| | - Huan Wang
- State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan University, Haikou, Hainan 570228, P. R. China
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, P. R. China
| | - Shuwen Yan
- Department of Environmental Science & Engineering, Fudan University, Shanghai 200438, P. R. China
| | - Tao Wang
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, P. R. China
| | - Peiyu Zhang
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, P. R. China
| | - Huan Zhang
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, P. R. China
| | - Hongxia Wang
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, P. R. China
| | - Lars-Anders Hansson
- Department of Biology/Aquatic Ecology, Ecology Building, Lund University, Lund SE-22100, Sweden
| | - Jun Xu
- State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan University, Haikou, Hainan 570228, P. R. China
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, P. R. China
| |
Collapse
|
12
|
Shen C, Pan X, Wu X, Xu J, Zheng Y, Dong F. Computer-aided toxicity prediction and potential risk assessment of two novel neonicotinoids, paichongding and cycloxaprid, to hydrobionts. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 861:160605. [PMID: 36460103 DOI: 10.1016/j.scitotenv.2022.160605] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Revised: 11/21/2022] [Accepted: 11/26/2022] [Indexed: 06/17/2023]
Abstract
Paichongding (IPP) and cycloxaprid (CYC) have been effectively used as the alternative products of imidacloprid (IMI) against IMI-resistant insects and exhibit a great market potential. However, risk assessment of IPP and CYC for non-target organisms, especially ecological risk assessment for non-target aquatic organisms, is still lacking. Here, we predicted the toxicity and potential risks of IPP, CYC, and their transformation products (TPs) to hydrobionts. The results indicated that IPP and CYC could generate 428 and 113 TPs, respectively, via aerobic microbial transformation. Nearly half of the IPP TPs and nearly 41 % of the CYC TPs exhibited high or moderate toxicity to Daphnia or fish. Moreover, we found that IPP, CYC, and 80 TPs of them posed potential risks to aquatic ecosystems. Almost all harmful TPs contained a 6-chloropyridine ring structure, suggesting that this structure may be associated with the strong toxicity of these TPs to aquatic organisms, and these TPs (IPP-TP2 or CYC-TP2, IPP-TP197 or CYC-TP71, IPP-TP198 or CYC-TP72, and IPP-TP212 or CYC-TP80) may appear in aquatic environments as final products. The risks posed by these TPs to aquatic ecosystems require more attention. This study provides insights into the toxicity and ecological risks of IPP and CYC.
Collapse
Affiliation(s)
- Chao Shen
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, PR China; Shandong Engineering Research Center for Environment-Friendly Agricultural Pest Management, College of Plant Health and Medicine, Qingdao Agricultural University, Qingdao 266109, PR China
| | - Xinglu Pan
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, PR China
| | - Xiaohu Wu
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, PR China
| | - Jun Xu
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, PR China
| | - Yongquan Zheng
- Shandong Engineering Research Center for Environment-Friendly Agricultural Pest Management, College of Plant Health and Medicine, Qingdao Agricultural University, Qingdao 266109, PR China
| | - Fengshou Dong
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, PR China.
| |
Collapse
|
13
|
Qu M, Wang L, Xu Q, An J, Mei Y, Liu G. Influence of glyphosate and its metabolite aminomethylphosphonic acid on aquatic plants in different ecological niches. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2022; 246:114155. [PMID: 36206639 DOI: 10.1016/j.ecoenv.2022.114155] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2022] [Revised: 09/29/2022] [Accepted: 10/03/2022] [Indexed: 06/16/2023]
Abstract
Glyphosate and its metabolite aminomethylphosphonic acid (AMPA) draw great concern due to their potential threat to aquatic ecosystems. The individual and combined effects of glyphosate and AMPA on aquatic plants in different ecological niches need to be explored. This study aimed to investigate the ecotoxicity of glyphosate and AMPA on the emergent macrophyte Acorus calamus, phytoplankton Chlorella vulgaris, and submerged macrophyte Vallisneria natans after their exposure to glyphosate and AMPA alone and to their mixture. Medium and low concentrations of glyphosate (≤ 0.5 mg L-1) significantly inhibited the growth of V. natans and promoted the growth of C. vulgaris (P < 0.05) but had no significant effect on the growth of A. calamus (P > 0.05). AMPA (≤ 5.0 mg L-1) did not significantly influence the relative growth rate (except C. vulgaris) or malonaldehyde levels but significantly altered the expression levels of chlorophyll-related genes and superoxide dismutase [Cu-Zn] genes in the aquatic plants examined. AMPA mainly affected the oxidative phosphorylation pathway in V. natans and not those in other two plants, indicating that V. natans was more sensitive to AMPA-induced oxidative damage. Moreover, antagonistic effects on plant growth were observed when plants were exposed to low concentrations of glyphosate + AMPA (≤ 0.1 + 0.1 mg L-1). When the concentration of glyphosate + AMPA reached 0.5 + 0.5 and 5.0 + 5.0 mg L-1, the growth of the submerged macrophyte was additively or synergistically inhibited, but the growth of the emergent macrophyte and phytoplankton was antagonistically inhibited. Our results indicated that both the individual and combined effects of glyphosate and AMPA might alter the vertical structure of shallow lakes and accelerate the conversion of shallow lakes from grass-based to algal-based lakes.
Collapse
Affiliation(s)
- Mengjie Qu
- School of Chemical and Environmental Engineering, Wuhan Polytechnic University, Wuhan 430023, China; Laboratory of Eco-Environmental Engineering Research, Microelement Research Centre, Huazhong Agricultural University, Wuhan 430070, China
| | - Longtao Wang
- CCCC Second Harbor Engineering Company LTD, Wuhan 430040, China
| | - Qiang Xu
- BOE Environmental Energy Technology Company LTD, Beijing 100176, China
| | - Jiaqi An
- Laboratory of Eco-Environmental Engineering Research, Microelement Research Centre, Huazhong Agricultural University, Wuhan 430070, China
| | - Yunjun Mei
- School of Chemical and Environmental Engineering, Wuhan Polytechnic University, Wuhan 430023, China.
| | - Guanglong Liu
- Laboratory of Eco-Environmental Engineering Research, Microelement Research Centre, Huazhong Agricultural University, Wuhan 430070, China.
| |
Collapse
|
14
|
Tao M, He Y, Bai X, Chen X, Wei Y, Peng C, Feng X. Combination of spectral index and transfer learning strategy for glyphosate-resistant cultivar identification. FRONTIERS IN PLANT SCIENCE 2022; 13:973745. [PMID: 36003818 PMCID: PMC9393615 DOI: 10.3389/fpls.2022.973745] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Accepted: 07/22/2022] [Indexed: 06/15/2023]
Abstract
Glyphosate is one of the most widely used non-selective herbicides, and the creation of glyphosate-resistant cultivars solves the problem of limited spraying area. Therefore, it is of great significance to quickly identify resistant cultivars without destruction during the development of superior cultivars. This work took maize seedlings as the experimental object, and the spectral indices of leaves were calculated to construct a model with good robustness that could be used in different experiments. Compared with no transfer strategies, transferability of support vector machine learning model was improved by randomly selecting 14% of source domain from target domain to train and applying transfer component analysis algorithm, the accuracy on target domain reached 83% (increased by 71%), recall increased from 10 to 100%, and F1-score increased from 0.17 to 0.86. The overall results showed that both transfer component analysis algorithm and updating source domain could improve the transferability of model among experiments, and these two transfer strategies could complement each other's advantages to achieve the best classification performance. Therefore, this work is beneficial to timely understanding of the physiological status of plants, identifying glyphosate resistant cultivars, and ultimately provides theoretical basis and technical support for new cultivar creation and high-throughput selection.
Collapse
Affiliation(s)
- Mingzhu Tao
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, China
| | - Yong He
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, China
| | - Xiulin Bai
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, China
| | - Xiaoyun Chen
- Key Laboratory of Traceability for Agricultural Genetically Modified Organisms, Ministry of Agriculture and Rural Affairs, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Yuzhen Wei
- School of Information Engineering, Huzhou University, Huzhou, China
| | - Cheng Peng
- Key Laboratory of Traceability for Agricultural Genetically Modified Organisms, Ministry of Agriculture and Rural Affairs, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Xuping Feng
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, China
| |
Collapse
|
15
|
Chen B, Pan Y, Chen Y, Zhang Z, Yang Z, Zheng M, Lu T, Jiang L, Qian H. TiO 2 nanoparticles exert an adverse effect on aquatic microbial communities. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 831:154942. [PMID: 35367556 DOI: 10.1016/j.scitotenv.2022.154942] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2022] [Revised: 03/25/2022] [Accepted: 03/27/2022] [Indexed: 06/14/2023]
Abstract
Titanium dioxide nanoparticle (n-TiO2) is a widely used nanomaterial, which is inevitably released as a residue into aquatic ecosystems during material production and usage. However, the effects of n-TiO2 on aquatic microbial communities have not been completely elucidated. This study examined the toxic effects of n-TiO2 on eukaryotic and prokaryotic microbial communities in freshwater environments. We determined that n-TiO2 had a greater inhibitory effect on the growth of eukaryotic algae than cyanobacteria in monocultures. A similar phenomenon was observed in a microcosm experiment, revealing that n-TiO2 slightly reduced the content of chlorophyll-a but evidently increased the phycocyanin content. Moreover, the alpha diversity of the eukaryotic community was not affected, whereas its beta diversity increased with exposure to n-TiO2. Although n-TiO2 altered the composition of freshwater microbial communities, it did not change the functions of the prokaryotic community, which might be attributed to the functional redundancy of microbiota. Co-occurrence network analysis indicated that n-TiO2 destabilized the freshwater community, especially the eukaryotic community, and potentially disturbed the aquatic ecosystem. Our study revealed that the ecological risk of n-TiO2 on aquatic microbial communities is complex; hence, rational utilization of n-TiO2 should be emphasized.
Collapse
Affiliation(s)
- Bingfeng Chen
- College of Environment, Zhejiang University of Technology, Hangzhou 310032, PR China
| | - Yizhou Pan
- College of Environment, Zhejiang University of Technology, Hangzhou 310032, PR China
| | - Yiling Chen
- Institute of Environmental and Ecological Engineering, Guangdong University of Technology, Guangzhou 510006, PR China
| | - Zhenyan Zhang
- College of Environment, Zhejiang University of Technology, Hangzhou 310032, PR China
| | - Zhihan Yang
- College of Environment, Zhejiang University of Technology, Hangzhou 310032, PR China
| | - Meng Zheng
- College of Environment, Zhejiang University of Technology, Hangzhou 310032, PR China
| | - Tao Lu
- College of Environment, Zhejiang University of Technology, Hangzhou 310032, PR China
| | - Liying Jiang
- College of Environment, Zhejiang University of Technology, Hangzhou 310032, PR China
| | - Haifeng Qian
- College of Environment, Zhejiang University of Technology, Hangzhou 310032, PR China.
| |
Collapse
|