1
|
St-Onge G, Davis JT, Hébert-Dufresne L, Allard A, Urbinati A, Scarpino SV, Chinazzi M, Vespignani A. Pandemic monitoring with global aircraft-based wastewater surveillance networks. Nat Med 2025; 31:788-796. [PMID: 39939526 PMCID: PMC11922747 DOI: 10.1038/s41591-025-03501-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Accepted: 01/07/2025] [Indexed: 02/14/2025]
Abstract
Aircraft wastewater surveillance has been proposed as a new approach to monitor the global spread of pathogens. Here we develop a computational framework providing actionable information for the design and estimation of the effectiveness of global aircraft-based wastewater surveillance networks (WWSNs). We study respiratory diseases of varying transmission potential and find that networks of 10-20 strategically placed wastewater sentinel sites can provide timely situational awareness and function effectively as an early warning system. The model identifies potential blind spots and suggests optimization strategies to increase WWSN effectiveness while minimizing resource use. Our findings indicate that increasing the number of sentinel sites beyond a critical threshold does not proportionately improve WWSN capabilities, emphasizing the importance of resource optimization. We show, through retrospective analyses, that WWSNs can notably shorten detection time for emerging pathogens. The approach presented offers a realistic analytic framework for the analysis of WWSNs at airports.
Collapse
Affiliation(s)
- Guillaume St-Onge
- Laboratory for the Modeling of Biological and Socio-technical Systems, Northeastern University, Boston, MA, USA.
- The Roux Institute, Northeastern University, Portland, ME, USA.
- Network Science Institute, Northeastern University, Boston, MA, USA.
| | - Jessica T Davis
- Laboratory for the Modeling of Biological and Socio-technical Systems, Northeastern University, Boston, MA, USA
- Network Science Institute, Northeastern University, Boston, MA, USA
| | - Laurent Hébert-Dufresne
- Vermont Complex Systems Institute, University of Vermont, Burlington, VT, USA
- Department of Computer Science, University of Vermont, Burlington, VT, USA
- Département de physique, de génie physique et d'optique, Université Laval, Québec City, Quebec, Canada
| | - Antoine Allard
- Vermont Complex Systems Institute, University of Vermont, Burlington, VT, USA
- Département de physique, de génie physique et d'optique, Université Laval, Québec City, Quebec, Canada
- Centre interdisciplinaire en modélisation mathématique, Université Laval, Québec City, Quebec, Canada
| | - Alessandra Urbinati
- Laboratory for the Modeling of Biological and Socio-technical Systems, Northeastern University, Boston, MA, USA
- Network Science Institute, Northeastern University, Boston, MA, USA
| | - Samuel V Scarpino
- The Roux Institute, Northeastern University, Portland, ME, USA
- Network Science Institute, Northeastern University, Boston, MA, USA
- Vermont Complex Systems Institute, University of Vermont, Burlington, VT, USA
- Institute for Experiential AI, Northeastern University, Boston, MA, USA
- Santa Fe Institute, Santa Fe, NM, USA
| | - Matteo Chinazzi
- Laboratory for the Modeling of Biological and Socio-technical Systems, Northeastern University, Boston, MA, USA
- The Roux Institute, Northeastern University, Portland, ME, USA
- Network Science Institute, Northeastern University, Boston, MA, USA
| | - Alessandro Vespignani
- Laboratory for the Modeling of Biological and Socio-technical Systems, Northeastern University, Boston, MA, USA.
- The Roux Institute, Northeastern University, Portland, ME, USA.
- Network Science Institute, Northeastern University, Boston, MA, USA.
- Institute for Scientific Interchange Foundation, Turin, Italy.
| |
Collapse
|
2
|
Radvák P, Rusňáková D, Sedláčková T, Böhmer M, Kaliňáková A, Kotvasová B, Sládeček T, Sitarčík J, Martiš J, Gašper J, Kunštek L, Prívara M, Budiš J, Krivjanská A, Turňa J, Szemes T. Evaluation of wastewater surveillance results for SARS-CoV-2 at the national scale in the Slovak Republic. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 954:176548. [PMID: 39332725 DOI: 10.1016/j.scitotenv.2024.176548] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 09/24/2024] [Accepted: 09/25/2024] [Indexed: 09/29/2024]
Abstract
As the COVID-19 transits to endemicity, the frequency of clinical testing and its utility for determining lineage prevalence has declined. This situation is not unique to Slovakia but reflects a global trend, as attention shifts from COVID-19 to other post-pandemic issues and emerging global health challenges. Nevertheless, the pandemic itself has spurred advancements in monitoring the epidemiological situation. At the beginning of the pandemic, genomic surveillance was carried out through sequencing of individual COVID-19 cases. Subsequently, many countries implemented wastewater surveillance to monitor the prevalence of SARS-CoV-2 variants in the community. In the present study, we collected and analysed 1715 virus-positive samples from 64 wastewater treatment plants across Slovakia, serving 69 % of the population connected to the wastewater treatment pipelines. Here, we show that wastewater sequencing is effective in detecting the emergence of new virus lineages. Additionally, we can assume that wastewater surveillance provides results that are approximately consistent when compared with clinical testing at both national and city levels, concurrently providing information on variant lineages which have not been detected in clinical cases due to reduced clinical testing. Our study demonstrates and concludes the value of wastewater-based surveillance strategies in the Slovakia, establishing it as an important and supportive tool for monitoring public health and serving as an early warning system in times when clinical testing is either declining or unavailable.
Collapse
Affiliation(s)
- Peter Radvák
- Comenius University Science Park, Bratislava, Slovak Republic; Slovak Centre of Scientific and Technical Information, Bratislava, Slovak Republic.
| | - Diana Rusňáková
- Comenius University Science Park, Bratislava, Slovak Republic; Geneton Ltd., Bratislava, Slovak Republic; Public Health Authority of the Slovak Republic, 826 45 Bratislava, Slovak Republic
| | - Tatiana Sedláčková
- Comenius University Science Park, Bratislava, Slovak Republic; Geneton Ltd., Bratislava, Slovak Republic
| | - Miroslav Böhmer
- Comenius University Science Park, Bratislava, Slovak Republic; Geneton Ltd., Bratislava, Slovak Republic; Public Health Authority of the Slovak Republic, 826 45 Bratislava, Slovak Republic
| | - Anna Kaliňáková
- Public Health Authority of the Slovak Republic, 826 45 Bratislava, Slovak Republic
| | - Barbora Kotvasová
- Public Health Authority of the Slovak Republic, 826 45 Bratislava, Slovak Republic
| | - Tomáš Sládeček
- Comenius University Science Park, Bratislava, Slovak Republic; Geneton Ltd., Bratislava, Slovak Republic
| | - Jozef Sitarčík
- Comenius University Science Park, Bratislava, Slovak Republic; Geneton Ltd., Bratislava, Slovak Republic; Slovak Centre of Scientific and Technical Information, Bratislava, Slovak Republic
| | - Jozef Martiš
- Comenius University Science Park, Bratislava, Slovak Republic; Geneton Ltd., Bratislava, Slovak Republic
| | - Ján Gašper
- Geneton Ltd., Bratislava, Slovak Republic; Department of Economics and Financial Models, Faculty of Mathematics, Physics and Informatics, Comenius University, Bratislava, Slovak Republic
| | - Lukáš Kunštek
- Public Health Authority of the Slovak Republic, 826 45 Bratislava, Slovak Republic
| | - Matúš Prívara
- Public Health Authority of the Slovak Republic, 826 45 Bratislava, Slovak Republic
| | - Jaroslav Budiš
- Comenius University Science Park, Bratislava, Slovak Republic; Geneton Ltd., Bratislava, Slovak Republic; Slovak Centre of Scientific and Technical Information, Bratislava, Slovak Republic
| | - Anna Krivjanská
- Slovak Centre of Scientific and Technical Information, Bratislava, Slovak Republic; Department of Environmental Engineering, Faculty of Chemical and Food Technology, Slovak University of Technology, Bratislava, Slovakia
| | - Ján Turňa
- Comenius University Science Park, Bratislava, Slovak Republic; Department of Molecular Biology, Faculty of Natural Sciences, Comenius University, Bratislava, Slovak Republic; Slovak Centre of Scientific and Technical Information, Bratislava, Slovak Republic
| | - Tomáš Szemes
- Comenius University Science Park, Bratislava, Slovak Republic; Department of Molecular Biology, Faculty of Natural Sciences, Comenius University, Bratislava, Slovak Republic; Geneton Ltd., Bratislava, Slovak Republic
| |
Collapse
|
3
|
St-Onge G, Davis JT, Hébert-Dufresne L, Allard A, Urbinati A, Scarpino SV, Chinazzi M, Vespignani A. Optimization and performance analytics of global aircraft-based wastewater surveillance networks. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2024:2024.08.02.24311418. [PMID: 39132478 PMCID: PMC11312644 DOI: 10.1101/2024.08.02.24311418] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/13/2024]
Abstract
Aircraft wastewater surveillance has been proposed as a novel approach to monitor the global spread of pathogens. Here we develop a computational framework to provide actionable information for designing and estimating the effectiveness of global aircraft-based wastewater surveillance networks (WWSNs). We study respiratory diseases of varying transmission potentials and find that networks of 10 to 20 strategically placed wastewater sentinel sites can provide timely situational awareness and function effectively as an early warning system. The model identifies potential blind spots and suggests optimization strategies to increase WWSNs effectiveness while minimizing resource use. Our findings highlight that increasing the number of sentinel sites beyond a critical threshold does not proportionately improve WWSNs capabilities, stressing the importance of resource optimization. We show through retrospective analyses that WWSNs can significantly shorten the detection time for emerging pathogens. The presented approach offers a realistic analytic framework for the analysis of WWSNs at airports.
Collapse
Affiliation(s)
- Guillaume St-Onge
- Laboratory for the Modeling of Biological and Socio-technical Systems, Northeastern University, Boston, MA 02115, USA
- The Roux Institute, Northeastern University, Portland, ME 04101, USA
| | - Jessica T Davis
- Laboratory for the Modeling of Biological and Socio-technical Systems, Northeastern University, Boston, MA 02115, USA
| | - Laurent Hébert-Dufresne
- Vermont Complex Systems Center, University of Vermont, Burlington, VT 05401, USA
- Département de physique, de génie physique et d'optique, Université Laval, Québec City, QC G1V 0A6, Canada
| | - Antoine Allard
- Vermont Complex Systems Center, University of Vermont, Burlington, VT 05401, USA
- Département de physique, de génie physique et d'optique, Université Laval, Québec City, QC G1V 0A6, Canada
| | - Alessandra Urbinati
- Laboratory for the Modeling of Biological and Socio-technical Systems, Northeastern University, Boston, MA 02115, USA
| | - Samuel V Scarpino
- Institute for Experiential AI, Northeastern University, Boston, MA 02115, USA
- Network Science Institute, Northeastern University, Boston, MA 02115, USA
- Santa Fe Institute, Santa Fe, NM 87501, USA
| | - Matteo Chinazzi
- Laboratory for the Modeling of Biological and Socio-technical Systems, Northeastern University, Boston, MA 02115, USA
- The Roux Institute, Northeastern University, Portland, ME 04101, USA
| | - Alessandro Vespignani
- Laboratory for the Modeling of Biological and Socio-technical Systems, Northeastern University, Boston, MA 02115, USA
| |
Collapse
|
4
|
Tiwari A, Lehto KM, Paspaliari DK, Al-Mustapha AI, Sarekoski A, Hokajärvi AM, Länsivaara A, Hyder R, Luomala O, Lipponen A, Oikarinen S, Heikinheimo A, Pitkänen T. Developing wastewater-based surveillance schemes for multiple pathogens: The WastPan project in Finland. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 926:171401. [PMID: 38467259 DOI: 10.1016/j.scitotenv.2024.171401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2023] [Revised: 02/28/2024] [Accepted: 02/28/2024] [Indexed: 03/13/2024]
Abstract
Wastewater comprises multiple pathogens and offers a potential for wastewater-based surveillance (WBS) to track the prevalence of communicable diseases. The Finnish WastPan project aimed to establish wastewater-based pandemic preparedness for multiple pathogens (viruses, bacteria, parasites, fungi), including antimicrobial resistance (AMR). This article outlines WastPan's experiences in this project, including the criteria for target selection, sampling locations, frequency, analysis methods, and results communication. Target selection relied on epidemiological and microbiological evidence and practical feasibility. Within the WastPan framework, wastewater samples were collected between 2021 and 2023 from 10 wastewater treatment plants (WWTPs) covering 40 % of Finland's population. WWTP selection was validated for reported cases of Extended Spectrum Beta-lactamase-producing bacterial pathogens (Escherichia coli and Klebsiella pneumoniae) from the National Infectious Disease Register. The workflow included 24-h composite influent samples, with one fraction for culture-based analysis (bacteria and fungi) and the rest of the sample was reserved for molecular analysis (viruses, bacteria, antibiotic resistance genes, and parasites). The reproducibility of the monitoring workflow was assessed for SARS-CoV-2 through inter-laboratory comparisons using the N2 and N1 assays. Identical protocols were applied to same-day samples, yielding similar positivity trends in the two laboratories, but the N2 assay achieved a significantly higher detection rate (Laboratory 1: 91.5 %; Laboratory 2: 87.4 %) than the N1 assay (76.6 %) monitored only in Laboratory 2 (McNemar, p < 0.001 Lab 1, = 0.006 Lab 2). This result indicates that the selection of monitoring primers and assays may impact monitoring sensitivity in WBS. Overall, the current study recommends that the selection of sampling frequencies and population coverage of the monitoring should be based on pathogen-specific epidemiological characteristics. For example, pathogens that are stable over time may need less frequent annual sampling, while those that are occurring across regions may require reduced sample coverage. Here, WastPan successfully piloted WBS for monitoring multiple pathogens, highlighting the significance of one-litre community composite wastewater samples for assessing community health. The infrastructure established for COVID-19 WBS is valuable for monitoring various pathogens. The prioritization of the monitoring targets optimizes resource utilization. In the future legislative support in target selection, coverage determination, and sustained funding for WBS is recomended.
Collapse
Affiliation(s)
- Ananda Tiwari
- Finnish Institute for Health and Welfare, Department of Health Security, Kuopio and Helsinki, Finland.
| | - Kirsi-Maarit Lehto
- Tampere University, Faculty of Medicine and Health Technology, Tampere, Finland.
| | - Dafni K Paspaliari
- Finnish Institute for Health and Welfare, Department of Health Security, Kuopio and Helsinki, Finland; ECDC Fellowship Programme, Public Health Microbiology path (EUPHEM), European Centre for Disease Prevention and Control (ECDC), Solna, Sweden
| | - Ahmad I Al-Mustapha
- University of Helsinki, Faculty of Veterinary Medicine, Helsinki, Finland; Department of Veterinary Public Health and Preventive Medicine, Faculty of Veterinary Medicine, University of Ibadan, Ibadan, Nigeria.
| | - Anniina Sarekoski
- Finnish Institute for Health and Welfare, Department of Health Security, Kuopio and Helsinki, Finland; University of Helsinki, Faculty of Veterinary Medicine, Helsinki, Finland.
| | - Anna-Maria Hokajärvi
- Finnish Institute for Health and Welfare, Department of Health Security, Kuopio and Helsinki, Finland.
| | - Annika Länsivaara
- Tampere University, Faculty of Medicine and Health Technology, Tampere, Finland.
| | - Rafiqul Hyder
- Tampere University, Faculty of Medicine and Health Technology, Tampere, Finland.
| | - Oskari Luomala
- Finnish Institute for Health and Welfare, Department of Health Security, Kuopio and Helsinki, Finland.
| | - Anssi Lipponen
- Finnish Institute for Health and Welfare, Department of Health Security, Kuopio and Helsinki, Finland.
| | - Sami Oikarinen
- Tampere University, Faculty of Medicine and Health Technology, Tampere, Finland.
| | - Annamari Heikinheimo
- University of Helsinki, Faculty of Veterinary Medicine, Helsinki, Finland; Finnish Food Authority, Seinäjoki, Finland.
| | - Tarja Pitkänen
- Finnish Institute for Health and Welfare, Department of Health Security, Kuopio and Helsinki, Finland; University of Helsinki, Faculty of Veterinary Medicine, Helsinki, Finland.
| |
Collapse
|
5
|
Sovová K, Vašíčková P, Valášek V, Výravský D, Očenášková V, Juranová E, Bušová M, Tuček M, Bencko V, Mlejnková HZ. SARS-CoV-2 wastewater surveillance in the Czech Republic: Spatial and temporal differences in SARS-CoV-2 RNA concentrations and relationship to clinical data and wastewater parameters. WATER RESEARCH X 2024; 23:100220. [PMID: 38628304 PMCID: PMC11017050 DOI: 10.1016/j.wroa.2024.100220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 03/20/2024] [Accepted: 03/27/2024] [Indexed: 04/19/2024]
Abstract
This study presents the results of systematic wastewater monitoring of SARS-CoV-2 RNA and basic wastewater parameters from four different wastewater treatment plants (WWTPs) in the Czech Republic over the 2020-2022 epidemic. Two-step reverse-transcription quantitative PCR targeting genes encoding the N and Nsp12 proteins was employed to detect SARS-CoV-2 RNA loading in 420 wastewater samples. The results obtained were used to evaluate the potential of wastewater analysis for describing the epidemiological situation in cities of different sizes and determining temporal differences based on the prevailing SARS-CoV-2 variant. Strong correlations between the number of active and hospitalised COVID-19 cases in each WWTP catchment area and the concentration of SARS-CoV-2 RNA detected in the wastewater clearly demonstrated the suitability of this wastewater-based epidemiological approach for WWTPs of different sizes and characteristics, despite differences in SARS-CoV-2 variant waves, with some WWTPs showing high predictive potential. This study demonstrated on the data from the Czech Republic that targeted systematic monitoring of wastewater provides sufficiently robust data for surveillance of viral loads in sample populations, and thus contributes to preventing the spread of infection and subsequent introduction of appropriate measures.
Collapse
Affiliation(s)
- Kateřina Sovová
- T. G. Masaryk Water Research Institute p.r.i., Brno Branch, Mojmírovo náměstí 16, 612 00 Brno, Czech Republic
| | - Petra Vašíčková
- Masaryk University, Faculty of Science, Kotlářská 267/2, 611 37 Brno, Czech Republic
| | - Vojtěch Valášek
- T. G. Masaryk Water Research Institute, Podbabská 30, 160 00 Prague, Czech Republic
| | - David Výravský
- T. G. Masaryk Water Research Institute p.r.i., Brno Branch, Mojmírovo náměstí 16, 612 00 Brno, Czech Republic
| | - Věra Očenášková
- T. G. Masaryk Water Research Institute, Podbabská 30, 160 00 Prague, Czech Republic
| | - Eva Juranová
- T. G. Masaryk Water Research Institute, Podbabská 30, 160 00 Prague, Czech Republic
| | - Milena Bušová
- Charles University, First Faculty of Medicine, Institute of Hygiene and Epidemiology, Studničkova 7, 128 00 Prague, Czech Republic
| | - Milan Tuček
- Charles University, First Faculty of Medicine, Institute of Hygiene and Epidemiology, Studničkova 7, 128 00 Prague, Czech Republic
| | - Vladimír Bencko
- Charles University, First Faculty of Medicine, Institute of Hygiene and Epidemiology, Studničkova 7, 128 00 Prague, Czech Republic
| | | |
Collapse
|
6
|
Vigil K, D'Souza N, Bazner J, Cedraz FMA, Fisch S, Rose JB, Aw TG. Long-term monitoring of SARS-CoV-2 variants in wastewater using a coordinated workflow of droplet digital PCR and nanopore sequencing. WATER RESEARCH 2024; 254:121338. [PMID: 38430753 DOI: 10.1016/j.watres.2024.121338] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 02/12/2024] [Accepted: 02/17/2024] [Indexed: 03/05/2024]
Abstract
Quantitative polymerase chain reaction (PCR) and genome sequencing are important methods for wastewater surveillance of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). The reverse transcription-droplet digital PCR (RT-ddPCR) is a highly sensitive method for quantifying SARS-CoV-2 RNA in wastewater samples to track the trends of viral activity levels but cannot identify new variants. It also takes time to develop new PCR-based assays targeting variants of interest. Whole genome sequencing (WGS) can be used to monitor known and new SARS-CoV-2 variants, but it is generally not quantitative. Several short-read sequencing techniques can be expensive and might experience delayed turnaround times when outsourced due to inadequate in-house resources. Recently, a portable nanopore sequencing system offers an affordable and real-time method for sequencing SARS-CoV-2 variants in wastewater. This technology has the potential to enable swift response to disease outbreaks without relying on clinical sequencing results. In addressing concerns related to rapid turnaround time and accurate variant analysis, both RT-ddPCR and nanopore sequencing methods were employed to monitor the emergence of SARS-CoV-2 variants in wastewater. This surveillance was conducted at 23 sewer maintenance hole sites and five wastewater treatment plants in Michigan from 2020 to 2022. In 2020, the wastewater samples were dominated by the parental variants (20A, 20C and 20 G), followed by 20I (Alpha, B.1.1.7) in early 2021 and the Delta variant of concern (VOC) in late 2021. For the year 2022, Omicron variants dominated. Nanopore sequencing has the potential to validate suspected variant cases that were initially undetermined by RT-ddPCR assays. The concordance rate between nanopore sequencing and RT-ddPCR assays in identifying SARS-CoV-2 variants to the clade-level was 76.9%. Notably, instances of disagreement between the two methods were most prominent in the identification of the parental and Omicron variants. We also showed that sequencing wastewater samples with SARS-CoV-2 N gene concentrations of >104 GC/100 ml as measured by RT-ddPCR improve genome recovery and coverage depth using MinION device. RT-ddPCR was better at detecting key spike protein mutations A67V, del69-70, K417N, L452R, N501Y, N679K, and R408S (p-value <0.05) as compared to nanopore sequencing. It is suggested that RT-ddPCR and nanopore sequencing should be coordinated in wastewater surveillance where RT-ddPCR can be used as a preliminary quantification method and nanopore sequencing as the confirmatory method for the detection of variants or identification of new variants. The RT-ddPCR and nanopore sequencing methods reported here can be adopted as a reliable in-house analysis of SARS-CoV-2 in wastewater for rapid community level surveillance and public health response.
Collapse
Affiliation(s)
- Katie Vigil
- Department of Environmental Health Sciences, School of Public Health and Tropical Medicine, Tulane University, 1440 Canal Street, Suite 2100, New Orleans, LA 70112, United States
| | - Nishita D'Souza
- Department of Fisheries and Wildlife, Michigan State University, East Lansing, Michigan, United States
| | - Julia Bazner
- Department of Fisheries and Wildlife, Michigan State University, East Lansing, Michigan, United States
| | - Fernanda Mac-Allister Cedraz
- Department of Environmental Health Sciences, School of Public Health and Tropical Medicine, Tulane University, 1440 Canal Street, Suite 2100, New Orleans, LA 70112, United States
| | - Samuel Fisch
- Department of Environmental Health Sciences, School of Public Health and Tropical Medicine, Tulane University, 1440 Canal Street, Suite 2100, New Orleans, LA 70112, United States
| | - Joan B Rose
- Department of Fisheries and Wildlife, Michigan State University, East Lansing, Michigan, United States
| | - Tiong Gim Aw
- Department of Environmental Health Sciences, School of Public Health and Tropical Medicine, Tulane University, 1440 Canal Street, Suite 2100, New Orleans, LA 70112, United States.
| |
Collapse
|
7
|
Kumblathan T, Liu Y, Crisol M, Pang X, Hrudey SE, Le XC, Li XF. Advances in wastewater analysis revealing the co-circulating viral trends of noroviruses and Omicron subvariants. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 920:170887. [PMID: 38350564 DOI: 10.1016/j.scitotenv.2024.170887] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 01/19/2024] [Accepted: 02/08/2024] [Indexed: 02/15/2024]
Abstract
Co-presence of enveloped and non-enveloped viruses is common both in community circulation and in wastewater. Community surveillance of infections requires robust methods enabling simultaneous quantification of multiple viruses in wastewater. Using enveloped SARS-CoV-2 Omicron subvariants and non-enveloped norovirus (NoV) as examples, this study reports a robust method that integrates electronegative membrane (EM) concentration, viral inactivation, and RNA preservation (VIP) with efficient capture and enrichment of the viral RNA on magnetic (Mag) beads, and direct detection of RNA on the beads. This method provided improved viral recoveries of 80 ± 4 % for SARS-CoV-2 and 72 ± 5 % for Murine NoV. Duplex reverse transcription quantitative polymerase chain reaction (RT-qPCR) assays with newly designed degenerate primer-probe sets offered high PCR efficiencies (90-91 %) for NoV (GI and GII) targets and were able to detect as few as 15 copies of the viral RNA per PCR reaction. This technique, combined with duplex detection of NoV and multiplex detection of Omicron, successfully quantified NoV (GI and GII) and Omicron variants in the same sets of 94 influent wastewater samples collected from two large wastewater systems between July 2022 and June 2023. The wastewater viral RNA results showed temporal changes of both NoV and Omicron variants in the same wastewater systems and revealed an inverse relationship of their emergence. This study demonstrated the importance of a robust analytical platform for simultaneous surveillance of enveloped and non-enveloped viruses in wastewater. The ability to sensitively determine multiple viral pathogens in wastewater will advance applications of wastewater surveillance as a complementary public health tool.
Collapse
Affiliation(s)
- Teresa Kumblathan
- Division of Analytical and Environmental Toxicology, Department of Laboratory Medicine and Pathology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta T6G 2G3, Canada
| | - Yanming Liu
- Division of Analytical and Environmental Toxicology, Department of Laboratory Medicine and Pathology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta T6G 2G3, Canada
| | - Mary Crisol
- Division of Analytical and Environmental Toxicology, Department of Laboratory Medicine and Pathology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta T6G 2G3, Canada
| | - Xiaoli Pang
- Division of Diagnostic and Applied Microbiology, Department of Laboratory Medicine and Pathology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta T6G 2B7, Canada; Public Health Laboratory, Alberta Precision Laboratories, Edmonton, Alberta T6G 2J2, Canada
| | - Steve E Hrudey
- Division of Analytical and Environmental Toxicology, Department of Laboratory Medicine and Pathology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta T6G 2G3, Canada
| | - X Chris Le
- Division of Analytical and Environmental Toxicology, Department of Laboratory Medicine and Pathology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta T6G 2G3, Canada
| | - Xing-Fang Li
- Division of Analytical and Environmental Toxicology, Department of Laboratory Medicine and Pathology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta T6G 2G3, Canada.
| |
Collapse
|
8
|
Dai X, Acosta N, Lu X, Hubert CRJ, Lee J, Frankowski K, Bautista MA, Waddell BJ, Du K, McCalder J, Meddings J, Ruecker N, Williamson T, Southern DA, Hollman J, Achari G, Ryan MC, Hrudey SE, Lee BE, Pang X, Clark RG, Parkins MD, Chekouo T. A Bayesian framework for modeling COVID-19 case numbers through longitudinal monitoring of SARS-CoV-2 RNA in wastewater. Stat Med 2024; 43:1153-1169. [PMID: 38221776 PMCID: PMC11239317 DOI: 10.1002/sim.10009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Revised: 11/11/2023] [Accepted: 12/21/2023] [Indexed: 01/16/2024]
Abstract
Wastewater-based surveillance has become an important tool for research groups and public health agencies investigating and monitoring the COVID-19 pandemic and other public health emergencies including other pathogens and drug abuse. While there is an emerging body of evidence exploring the possibility of predicting COVID-19 infections from wastewater signals, there remain significant challenges for statistical modeling. Longitudinal observations of viral copies in municipal wastewater can be influenced by noisy datasets and missing values with irregular and sparse samplings. We propose an integrative Bayesian framework to predict daily positive cases from weekly wastewater observations with missing values via functional data analysis techniques. In a unified procedure, the proposed analysis models severe acute respiratory syndrome coronavirus-2 RNA wastewater signals as a realization of a smooth process with error and combines the smooth process with COVID-19 cases to evaluate the prediction of positive cases. We demonstrate that the proposed framework can achieve these objectives with high predictive accuracies through simulated and observed real data.
Collapse
Affiliation(s)
- Xiaotian Dai
- Department of Mathematics, Illinois State University, Normal, Illinois, USA
- Department of Mathematics and Statistics, University of Calgary, Calgary, Alberta, Canada
| | - Nicole Acosta
- Department of Microbiology, Immunology and Infectious Diseases, University of Calgary, Calgary, Alberta, Canada
| | - Xuewen Lu
- Department of Mathematics and Statistics, University of Calgary, Calgary, Alberta, Canada
| | - Casey R J Hubert
- Department of Biological Science, University of Calgary, Calgary, Alberta, Canada
| | - Jangwoo Lee
- Department of Microbiology, Immunology and Infectious Diseases, University of Calgary, Calgary, Alberta, Canada
- Department of Biological Science, University of Calgary, Calgary, Alberta, Canada
| | - Kevin Frankowski
- Advancing Canadian Water Assets, University of Calgary, Calgary, Alberta, Canada
| | - Maria A Bautista
- Department of Biological Science, University of Calgary, Calgary, Alberta, Canada
| | - Barbara J Waddell
- Department of Microbiology, Immunology and Infectious Diseases, University of Calgary, Calgary, Alberta, Canada
| | - Kristine Du
- Department of Microbiology, Immunology and Infectious Diseases, University of Calgary, Calgary, Alberta, Canada
| | - Janine McCalder
- Department of Microbiology, Immunology and Infectious Diseases, University of Calgary, Calgary, Alberta, Canada
- Department of Biological Science, University of Calgary, Calgary, Alberta, Canada
| | - Jon Meddings
- Department of Medicine, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
- Alberta Health Services, Edmonton, Alberta, Canada
| | - Norma Ruecker
- Water Services, City of Calgary, Calgary, Alberta, Canada
| | - Tyler Williamson
- Department of Community Health Sciences, University of Calgary, Calgary, Alberta, Canada
- Centre for Health Informatics, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Danielle A Southern
- Department of Community Health Sciences, University of Calgary, Calgary, Alberta, Canada
- Centre for Health Informatics, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Jordan Hollman
- Department of Geosciences, University of Calgary, Calgary, Alberta, Canada
| | - Gopal Achari
- Department of Civil Engineering, University of Calgary, Calgary, Alberta, Canada
| | - M Cathryn Ryan
- Department of Geosciences, University of Calgary, Calgary, Alberta, Canada
| | - Steve E Hrudey
- Department of Laboratory Medicine and Pathology, University of Alberta, Edmonton, Alberta, Canada
| | - Bonita E Lee
- Department of Pediatrics, University of Alberta, Edmonton, Alberta, Canada
| | - Xiaoli Pang
- Department of Laboratory Medicine and Pathology, University of Alberta, Edmonton, Alberta, Canada
| | - Rhonda G Clark
- Department of Biological Science, University of Calgary, Calgary, Alberta, Canada
| | - Michael D Parkins
- Department of Microbiology, Immunology and Infectious Diseases, University of Calgary, Calgary, Alberta, Canada
- Department of Medicine, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
- Alberta Health Services, Edmonton, Alberta, Canada
| | - Thierry Chekouo
- Department of Mathematics and Statistics, University of Calgary, Calgary, Alberta, Canada
- Division of Biostatistics and Health Data Science, School of Public Health, University of Minnesota, Minneapolis, Minnesota, USA
| |
Collapse
|
9
|
Parkins MD, Lee BE, Acosta N, Bautista M, Hubert CRJ, Hrudey SE, Frankowski K, Pang XL. Wastewater-based surveillance as a tool for public health action: SARS-CoV-2 and beyond. Clin Microbiol Rev 2024; 37:e0010322. [PMID: 38095438 PMCID: PMC10938902 DOI: 10.1128/cmr.00103-22] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/16/2024] Open
Abstract
Wastewater-based surveillance (WBS) has undergone dramatic advancement in the context of the coronavirus disease 2019 (COVID-19) pandemic. The power and potential of this platform technology were rapidly realized when it became evident that not only did WBS-measured SARS-CoV-2 RNA correlate strongly with COVID-19 clinical disease within monitored populations but also, in fact, it functioned as a leading indicator. Teams from across the globe rapidly innovated novel approaches by which wastewater could be collected from diverse sewersheds ranging from wastewater treatment plants (enabling community-level surveillance) to more granular locations including individual neighborhoods and high-risk buildings such as long-term care facilities (LTCF). Efficient processes enabled SARS-CoV-2 RNA extraction and concentration from the highly dilute wastewater matrix. Molecular and genomic tools to identify, quantify, and characterize SARS-CoV-2 and its various variants were adapted from clinical programs and applied to these mixed environmental systems. Novel data-sharing tools allowed this information to be mobilized and made immediately available to public health and government decision-makers and even the public, enabling evidence-informed decision-making based on local disease dynamics. WBS has since been recognized as a tool of transformative potential, providing near-real-time cost-effective, objective, comprehensive, and inclusive data on the changing prevalence of measured analytes across space and time in populations. However, as a consequence of rapid innovation from hundreds of teams simultaneously, tremendous heterogeneity currently exists in the SARS-CoV-2 WBS literature. This manuscript provides a state-of-the-art review of WBS as established with SARS-CoV-2 and details the current work underway expanding its scope to other infectious disease targets.
Collapse
Affiliation(s)
- Michael D. Parkins
- Department of Microbiology, Immunology and Infectious Diseases, University of Calgary, Calgary, Alberta, Canada
- Department of Medicine, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
- O’Brien Institute of Public Health, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Bonita E. Lee
- Department of Pediatrics, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta, Canada
| | - Nicole Acosta
- Department of Medicine, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Maria Bautista
- Department of Biological Sciences, Faculty of Science, University of Calgary, Calgary, Alberta, Canada
| | - Casey R. J. Hubert
- Department of Biological Sciences, Faculty of Science, University of Calgary, Calgary, Alberta, Canada
| | - Steve E. Hrudey
- Department of Laboratory Medicine and Pathology, University of Alberta, Edmonton, Alberta, Canada
| | - Kevin Frankowski
- Advancing Canadian Water Assets, University of Calgary, Calgary, Alberta, Canada
| | - Xiao-Li Pang
- Department of Laboratory Medicine and Pathology, University of Alberta, Edmonton, Alberta, Canada
- Provincial Health Laboratory, Alberta Health Services, Calgary, Alberta, Canada
| |
Collapse
|
10
|
Adams C, Kirby AE, Bias M, Riser A, Wong KK, Mercante JW, Reese H. Detecting Mpox Cases Through Wastewater Surveillance - United States, August 2022-May 2023. MMWR. MORBIDITY AND MORTALITY WEEKLY REPORT 2024; 73:37-43. [PMID: 38236784 PMCID: PMC10803092 DOI: 10.15585/mmwr.mm7302a3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/23/2024]
Abstract
In October 2022, CDC's National Wastewater Surveillance System began routine testing of U.S. wastewater for Monkeypox virus. Wastewater surveillance sensitivity, positive predictive value (PPV), and negative predictive value (NPV) for Monkeypox virus were evaluated by comparing wastewater detections (Monkeypox virus detected versus not detected) to numbers of persons with mpox in a county who were shedding virus. Case ascertainment was assumed to be complete, and persons with mpox were assumed to shed virus for 25 days after symptom onset. A total of 281 cases and 3,492 wastewater samples from 89 sites in 26 counties were included in the analysis. Wastewater surveillance in a single week, from samples representing thousands to millions of persons, had a sensitivity of 32% for detecting one or more persons shedding Monkeypox virus, 49% for detecting five or more persons shedding virus, and 77% for detecting 15 or more persons shedding virus. Weekly PPV and NPV for detecting persons shedding Monkeypox virus in a county were 62% and 80%, respectively. An absence of detections in counties with wastewater surveillance signified a high probability that a large number of cases were not present. Results can help to guide the public health response to Monkeypox virus wastewater detections. A single, isolated detection likely warrants a limited public health response. An absence of detections, in combination with no reported cases, can give public health officials greater confidence that no cases are present. Wastewater surveillance can serve as a useful complement to case surveillance for guiding the public health response to an mpox outbreak.
Collapse
|
11
|
Baz Lomba JA, Pires J, Myrmel M, Arnø JK, Madslien EH, Langlete P, Amato E, Hyllestad S. Effectiveness of environmental surveillance of SARS-CoV-2 as an early-warning system: Update of a systematic review during the second year of the pandemic. JOURNAL OF WATER AND HEALTH 2024; 22:197-234. [PMID: 38295081 PMCID: wh_2023_279 DOI: 10.2166/wh.2023.279] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/02/2024]
Abstract
The aim of this updated systematic review was to offer an overview of the effectiveness of environmental surveillance (ES) of SARS-CoV-2 as a potential early-warning system (EWS) for COVID-19 and new variants of concerns (VOCs) during the second year of the pandemic. An updated literature search was conducted to evaluate the added value of ES of SARS-CoV-2 for public health decisions. The search for studies published between June 2021 and July 2022 resulted in 1,588 publications, identifying 331 articles for full-text screening. A total of 151 publications met our inclusion criteria for the assessment of the effectiveness of ES as an EWS and early detection of SARS-CoV-2 variants. We identified a further 30 publications among the grey literature. ES confirms its usefulness as an EWS for detecting new waves of SARS-CoV-2 infection with an average lead time of 1-2 weeks for most of the publication. ES could function as an EWS for new VOCs in areas with no registered cases or limited clinical capacity. Challenges in data harmonization and variant detection require standardized approaches and innovations for improved public health decision-making. ES confirms its potential to support public health decision-making and resource allocation in future outbreaks.
Collapse
Affiliation(s)
- Jose Antonio Baz Lomba
- Department of Infection Control and Preparedness, Norwegian Institute of Public Health, Oslo, Norway E-mail:
| | - João Pires
- Department of Infection Control and Preparedness, Norwegian Institute of Public Health, Oslo, Norway; ECDC fellowship Programme, Public Health Microbiology path (EUPHEM), European Centre for Disease Prevention and Control (ECDC), Solna, Sweden
| | - Mette Myrmel
- Faculty of Veterinary Medicine, Virology Unit, Norwegian University of Life Science (NMBU), Oslo, Norway
| | - Jorunn Karterud Arnø
- Department of Infection Control and Preparedness, Norwegian Institute of Public Health, Oslo, Norway
| | - Elisabeth Henie Madslien
- Department of Infection Control and Preparedness, Norwegian Institute of Public Health, Oslo, Norway
| | - Petter Langlete
- Department of Infection Control and Preparedness, Norwegian Institute of Public Health, Oslo, Norway
| | - Ettore Amato
- Department of Infection Control and Preparedness, Norwegian Institute of Public Health, Oslo, Norway
| | - Susanne Hyllestad
- Department of Infection Control and Preparedness, Norwegian Institute of Public Health, Oslo, Norway
| |
Collapse
|
12
|
Maal-Bared R, Brisolara K, Knight M, Mansfeldt C. To sample or not to sample: A governance-focused decision tree for wastewater service providers considering participation in wastewater-based epidemiology (WBE) in support of public health programs. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 905:167128. [PMID: 37722431 DOI: 10.1016/j.scitotenv.2023.167128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Revised: 09/13/2023] [Accepted: 09/14/2023] [Indexed: 09/20/2023]
Abstract
Wastewater-based epidemiology (WBE) provides value to public health monitoring and protection. Participation of public and private wastewater system operators in WBE efforts is critical to public health surveillance program success and sustainability. However, given the number of WBE solicitations wastewater service providers receive, the limitation of service provider resources, the concerns around privacy, ethics, and equity, and the fatigue associated with responding to COVID-19, operators are becoming more hesitant to participate in WBE efforts. While various ethical concerns and sustainability challenges associated with WBE have been documented, no efforts to date have investigated what factors should systematically influence the decision to provide samples to a WBE effort. Therefore, this study develops a decision-making tool for WBE teams to proactively monitor, manage, and avoid wastewater system operators' operational risks and potential liabilities. Ultimately, using this tool allows WBE program partners in academia, government, and industry to better understand wastewater system operators' needs and challenges surrounding data quality and use, public health ethics, and daily wastewater infrastructure operation.
Collapse
Affiliation(s)
| | - Kari Brisolara
- LSUHSC, School of Public Health, 2020 Gravier St, New Orleans, LA, USA.
| | - Mark Knight
- LuminUltra Technologies Ltd, 520 King St, Fredericton, NB E3B 6G3, Canada.
| | - Cresten Mansfeldt
- Department of Civil, Environmental, and Architectural Engineering, University of Colorado Boulder, 4001 Discovery Drive, Boulder, CO, USA; Environmental Engineering Program, University of Colorado Boulder, 4001 Discovery Drive, Boulder, CO, USA.
| |
Collapse
|
13
|
Hasing ME, Lee BE, Gao T, Li Q, Qiu Y, Ellehoj E, Graber TE, Fuzzen M, Servos M, Landgraff C, Delatolla R, Tipples G, Zelyas N, Hinshaw D, Maal-Bared R, Sikora C, Parkins M, Hubert CRJ, Frankowski K, Hrudey SE, Pang XL. Wastewater surveillance monitoring of SARS-CoV-2 variants of concern and dynamics of transmission and community burden of COVID-19. Emerg Microbes Infect 2023; 12:2233638. [PMID: 37409382 PMCID: PMC10408568 DOI: 10.1080/22221751.2023.2233638] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Revised: 06/04/2023] [Accepted: 07/01/2023] [Indexed: 07/07/2023]
Abstract
Wastewater-based surveillance is a valuable approach for monitoring COVID-19 at community level. Monitoring SARS-CoV-2 variants of concern (VOC) in wastewater has become increasingly relevant when clinical testing capacity and case-based surveillance are limited. In this study, we ascertained the turnover of six VOC in Alberta wastewater from May 2020 to May 2022. Wastewater samples from nine wastewater treatment plants across Alberta were analysed using VOC-specific RT-qPCR assays. The performance of the RT-qPCR assays in identifying VOC in wastewater was evaluated against next generation sequencing. The relative abundance of each VOC in wastewater was compared to positivity rate in COVID-19 testing. VOC-specific RT-qPCR assays performed comparatively well against next generation sequencing; concordance rates ranged from 89% to 98% for detection of Alpha, Beta, Gamma, Omicron BA.1 and Omicron BA.2, with a slightly lower rate of 85% for Delta (p < 0.01). Elevated relative abundance of Alpha, Delta, Omicron BA.1 and BA.2 were each associated with increased COVID-19 positivity rate. Alpha, Delta and Omicron BA.2 reached 90% relative abundance in wastewater within 80, 111 and 62 days after their initial detection, respectively. Omicron BA.1 increased more rapidly, reaching a 90% relative abundance in wastewater after 35 days. Our results from VOC surveillance in wastewater correspond with clinical observations that Omicron is the VOC with highest disease burden over the shortest period in Alberta to date. The findings suggest that changes in relative abundance of a VOC in wastewater can be used as a supplementary indicator to track and perhaps predict COVID-19 burden in a population.
Collapse
Affiliation(s)
- Maria E. Hasing
- Department of Laboratory Medicine and Pathology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta, Canada
| | - Bonita E. Lee
- Department of Paediatrics, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta, Canada
| | - Tiejun Gao
- Department of Laboratory Medicine and Pathology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta, Canada
| | - Qiaozhi Li
- School of Public Health, University of Alberta, Edmonton, Alberta, Canada
| | - Yuanyuan Qiu
- Department of Laboratory Medicine and Pathology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta, Canada
| | - Erik Ellehoj
- Ellehoj Redmond Consulting, Edmonton, Alberta, Canada
| | - Tyson E. Graber
- Children’s Hospital of Eastern Ontario Research Institute, Ottawa, Ontario, Canada
| | - Meghan Fuzzen
- Department of Biology, University of Waterloo, Waterloo, Ontario, Canada
| | - Mark Servos
- Department of Biology, University of Waterloo, Waterloo, Ontario, Canada
| | - Chrystal Landgraff
- Division of Enteric Diseases, National Microbiology Laboratory, Public Health Agency of Canada, Winnipeg, Manitoba, Canada
| | - Robert Delatolla
- Department of Civil Engineering, University of Ottawa, Ottawa, Ontario, Canada
| | - Graham Tipples
- Department of Laboratory Medicine and Pathology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta, Canada
- Public Health Laboratory, Alberta Precision Laboratories, Edmonton, Alberta, Canada
| | - Nathan Zelyas
- Public Health Laboratory, Alberta Precision Laboratories, Edmonton, Alberta, Canada
| | - Deena Hinshaw
- Department of Medicine, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta, Canada
| | | | - Christopher Sikora
- Department of Medicine, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta, Canada
| | - Michael Parkins
- Department of Microbiology, Immunology and Infectious Diseases, University of Calgary, Calgary, Alberta, Canada
| | - Casey R. J. Hubert
- Department of Biological Sciences, University of Calgary, Calgary, Alberta, Canada
| | - Kevin Frankowski
- Advancing Canadian Water Assets, University of Calgary, Calgary, Alberta, Canada
| | - Steve E. Hrudey
- Department of Laboratory Medicine and Pathology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta, Canada
| | - Xiaoli L. Pang
- Department of Laboratory Medicine and Pathology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta, Canada
- Public Health Laboratory, Alberta Precision Laboratories, Edmonton, Alberta, Canada
| |
Collapse
|
14
|
Acosta N, Dai X, Bautista MA, Waddell BJ, Lee J, Du K, McCalder J, Pradhan P, Papparis C, Lu X, Chekouo T, Krusina A, Southern D, Williamson T, Clark RG, Patterson RA, Westlund P, Meddings J, Ruecker N, Lammiman C, Duerr C, Achari G, Hrudey SE, Lee BE, Pang X, Frankowski K, Hubert CRJ, Parkins MD. Wastewater-based surveillance can be used to model COVID-19-associated workforce absenteeism. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 900:165172. [PMID: 37379934 PMCID: PMC10292917 DOI: 10.1016/j.scitotenv.2023.165172] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2023] [Revised: 06/21/2023] [Accepted: 06/25/2023] [Indexed: 06/30/2023]
Abstract
Wastewater-based surveillance (WBS) of infectious diseases is a powerful tool for understanding community COVID-19 disease burden and informing public health policy. The potential of WBS for understanding COVID-19's impact in non-healthcare settings has not been explored to the same degree. Here we examined how SARS-CoV-2 measured from municipal wastewater treatment plants (WWTPs) correlates with workforce absenteeism. SARS-CoV-2 RNA N1 and N2 were quantified three times per week by RT-qPCR in samples collected at three WWTPs servicing Calgary and surrounding areas, Canada (1.4 million residents) between June 2020 and March 2022. Wastewater trends were compared to workforce absenteeism using data from the largest employer in the city (>15,000 staff). Absences were classified as being COVID-19-related, COVID-19-confirmed, and unrelated to COVID-19. Poisson regression was performed to generate a prediction model for COVID-19 absenteeism based on wastewater data. SARS-CoV-2 RNA was detected in 95.5 % (85/89) of weeks assessed. During this period 6592 COVID-19-related absences (1896 confirmed) and 4524 unrelated absences COVID-19 cases were recorded. A generalized linear regression using a Poisson distribution was performed to predict COVID-19-confirmed absences out of the total number of absent employees using wastewater data as a leading indicator (P < 0.0001). The Poisson regression with wastewater as a one-week leading signal has an Akaike information criterion (AIC) of 858, compared to a null model (excluding wastewater predictor) with an AIC of 1895. The likelihood-ratio test comparing the model with wastewater signal with the null model shows statistical significance (P < 0.0001). We also assessed the variation of predictions when the regression model was applied to new data, with the predicted values and corresponding confidence intervals closely tracking actual absenteeism data. Wastewater-based surveillance has the potential to be used by employers to anticipate workforce requirements and optimize human resource allocation in response to trackable respiratory illnesses like COVID-19.
Collapse
Affiliation(s)
- Nicole Acosta
- Department of Microbiology, Immunology and Infectious Diseases, University of Calgary, 3330 Hospital Drive NW, Calgary, Alberta T2N 4N1, Canada
| | - Xiaotian Dai
- Department of Mathematics and Statistics, University of Calgary, 2500 University Drive NW, Calgary, Alberta T2N 1N4, Canada
| | - Maria A Bautista
- Department of Biological Sciences, University of Calgary, 2500 University Drive NW, Calgary, Alberta T2N 1N4, Canada
| | - Barbara J Waddell
- Department of Microbiology, Immunology and Infectious Diseases, University of Calgary, 3330 Hospital Drive NW, Calgary, Alberta T2N 4N1, Canada
| | - Jangwoo Lee
- Department of Microbiology, Immunology and Infectious Diseases, University of Calgary, 3330 Hospital Drive NW, Calgary, Alberta T2N 4N1, Canada
| | - Kristine Du
- Department of Microbiology, Immunology and Infectious Diseases, University of Calgary, 3330 Hospital Drive NW, Calgary, Alberta T2N 4N1, Canada
| | - Janine McCalder
- Department of Microbiology, Immunology and Infectious Diseases, University of Calgary, 3330 Hospital Drive NW, Calgary, Alberta T2N 4N1, Canada; Department of Biological Sciences, University of Calgary, 2500 University Drive NW, Calgary, Alberta T2N 1N4, Canada
| | - Puja Pradhan
- Department of Microbiology, Immunology and Infectious Diseases, University of Calgary, 3330 Hospital Drive NW, Calgary, Alberta T2N 4N1, Canada; Department of Biological Sciences, University of Calgary, 2500 University Drive NW, Calgary, Alberta T2N 1N4, Canada
| | - Chloe Papparis
- Department of Microbiology, Immunology and Infectious Diseases, University of Calgary, 3330 Hospital Drive NW, Calgary, Alberta T2N 4N1, Canada; Department of Biological Sciences, University of Calgary, 2500 University Drive NW, Calgary, Alberta T2N 1N4, Canada
| | - Xuewen Lu
- Department of Mathematics and Statistics, University of Calgary, 2500 University Drive NW, Calgary, Alberta T2N 1N4, Canada
| | - Thierry Chekouo
- Department of Mathematics and Statistics, University of Calgary, 2500 University Drive NW, Calgary, Alberta T2N 1N4, Canada; Division of Biostatistics, School of Public Health, University of Minnesota, 420 Delaware St. S.E., Minneapolis, MN 55455, USA
| | - Alexander Krusina
- Department of Community Health Sciences, University of Calgary, 3330 Hospital Drive NW, Calgary, Alberta T2N 4N1, Canada; Department of Medicine, University of Calgary and Alberta Health Services, 3330 Hospital Drive NW, Calgary, Alberta T2N 4N1, Canada
| | - Danielle Southern
- Department of Community Health Sciences, University of Calgary, 3330 Hospital Drive NW, Calgary, Alberta T2N 4N1, Canada; Department of Medicine, University of Calgary and Alberta Health Services, 3330 Hospital Drive NW, Calgary, Alberta T2N 4N1, Canada
| | - Tyler Williamson
- Department of Community Health Sciences, University of Calgary, 3330 Hospital Drive NW, Calgary, Alberta T2N 4N1, Canada; Department of Medicine, University of Calgary and Alberta Health Services, 3330 Hospital Drive NW, Calgary, Alberta T2N 4N1, Canada; O'Brien Institute for Public Health, University of Calgary, 3280 Hospital Dr NW, Calgary, Alberta T2N 4Z6, Canada
| | - Rhonda G Clark
- Department of Biological Sciences, University of Calgary, 2500 University Drive NW, Calgary, Alberta T2N 1N4, Canada
| | - Raymond A Patterson
- Haskayne School of Business, University of Calgary, SH 250, 2500 University Drive NW, Calgary, Alberta T2N 1N4, Canada
| | | | - Jon Meddings
- Department of Medicine, University of Calgary and Alberta Health Services, 3330 Hospital Drive NW, Calgary, Alberta T2N 4N1, Canada
| | - Norma Ruecker
- Water Services, City of Calgary, 625 25 Ave SE, Calgary, Alberta T2G 4k8, Canada
| | - Christopher Lammiman
- Calgary Emergency Management Agency (CEMA), City of Calgary, 673 1 St NE, Calgary, Alberta T2E 6R2, Canada
| | - Coby Duerr
- Calgary Emergency Management Agency (CEMA), City of Calgary, 673 1 St NE, Calgary, Alberta T2E 6R2, Canada
| | - Gopal Achari
- Department of Civil Engineering, University of Calgary, 622 Collegiate Pl NW, T2N 4V8, Canada
| | - Steve E Hrudey
- Department of Laboratory Medicine and Pathology, University of Alberta, 116 St. and 85 Ave, Edmonton, Alberta T6G 2R3, Canada; Analytical and Environmental Toxicology, University of Alberta, 116 St. and 85 Ave, Edmonton, Alberta T6G 2R3, Canada
| | - Bonita E Lee
- Department of Pediatrics, University of Alberta, 116 St. and 85 Ave, Edmonton, Alberta T6G 2R3, Canada; Women & Children's Health Research Institute, 116 St. and 85 Ave, Edmonton, Alberta T6G 2R3, Canada; Li Ka Shing Institute of Virology, University of Alberta, 116 St. and 85 Ave, Edmonton, Alberta T6G 2R3, Canada
| | - Xiaoli Pang
- Department of Laboratory Medicine and Pathology, University of Alberta, 116 St. and 85 Ave, Edmonton, Alberta T6G 2R3, Canada; Li Ka Shing Institute of Virology, University of Alberta, 116 St. and 85 Ave, Edmonton, Alberta T6G 2R3, Canada; Alberta Precision Laboratories, Public Health Laboratory, Alberta Health Services, 116 St. and 85 Ave, Edmonton, Alberta T6G 2R3, Canada
| | - Kevin Frankowski
- Advancing Canadian Water Assets, University of Calgary, 3131 210 Ave SE, Calgary, Alberta T0L 0X0, Canada
| | - Casey R J Hubert
- Department of Biological Sciences, University of Calgary, 2500 University Drive NW, Calgary, Alberta T2N 1N4, Canada
| | - Michael D Parkins
- Department of Microbiology, Immunology and Infectious Diseases, University of Calgary, 3330 Hospital Drive NW, Calgary, Alberta T2N 4N1, Canada; Department of Medicine, University of Calgary and Alberta Health Services, 3330 Hospital Drive NW, Calgary, Alberta T2N 4N1, Canada; Snyder Institute for Chronic Diseases, University of Calgary and Alberta Health Services, 3330 Hospital Drive NW, Calgary, Alberta T2N 4N1, Canada.
| |
Collapse
|
15
|
Kumblathan T, Liu Y, Qiu Y, Pang L, Hrudey SE, Le XC, Li XF. An efficient method to enhance recovery and detection of SARS-CoV-2 RNA in wastewater. J Environ Sci (China) 2023; 130:139-148. [PMID: 37032030 PMCID: PMC9554329 DOI: 10.1016/j.jes.2022.10.006] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2022] [Revised: 09/29/2022] [Accepted: 10/04/2022] [Indexed: 05/25/2023]
Abstract
Wastewater surveillance (WS) of SARS-CoV-2 currently requires multiple steps and suffers low recoveries and poor sensitivity. Here, we report an improved analytical method with high sensitivity and recovery to quantify SARS-CoV-2 RNA in wastewater. To improve the recovery, we concentrated SARS-CoV-2 viral particles and RNA from both the solid and aqueous phases of wastewater using an electronegative membrane (EM). The captured viral particles and RNA on the EM were incubated in our newly developed viral inactivation and RNA preservation (VIP) buffer. Subsequently, the RNA was concentrated on magnetic beads and inhibitors removed by washing. Without eluting, the RNA on the magnetic beads was directly detected using reverse transcription quantitative polymerase chain reaction (RT-qPCR). Analysis of SARS-CoV-2 pseudovirus (SARS-CoV-2 RNA in a noninfectious viral coat) spiked to wastewater samples showed an improved recovery of 80%. Analysis of 120 wastewater samples collected twice weekly between May 2021 and February 2022 from two wastewater treatment plants showed 100% positive detection, which agreed with the results independently obtained by a provincial public health laboratory. The concentrations of SARS-CoV-2 RNA in these wastewater samples ranged from 2.4×102 to 2.9×106 copies per 100 mL of wastewater. Our method's capability of detecting trace and diverse concentrations of SARS-CoV-2 in complex wastewater samples is attributed to the enhanced recovery of SARS-CoV-2 RNA and efficient removal of PCR inhibitors. The improved method for the recovery and detection of viral RNA in wastewater is important for wastewater surveillance, complementing clinical diagnostic tests for public health protection.
Collapse
Affiliation(s)
- Teresa Kumblathan
- Division of Analytical and Environmental Toxicology, Department of Laboratory Medicine and Pathology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta, T6G 2G3, Canada
| | - Yanming Liu
- Division of Analytical and Environmental Toxicology, Department of Laboratory Medicine and Pathology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta, T6G 2G3, Canada
| | - Yuanyuan Qiu
- Division of Diagnostic and Applied Microbiology, Department of Laboratory Medicine and Pathology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, T6G 2G3, Canada
| | - Lilly Pang
- Division of Diagnostic and Applied Microbiology, Department of Laboratory Medicine and Pathology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, T6G 2G3, Canada; Public Health Laboratory, Alberta Precision Laboratories, Edmonton, Alberta, T6G 2G3, Canada
| | - Steve E Hrudey
- Division of Analytical and Environmental Toxicology, Department of Laboratory Medicine and Pathology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta, T6G 2G3, Canada
| | - X Chris Le
- Division of Analytical and Environmental Toxicology, Department of Laboratory Medicine and Pathology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta, T6G 2G3, Canada
| | - Xing-Fang Li
- Division of Analytical and Environmental Toxicology, Department of Laboratory Medicine and Pathology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta, T6G 2G3, Canada.
| |
Collapse
|
16
|
Belmonte-Lopes R, Barquilha CER, Kozak C, Barcellos DS, Leite BZ, da Costa FJOG, Martins WL, Oliveira PE, Pereira EHRA, Filho CRM, de Souza EM, Possetti GRC, Vicente VA, Etchepare RG. 20-Month monitoring of SARS-CoV-2 in wastewater of Curitiba, in Southern Brazil. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:76687-76701. [PMID: 37243767 PMCID: PMC10224667 DOI: 10.1007/s11356-023-27926-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Accepted: 05/22/2023] [Indexed: 05/29/2023]
Abstract
The COVID-19 pandemic resulted in the collapse of healthcare systems and led to the development and application of several approaches of wastewater-based epidemiology to monitor infected populations. The main objective of this study was to carry out a SARS-CoV-2 wastewater based surveillance in Curitiba, Southern Brazil Sewage samples were collected weekly for 20 months at the entrance of five treatment plants representing the entire city and quantified by qPCR using the N1 marker. The viral loads were correlated with epidemiological data. The correlation by sampling points showed that the relationship between the viral loads and the number of reported cases was best described by a cross-correlation function, indicating a lag between 7 and 14 days amidst the variables, whereas the data for the entire city presented a higher correlation (0.84) with the number of positive tests at lag 0 (sampling day). The results also suggest that the Omicron VOC resulted in higher titers than the Delta VOC. Overall, our results showed that the approach used was robust as an early warning system, even with the use of different epidemiological indicators or changes in the virus variants in circulation. Therefore, it can contribute to public decision-makers and health interventions, especially in vulnerable and low-income regions with limited clinical testing capacity. Looking toward the future, this approach will contribute to a new look at environmental sanitation and should even induce an increase in sewage coverage rates in emerging countries.
Collapse
Affiliation(s)
- Ricardo Belmonte-Lopes
- Graduate Program On Pathology, Parasitology, and Microbiology, Federal University of Paraná, 100 Coronel Francisco Heráclito Dos Santos Avenue, Curitiba, PR, 81530-000, Brazil
- Basic Pathology Department, Biological Sciences Sector, Microbiological Collections of Paraná Network, Room 135/136. 100 Coronel Francisco Heráclito Dos Santos Avenue, Curitiba, PR, 81530-000, Brazil
- Basic Pathology Department, Federal University of Paraná, 100 Coronel Francisco Heráclito Dos Santos Avenue, Curitiba, PR, 81530-000, Brazil
| | - Carlos E R Barquilha
- Graduate Program On Water Resources and Environmental Engineering, Hydraulics and Sanitation Department, Federal University of Paraná, 100 Coronel Francisco Heráclito Dos Santos Avenue, Curitiba, PR, 81530-000, Brazil
- Hydraulics and Sanitation Department, Federal University of Paraná, 100 Coronel Francisco Heráclito Dos Santos Avenue, Curitiba, PR, 81530-000, Brazil
| | - Caroline Kozak
- Environment Department, Maringa State University, SESI Block, 1800 Ângelo Moreira da Fonseca AvenueRoom 15, Parque Danielle, Umuarama, PR, 87506-370, Brazil
| | - Demian S Barcellos
- Hydraulics and Sanitation Department, Federal University of Paraná, 100 Coronel Francisco Heráclito Dos Santos Avenue, Curitiba, PR, 81530-000, Brazil
| | - Bárbara Z Leite
- Research and Innovation Management, Paraná Sanitation Company (SANEPAR), 1376 Eng. Rebouças St, Rebouças, Curitiba, PR, 80215-900, Brazil
| | - Fernanda J O Gomes da Costa
- Research and Innovation Management, Paraná Sanitation Company (SANEPAR), 1376 Eng. Rebouças St, Rebouças, Curitiba, PR, 80215-900, Brazil
| | - William L Martins
- Basic Pathology Department, Federal University of Paraná, 100 Coronel Francisco Heráclito Dos Santos Avenue, Curitiba, PR, 81530-000, Brazil
| | - Pâmela E Oliveira
- Hydraulics and Sanitation Department, Federal University of Paraná, 100 Coronel Francisco Heráclito Dos Santos Avenue, Curitiba, PR, 81530-000, Brazil
| | - Edy H R A Pereira
- Hydraulics and Sanitation Department, Federal University of Paraná, 100 Coronel Francisco Heráclito Dos Santos Avenue, Curitiba, PR, 81530-000, Brazil
| | - Cesar R Mota Filho
- Sanitary and Environmental Engineering Department, Federal University of Minas Gerais (UFMG), 6627 Antonio Carlos Avenue, Block 1, Room 4529, Belo Horizonte, MG, 31270-901, Brazil
| | - Emanuel M de Souza
- Biochemistry and Molecular Biology Department, Federal University of Paraná, 100 Coronel Francisco Heráclito Dos Santos Avenue, Curitiba, PR, 81530-000, Brazil
| | - Gustavo R C Possetti
- Research and Innovation Management, Paraná Sanitation Company (SANEPAR), 1376 Eng. Rebouças St, Rebouças, Curitiba, PR, 80215-900, Brazil
| | - Vania A Vicente
- Basic Pathology Department, Biological Sciences Sector, Microbiological Collections of Paraná Network, Room 135/136. 100 Coronel Francisco Heráclito Dos Santos Avenue, Curitiba, PR, 81530-000, Brazil
- Basic Pathology Department, Federal University of Paraná, 100 Coronel Francisco Heráclito Dos Santos Avenue, Curitiba, PR, 81530-000, Brazil
| | - Ramiro G Etchepare
- Hydraulics and Sanitation Department, Federal University of Paraná, 100 Coronel Francisco Heráclito Dos Santos Avenue, Curitiba, PR, 81530-000, Brazil.
| |
Collapse
|
17
|
Shingleton JW, Lilley CJ, Wade MJ. Evaluating the theoretical performance of aircraft wastewater monitoring as a tool for SARS-CoV-2 surveillance. PLOS GLOBAL PUBLIC HEALTH 2023; 3:e0001975. [PMID: 37347725 DOI: 10.1371/journal.pgph.0001975] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Accepted: 06/01/2023] [Indexed: 06/24/2023]
Abstract
Air travel plays an important role in the cross-border spread of infectious diseases. During the SARS-CoV-2 pandemic many countries introduced strict border testing protocols to monitor the incursion of the virus. However, high implementation costs and significant inconvenience to passengers have led public health authorities to consider alternative methods of disease surveillance at borders. Aircraft wastewater monitoring has been proposed as one such alternative. In this paper we assess the theoretical limits of aircraft wastewater monitoring and compare its performance to post-arrival border screening approaches. Using an infectious disease model, we simulate an unmitigated SARS-CoV-2 epidemic originating in a seed country and spreading to the United Kingdom (UK) through daily flights. We use a probabilistic approach to estimate the time of first detection in the UK in aircraft wastewater and respiratory swab screening. Across a broad range of model parameters, our analysis indicates that the median time between the first incursion and detection in wastewater would be approximately 17 days (IQR: 7-28 days), resulting in a median of 25 cumulative cases (IQR: 6-84 cases) in the UK at the point of detection. Comparisons to respiratory swab screening suggest that aircraft wastewater monitoring is as effective as random screening of 20% of passengers at the border, using a test with 95% sensitivity. For testing regimes with sensitivity of 85% or less, the required coverage to outperform wastewater monitoring increases to 30%. Analysis of other model parameters suggests that wastewater monitoring is most effective when used on long-haul flights where probability of defecation is above 30%, and when the target pathogen has high faecal shedding rates and reasonable detectability in wastewater. These results demonstrate the potential use cases of aircraft wastewater monitoring and its utility in a wider system of public health surveillance.
Collapse
Affiliation(s)
- Joseph W Shingleton
- Analytics & Data Science Directorate, UK Health Security Agency, Nobel House, Smith Square, London, United Kingdom
| | - Chris J Lilley
- Analytics & Data Science Directorate, UK Health Security Agency, Nobel House, Smith Square, London, United Kingdom
| | - Matthew J Wade
- Analytics & Data Science Directorate, UK Health Security Agency, Nobel House, Smith Square, London, United Kingdom
| |
Collapse
|
18
|
Joung MJ, Mangat CS, Mejia EM, Nagasawa A, Nichani A, Perez-Iratxeta C, Peterson SW, Champredon D. Coupling wastewater-based epidemiological surveillance and modelling of SARS-COV-2/COVID-19: Practical applications at the Public Health Agency of Canada. CANADA COMMUNICABLE DISEASE REPORT = RELEVE DES MALADIES TRANSMISSIBLES AU CANADA 2023; 49:166-174. [PMID: 38404704 PMCID: PMC10890812 DOI: 10.14745/ccdr.v49i05a01] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/27/2024]
Abstract
Wastewater-based surveillance (WBS) of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) offers a complementary tool for clinical surveillance to detect and monitor coronavirus disease 2019 (COVID-19). Since both symptomatic and asymptomatic individuals infected with SARS-CoV-2 can shed the virus through the fecal route, WBS has the potential to measure community prevalence of COVID-19 without restrictions from healthcare-seeking behaviours and clinical testing capacity. During the Omicron wave, the limited capacity of clinical testing to identify COVID-19 cases in many jurisdictions highlighted the utility of WBS to estimate disease prevalence and inform public health strategies; however, there is a plethora of in-sewage, environmental and laboratory factors that can influence WBS outcomes. The implementation of WBS, therefore, requires a comprehensive framework to outline a pipeline that accounts for these complex and nuanced factors. This article reviews the framework of the national WBS conducted at the Public Health Agency of Canada to present WBS methods used in Canada to track and monitor SARS-CoV-2. In particular, we focus on five Canadian cities-Vancouver, Edmonton, Toronto, Montréal and Halifax-whose wastewater signals are analyzed by a mathematical model to provide case forecasts and reproduction number estimates. The goal of this work is to share our insights on approaches to implement WBS. Importantly, the national WBS system has implications beyond COVID-19, as a similar framework can be applied to monitor other infectious disease pathogens or antimicrobial resistance in the community.
Collapse
Affiliation(s)
- Meong Jin Joung
- National Microbiology Laboratory, Public Health Risk Sciences Division, Public Health Agency of Canada, Guelph, ON
- Dalla Lana School of Public Health, University of Toronto. Toronto, ON
| | - Chand S Mangat
- National Microbiology Laboratory, Wastewater Surveillance Unit, Public Health Agency of Canada, Winnipeg, MB
| | - Edgard M Mejia
- National Microbiology Laboratory, Wastewater Surveillance Unit, Public Health Agency of Canada, Winnipeg, MB
| | - Audra Nagasawa
- Statistics Canada, Centre for Direct Health Measures, Ottawa, ON
| | - Anil Nichani
- National Microbiology Laboratory, Public Health Agency of Canada, Guelph, ON
| | | | - Shelley W Peterson
- National Microbiology Laboratory, Wastewater Surveillance Unit, Public Health Agency of Canada, Winnipeg, MB
| | - David Champredon
- National Microbiology Laboratory, Public Health Risk Sciences Division, Public Health Agency of Canada, Guelph, ON
| |
Collapse
|
19
|
Le C. Sensitivity of wastewater surveillance: What is the minimum COVID-19 cases required in population for SARS-CoV-2 RNA to be detected in wastewater? J Environ Sci (China) 2023; 125:851-853. [PMID: 36375967 PMCID: PMC9392869 DOI: 10.1016/j.jes.2022.08.020] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Affiliation(s)
- Connie Le
- Li Ka Shing Institute of Virology, Department of Radiation Oncology, and Cross Cancer Institute, University of Alberta, Edmonton, Alberta T6G 2G3, Canada.
| |
Collapse
|
20
|
Pang X, Gao T, Ellehoj E, Li Q, Qiu Y, Maal-Bared R, Sikora C, Tipples G, Diggle M, Hinshaw D, Ashbolt NJ, Talbot J, Hrudey SE, Lee BE. Wastewater-Based Surveillance Is an Effective Tool for Trending COVID-19 Prevalence in Communities: A Study of 10 Major Communities for 17 Months in Alberta. ACS ES&T WATER 2022; 2:2243-2254. [PMID: 36380772 PMCID: PMC9514327 DOI: 10.1021/acsestwater.2c00143] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Revised: 09/09/2022] [Accepted: 09/12/2022] [Indexed: 06/16/2023]
Abstract
The correlations between SARS-CoV-2 RNA levels in wastewater from 12 wastewater treatment plants and new COVID-19 cases in the corresponding sewersheds of 10 communities were studied over 17 months. The analysis from the longest continuous surveillance reported to date revealed that SARS-CoV-2 RNA levels correlated well with temporal changes of COVID-19 cases in each community. The strongest correlation was found during the third wave (r = 0.97) based on the population-weighted SARS-CoV-2 RNA levels in wastewater. Different correlations were observed (r from 0.51 to 0.86) in various sizes of communities. The population in the sewershed had no observed effects on the strength of the correlation. Fluctuation of SARS-CoV-2 RNA levels in wastewater mirrored increases and decreases of COVID-19 cases in the corresponding community. Since the viral shedding to sewers from all infected individuals is included, wastewater-based surveillance provides an unbiased and no-discriminate estimation of the prevalence of COVID-19 compared with clinical testing that was subject to testing-seeking behaviors and policy changes. Wastewater-based surveillance on SARS-CoV-2 represents a temporal trend of COVID-19 disease burden and is an effective and supplementary monitoring when the number of COVID-19 cases reaches detectable thresholds of SARS-CoV-2 RNA in wastewater of treatment facilities serving various sizes of populations.
Collapse
Affiliation(s)
- Xiaoli Pang
- Department
of Laboratory Medicine and Pathology, School of Public Health, Department of Medicine, and Department of
Pediatrics, University of Alberta, Edmonton, Alberta T6G 2E2, Canada
- Alberta
Precision Laboratories, Edmonton, Alberta T6G 2J2, Canada
| | - Tiejun Gao
- Department
of Laboratory Medicine and Pathology, School of Public Health, Department of Medicine, and Department of
Pediatrics, University of Alberta, Edmonton, Alberta T6G 2E2, Canada
| | - Erik Ellehoj
- Ellehoj
Redmond Consulting, Edmonton, Alberta T6G 0Y4, Canada
| | - Qiaozhi Li
- Department
of Laboratory Medicine and Pathology, School of Public Health, Department of Medicine, and Department of
Pediatrics, University of Alberta, Edmonton, Alberta T6G 2E2, Canada
| | - Yuanyuan Qiu
- Department
of Laboratory Medicine and Pathology, School of Public Health, Department of Medicine, and Department of
Pediatrics, University of Alberta, Edmonton, Alberta T6G 2E2, Canada
| | | | - Christopher Sikora
- Department
of Laboratory Medicine and Pathology, School of Public Health, Department of Medicine, and Department of
Pediatrics, University of Alberta, Edmonton, Alberta T6G 2E2, Canada
| | - Graham Tipples
- Department
of Laboratory Medicine and Pathology, School of Public Health, Department of Medicine, and Department of
Pediatrics, University of Alberta, Edmonton, Alberta T6G 2E2, Canada
- Alberta
Precision Laboratories, Edmonton, Alberta T6G 2J2, Canada
| | - Mathew Diggle
- Alberta
Precision Laboratories, Edmonton, Alberta T6G 2J2, Canada
| | - Deena Hinshaw
- Department
of Laboratory Medicine and Pathology, School of Public Health, Department of Medicine, and Department of
Pediatrics, University of Alberta, Edmonton, Alberta T6G 2E2, Canada
| | | | - James Talbot
- Department
of Laboratory Medicine and Pathology, School of Public Health, Department of Medicine, and Department of
Pediatrics, University of Alberta, Edmonton, Alberta T6G 2E2, Canada
| | - Steve E. Hrudey
- Department
of Laboratory Medicine and Pathology, School of Public Health, Department of Medicine, and Department of
Pediatrics, University of Alberta, Edmonton, Alberta T6G 2E2, Canada
| | - Bonita E. Lee
- Department
of Laboratory Medicine and Pathology, School of Public Health, Department of Medicine, and Department of
Pediatrics, University of Alberta, Edmonton, Alberta T6G 2E2, Canada
| |
Collapse
|
21
|
Hrudey SE, Bischel HN, Charrois J, Chik AHS, Conant B, Delatolla R, Dorner S, Graber TE, Hubert C, Isaac-Renton J, Pons W, Safford H, Servos M, Sikora C. Wastewater Surveillance for SARS-CoV-2 RNA in Canada. Facets (Ott) 2022. [DOI: 10.1139/facets-2022-0148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Wastewater surveillance for SARS-CoV-2 RNA is a relatively recent adaptation of long-standing wastewater surveillance for infectious and other harmful agents. Individuals infected with COVID-19 were found to shed SARS-CoV-2 in their faeces. Researchers around the world confirmed that SARS-CoV-2 RNA fragments could be detected and quantified in community wastewater. Canadian academic researchers, largely as volunteer initiatives, reported proof-of-concept by April 2020. National collaboration was initially facilitated by the Canadian Water Network. Many public health officials were initially skeptical about actionable information being provided by wastewater surveillance even though experience has shown that public health surveillance for a pandemic has no single, perfect approach. Rather, different approaches provide different insights, each with its own strengths and limitations. Public health science must triangulate among different forms of evidence to maximize understanding of what is happening or may be expected. Well-conceived, resourced, and implemented wastewater-based platforms can provide a cost-effective approach to support other conventional lines of evidence. Sustaining wastewater monitoring platforms for future surveillance of other disease targets and health states is a challenge. Canada can benefit from taking lessons learned from the COVID-19 pandemic to develop forward-looking interpretive frameworks and capacity to implement, adapt, and expand such public health surveillance capabilities.
Collapse
Affiliation(s)
- Steve E. Hrudey
- Professor Emeritus, Analytical & Environmental Toxicology, Faculty of Medicine & Dentistry, University of Alberta, Edmonton, AB T6G 2G3 Canada
| | - Heather N. Bischel
- Associate Professor, Department of Civil & Environmental Engineering, University of California, Davis, Davis, CA 95616 USA
| | - Jeff Charrois
- Senior Manager, Analytical Operations and Process Development Teams, EPCOR Water Services Inc, Edmonton, AB T5K 0A5 Canada
| | - Alex H. S. Chik
- Project Manager, Wastewater Surveillance Initiative, Ontario Clean Water Agency, Mississauga, ON L5A 4G1 Canada
| | - Bernadette Conant
- Past Chief Executive Officer, Canadian Water Network, Waterloo, ON N2L 3G1 Canada
| | - Rob Delatolla
- Professor, Civil Engineering, University of Ottawa, Ottawa, ON K1N 6N5 Canada
| | - Sarah Dorner
- Professor, Civil, Geological & Mining Engineering, Polytechnique Montréal, Montréal, PQ H3T 1J4 Canada
| | - Tyson E. Graber
- Associate Scientist, Children’s Hospital of Eastern Ontario Research Institute, Ottawa, ON, K1H 8L1 Canada
| | - Casey Hubert
- Professor, Campus Alberta Innovates Program Chair in Geomicrobiology, Department of Biological Sciences, University of Calgary, Calgary, AB T2N 1N4 Canada
| | - Judy Isaac-Renton
- Professor Emerita, Dept. Pathology and Laboratory Medicine, Faculty of Medicine, University of British Columbia, Calgary, AB, T2N 3V9 Canada
| | - Wendy Pons
- Professor, Bachelor of Environmental Health Program Conestoga College Institute of Technology and Advanced Learning, Kitchener, ON N2P 2N6 Canada
| | - Hannah Safford
- Associate Director of Science Policy, Federation of American Scientists, Arlington, VA 22205 USA
| | - Mark Servos
- Professor & Canada Research Chair, Department of Biology, University of Waterloo, Waterloo, ON N2L 3G1 Canada
| | - Christopher Sikora
- Medical Officer of Health, Edmonton Region, Alberta Health Services, Edmonton, AB T5J 3E4 Canada
| |
Collapse
|