1
|
Wan Q, Luo Y, Wan Z, Chen Y, Zhou D. Migration and transformation behaviors of potentially toxic elements and the underlying mechanisms in bauxite residue: Insight from various revegetation strategies. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 361:124867. [PMID: 39218200 DOI: 10.1016/j.envpol.2024.124867] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Revised: 08/22/2024] [Accepted: 08/28/2024] [Indexed: 09/04/2024]
Abstract
Revegetation is a promising strategy for large-scale bauxite residue disposal and management, potentially influencing the geochemical stability of potentially toxic elements (PTEs) through rhizosphere processes. However, the geochemical behaviors of PTEs and the underlying mechanisms during bauxite residue revegetation remain unclear. This study examined the migration and transformation behaviors of PTEs and their underlying mechanisms in the bauxite residue-vegetation-leachate system under various revegetation strategies, including single and co-planting of perennial ryegrass (Lolium perenne L.) and white clover (Trifolium repens L.), over a 100-day microcosm experiment. The results showed significant decreases in pH, EC, Na, Al, and Cr levels in the leachate under various revegetation strategies, with slight increases in Cu, V, As, and Pb. Over time, the pH, EC, Na, Cr, Cu, V, Pb, and As levels in the leachate decreased, while those of Al, Fe, Mn, and Zn increased. The mean pH, EC, and concentrations of Na, Al, Fe, and Cr in the leachate of the revegetated treatments decreased by 6%-8%, 21%-33%, 2%-4%, 19%-27%, 7%-22%, and 15%-26%, respectively, while the mean concentrations of Mn, V, Zn, and As increased by 47%-134%, 26%-46%, 39%-47%, and 3%-10%, respectively, compared to the unamended treatment. Co-planting generally exhibited a greater impact on leachate components compared to single planting. Available contents of Al, Cr, and Pb decreased by 81%-83%, 57%-77%, and 55%-72%, respectively, while those of other PTEs increased in the revegetated bauxite residue. Co-planting significantly reduced the availability of PTEs compared to single planting. Except for Na and Mn, the bioaccumulation and transportation factors of PTEs in both vegetation species remained below 1 under various revegetation strategies. The migration and transformation behaviors of PTEs in the bauxite residue-vegetation-leachate system were mainly influenced by pH and nutrient levels. These findings provide new insights into the migration and transformation behaviors of PTEs during bauxite residue revegetation.
Collapse
Affiliation(s)
- Qiansong Wan
- Key Laboratory of Karst Georesources and Environment, Ministry of Education, College of Resources and Environmental Engineering, Guizhou University, Guiyang, 550025, China
| | - Youfa Luo
- Key Laboratory of Karst Georesources and Environment, Ministry of Education, College of Resources and Environmental Engineering, Guizhou University, Guiyang, 550025, China; Guizhou Karst Environmental Ecosystems Observation and Research Station, Ministry of Education, GuizhouUniversity, Guiyang, 550025, China; Guizhou Hostile Environment Ecological Restoration Technology Engineering Research Centre, Guizhou University, Guiyang, 550025, China.
| | - Zuyan Wan
- Key Laboratory of Karst Georesources and Environment, Ministry of Education, College of Resources and Environmental Engineering, Guizhou University, Guiyang, 550025, China
| | - Yulu Chen
- Key Laboratory of Karst Georesources and Environment, Ministry of Education, College of Resources and Environmental Engineering, Guizhou University, Guiyang, 550025, China
| | - Dongran Zhou
- Key Laboratory of Karst Georesources and Environment, Ministry of Education, College of Resources and Environmental Engineering, Guizhou University, Guiyang, 550025, China
| |
Collapse
|
2
|
Zhou H, Dang Y, Chen X, Ivanets A, Ratko AA, Kouznetsova T, Liu Y, Yang B, Zhang X, Sun Y, He X, Ren Y, Su X. Rapid humification of cotton stalk catalyzed by coal fly ash and its excellent cadmium passivation performance. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:52582-52595. [PMID: 39153068 DOI: 10.1007/s11356-024-34514-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Accepted: 07/23/2024] [Indexed: 08/19/2024]
Abstract
Due to industrialization, soil heavy metal pollution is a growing concern, with humic substances (HS) playing a pivotal role in soil passivation. To address the long duration of the compost humification problem, coal fly ash (CFA) in situ catalyzes the rapid pyrolysis of the cotton stalk (CS) to produce HS to address Cd passivation. Results indicate that the highest yield of humic acid (HA) (8.42%) and fulvic acid (FA) (1.36%) is obtained when the CS to CFA mass ratio is 1:0.5, at 275 ℃ for 120 min. Further study reveals that CFA catalysis CS humification, through the creation of alkaline pyrolysis conditions, Fe2O3 can stimulate the protein and the decomposition of hemicellulose in CS, and then, through the Maillard and Sugar-amine condensation reaction synthesis HA and FA. Applying HS-CS&CFA in Cd-contaminated soil demonstrates a 26.69% reduction in exchangeable Cd within 30 days by chemical complexation. Excellent maize growth effects and environmental benefits of HS products are the prerequisites for subsequent engineering applications. Similar industrial solid wastes, such as steel slag and red mud, rich in Fe2O3, can be explored to identify their catalytic humification effect. It could provide a novel and effective way for industrial solid wastes to be recycled for biomass humification and widely applied in remediating Cd-contaminated agricultural soil.
Collapse
Affiliation(s)
- Hao Zhou
- School of Environment and Energy, Guangdong Provincial Key Laboratory of Solid Wastes Pollution Control and Recycling, South China University of Technology, Guangzhou, Guangdong, 510006, People's Republic of China
| | - Yan Dang
- School of Environment and Energy, Guangdong Provincial Key Laboratory of Solid Wastes Pollution Control and Recycling, South China University of Technology, Guangzhou, Guangdong, 510006, People's Republic of China
| | - Xinyu Chen
- School of Environment and Energy, Guangdong Provincial Key Laboratory of Solid Wastes Pollution Control and Recycling, South China University of Technology, Guangzhou, Guangdong, 510006, People's Republic of China
| | - Andrei Ivanets
- State Scientific Institution, "Institute of General and Inorganic Chemistry of National Academy of Sciences of Belarus", 220072, Minsk, Belarus
| | - Alexander A Ratko
- State Scientific Institution, "Institute of General and Inorganic Chemistry of National Academy of Sciences of Belarus", 220072, Minsk, Belarus
| | - Tatyana Kouznetsova
- State Scientific Institution, "Institute of General and Inorganic Chemistry of National Academy of Sciences of Belarus", 220072, Minsk, Belarus
| | - Yongqi Liu
- School of Environment and Energy, Guangdong Provincial Key Laboratory of Solid Wastes Pollution Control and Recycling, South China University of Technology, Guangzhou, Guangdong, 510006, People's Republic of China
| | - Bo Yang
- School of Environment and Energy, Guangdong Provincial Key Laboratory of Solid Wastes Pollution Control and Recycling, South China University of Technology, Guangzhou, Guangdong, 510006, People's Republic of China
| | - Xulong Zhang
- China Customs Science and Technology Research Center, Beijing, 100026, People's Republic of China
| | - Yiwei Sun
- School of Environment and Energy, Guangdong Provincial Key Laboratory of Solid Wastes Pollution Control and Recycling, South China University of Technology, Guangzhou, Guangdong, 510006, People's Republic of China
| | - Xiaoyan He
- Xinjiang Key Laboratory of Clean Conversion and High Value Utilization of Biomass Resources, School of Chemistry and Environmental Sciences, Yili Normal University, Xinjiang, 835000, Yining, China
| | - Yanjie Ren
- Xinjiang Qinghua Energy Group Co., Ltd, Xinjiang, 844500, Yining, China
| | - Xintai Su
- School of Environment and Energy, Guangdong Provincial Key Laboratory of Solid Wastes Pollution Control and Recycling, South China University of Technology, Guangzhou, Guangdong, 510006, People's Republic of China.
| |
Collapse
|
3
|
Li G, Liu J, Yi L, Luo J, Jiang T. Bauxite residue (red mud) treatment: Current situation and promising solution. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 948:174757. [PMID: 39009166 DOI: 10.1016/j.scitotenv.2024.174757] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 06/07/2024] [Accepted: 07/11/2024] [Indexed: 07/17/2024]
Abstract
Bauxite residue, an industrial solid waste generated during alumina production, with over 80 % of bauxite residue worldwide being accumulated around alumina plants, which occupying a significant amount of land resources and posing a threat to the natural environment in the surrounding areas. This paper reviews recent advances in extracting valuable resources from bauxite residue, and its applications in building materials, environmental adsorbents, energy storage materials, and soil alkalinization. It also highlighted the main problem existing in these researches, which is the inability of the existing single processes to achieve the comprehensive utilization of various types of bauxite residue or maximize the utilization of bauxite residue components, resulting in a low comprehensive utilization rate and insignificant absorption effects of bauxite residue. To address these issues, we proposed a strategy of classifying and utilizing bauxite residue based on its components and establishing a multi-industry application system, involving sectors such as steel and building materials. This collaborative approach aims to handle various types of bauxite residue more effectively. Additionally, we suggest selecting suitable treatment methods based on the specific characteristics of bauxite residue and implementing measures to promote its comprehensive and large-scale utilization.
Collapse
Affiliation(s)
- Guanghui Li
- School of Minerals Processing and Bioengineering, Central South University, Changsha, Hunan 410083, China.
| | - Jiajian Liu
- School of Minerals Processing and Bioengineering, Central South University, Changsha, Hunan 410083, China
| | - Lingyun Yi
- School of Minerals Processing and Bioengineering, Central South University, Changsha, Hunan 410083, China
| | - Jun Luo
- School of Minerals Processing and Bioengineering, Central South University, Changsha, Hunan 410083, China
| | - Tao Jiang
- School of Minerals Processing and Bioengineering, Central South University, Changsha, Hunan 410083, China
| |
Collapse
|
4
|
Zhu F, Guo X, Gao H, Shi Y, Wang G, Du C, Jiang J, Wu Y, Hartley W, Xue S. Ecological restoration affects the dynamic response of alkaline minerals dissolution in bauxite residue. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 912:169364. [PMID: 38104818 DOI: 10.1016/j.scitotenv.2023.169364] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 11/19/2023] [Accepted: 12/11/2023] [Indexed: 12/19/2023]
Abstract
Regulating alkalinity is the key process to eliminating environmental risk and implementing sustainable management of bauxite residue. Nevertheless, continuous release of free alkali from the solid phase (mainly sodalite and cancrinite) is a major challenge for long-term stability of alkalinity in amended bauxite residue. In order to understand the dissolution behavior of sodalite and cancrinite, their dissolution kinetics under simulated pH conditions of 8, 9 and 10 were investigated. Additionally, PHREEQC software and shrinking core model (SCM) were employed to analyze the release pattern of saline ions. The results revealed that the ratio of Na/Si and Na/Al values exhibited greater stability in sodalite than in cancrinite. The dissolution of elemental Na, Si, and Al in sodalite and cancrinite was matched with non-chemometric characteristics. The kinetic calculations by the shrinking core model (SCM) suggested that both sodalite and cancrinite exhibited slow dissolution kinetics, and their dissolution processes belong to internal diffusion control and external diffusion control, respectively. pH controlled the dissolution kinetic rates of sodalite and cancrinite mainly by changing their coupled dissolution-precipitation processes. More importantly, these findings can predict the change of alkaline components accurately, thus facilitating the implementation of efficient alkalinity regulation strategies for the ecological restoration of bauxite residue disposal areas.
Collapse
Affiliation(s)
- Feng Zhu
- School of Metallurgy and Environment, Central South University, Changsha 410083, China
| | - Xuyao Guo
- School of Metallurgy and Environment, Central South University, Changsha 410083, China
| | - Hui Gao
- Chinalco Mining Co, Ltd, Zhengzhou 450041, China
| | - Yafei Shi
- Chinalco Mining Co, Ltd, Zhengzhou 450041, China
| | | | - Chenxia Du
- Chinalco Mining Co, Ltd, Zhengzhou 450041, China
| | - Jun Jiang
- School of Metallurgy and Environment, Central South University, Changsha 410083, China.
| | - Yujun Wu
- School of Metallurgy and Environment, Central South University, Changsha 410083, China; College of Environment and Resources, Xiangtan University, Xiangtan 411105, China.
| | - William Hartley
- Royal Agricultural University, Gloucestershire, United Kingdom
| | - Shengguo Xue
- School of Metallurgy and Environment, Central South University, Changsha 410083, China
| |
Collapse
|
5
|
Lai L, Liu X, Ren W, Zhou Z, Zhao X, Zeng X, Lin C, He M, Ouyang W. Efficient removal of Sb(III) from water using β-FeOOH-modified biochar:Synthesis, performance and mechanism. CHEMOSPHERE 2023; 311:137057. [PMID: 36328318 DOI: 10.1016/j.chemosphere.2022.137057] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Revised: 10/16/2022] [Accepted: 10/27/2022] [Indexed: 06/16/2023]
Abstract
Since the toxicity of Sb(III) is 10 times as high as that of Sb(V) in the environment, it is urgent to find a way to cut down Sb(III). β-FeOOH-modified biochar (β-FeOOH/BC) was prepared and used to remove Sb(III). The characterization results suggested that oxygen-containing functional groups formed on β-FeOOH/BC, which increased the Sb(III) removal efficiency. Even under complex water matrix conditions, the outstanding adsorption performance of β-FeOOH/BC for Sb(III) was obtained. The adsorption reaction rapidly reached a high removal efficiency within 5 min and approached adsorption equilibrium in about 6 h. The adsorption process was fitted to pseudo-second-order kinetics. Amount of maximum adsorption was 202.53 mg g-1 at 308 K according to Langmuir model. β-FeOOH/BC removed Sb(III) mainly through pore-filling complexation, cation-π and coordination exchange. The CO sites and persistent free radicals (PFRs) acted as electron acceptors, facilitating the electron transfer. In brief, β-FeOOH/BC adsorbent material could adsorb and oxidize Sb(III), which showed excellent prospects for reducing the risk of Sb(III).
Collapse
Affiliation(s)
- Ling Lai
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing 100875, China
| | - Xitao Liu
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing 100875, China.
| | - Wenbo Ren
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing 100875, China
| | - Zhou Zhou
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing 100875, China; North China Power Engineering CO., Ltd of China Power Engineering Group, Beijing 100120, China
| | - Xiwang Zhao
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing 100875, China
| | - Xiaofeng Zeng
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing 100875, China
| | - Chunye Lin
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing 100875, China
| | - Mengchang He
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing 100875, China
| | - Wei Ouyang
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing 100875, China
| |
Collapse
|