1
|
Wang Y, Zhang Z, Cheng C, Liang C, Wang H, He M, Huang H, Wang K. Ensemble learning-assisted quantitative identifying influencing factors of cadmium and arsenic concentration in rice grain based multiplexed data. JOURNAL OF HAZARDOUS MATERIALS 2025; 485:136869. [PMID: 39675080 DOI: 10.1016/j.jhazmat.2024.136869] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2024] [Revised: 12/06/2024] [Accepted: 12/11/2024] [Indexed: 12/17/2024]
Abstract
Rapid and accurate prediction of rice Cd (rCd) and rice As (rAs) bioaccumulation are important for assessing the safe utilization of rice. Currently, there is lack of comprehensive and systematic exploration of the factors of rCd and rAs. Herein, ensemble learning (EL) was first used to analysis the 23 factors in 8 categories (heavy metal pollution characteristics, soil properties, geographical characteristics, meteorological factors, socio-economic factors, environmental factors, rice type, and nutrient element) in typical regions of China based on the results of 193 research papers from 2000 to 2024 in Web of Science database. Three machine learning methods were used to predict rCd and rAs concentrations and identify the key factors in each region, and explored the mechanism of Cd and As uptake in rice. The results showed that there were large differences in the factors affecting rice enrichment for the same heavy metal in different regions. For Cd, rice type (48.30 %), soil characteristics (28.14 %), and environmental factors (61.30 %) were the most important factors in Central South, East China, and Southwest China, respectively. For As, soil properties (34.01 %) and geographical characteristics (50.22 %) had the greatest influence in Central South and East China, respectively. Our study provided valuable insights into the prediction of rCd and rAs, thus contributing to ensuring food safety and preventing Cd and As exposure-associated health risks.
Collapse
Affiliation(s)
- Yakun Wang
- School of Land Science and Technology, China University of Geosciences (Beijing), Beijing 100083, China
| | - Zhuo Zhang
- School of Land Science and Technology, China University of Geosciences (Beijing), Beijing 100083, China; Key Laboratory of Land Consolidation and Rehabilitation, Ministry of Natural Resources, Beijing 100035, China.
| | - Cheng Cheng
- PipeChina north Pipeline company, Langfang 065000, China
| | - Chouyuan Liang
- School of Land Science and Technology, China University of Geosciences (Beijing), Beijing 100083, China
| | - Hejing Wang
- Technical Center for Soil,Agriculture and Rural Ecology and Environment Ministry of Ecology and Environment, Beijing 100012, China
| | - Mengsi He
- School of Land Science and Technology, China University of Geosciences (Beijing), Beijing 100083, China
| | - Haochong Huang
- School of Science, China University of Geosciences (Beijing), Beijing 100083, China
| | - Kai Wang
- School of Earth sciences and Resources, China University of Geosciences (Beijing), Beijing 100083, China
| |
Collapse
|
2
|
Luo H, Chen J, Yang B, Li Y, Wang P, Yu J, Yuan B, Zhang Y, Ren J, Du P, Li F. Cadmium distribution and availability in different particle-size aggregates of post-harvest paddy soil amended with bio-based materials. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 957:177739. [PMID: 39612707 DOI: 10.1016/j.scitotenv.2024.177739] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2024] [Revised: 11/21/2024] [Accepted: 11/22/2024] [Indexed: 12/01/2024]
Abstract
Research on the use of organic materials as soil amendments for the remediation of Cd-contaminated agricultural land exists. However, the mechanisms based on which organic materials affect the distribution and availability of Cd in soil aggregates remain unclear. Here, Cd-contaminated paddy soil and different bio-based materials were used for rice pot experiments. Rhizosphere soils were separated into six particle sizes. Cd fractions were analyzed with BCR sequential extraction and specific functional groups associated with Cd were characterized using XPS. We found that bio-based materials promoted the formation of large aggregates to different extents. Cd tended to be enriched in fine- and coarse-grained soil particles, which is mainly related to the soil organic matter. Bio-based materials reduced the relative content of the weak-acid extractable fraction and increased the relative content of the reducible fraction, resulting in soil Cd immobilization. Soil dissolved organic matter (DOM) was the key factor affecting the distribution and availability of Cd in soil aggregates and different organic matter and Cd-binding functional groups in aggregates altered the Cd availability in soil. The results provide insight and guidance for understanding the cadmium immobilization mechanism and screening appropriate materials in the remediation of agricultural land.
Collapse
Affiliation(s)
- Huilong Luo
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China; Institute of Resources and Environment, Beijing Academy of Science and Technology, Beijing 100089, China
| | - Juan Chen
- Technical Center for Soil, Agriculture and Rural Ecology and Environment, Ministry of Ecology and Environment, Beijing 100012, China
| | - Bin Yang
- Technical Center for Soil, Agriculture and Rural Ecology and Environment, Ministry of Ecology and Environment, Beijing 100012, China
| | - Yake Li
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing 100875, China
| | - Panpan Wang
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Jingjing Yu
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Bei Yuan
- Technical Center for Soil, Agriculture and Rural Ecology and Environment, Ministry of Ecology and Environment, Beijing 100012, China
| | - Yunhui Zhang
- Technical Center for Soil, Agriculture and Rural Ecology and Environment, Ministry of Ecology and Environment, Beijing 100012, China
| | - Jie Ren
- Inner Mongolia Key Laboratory of Environmental Pollution Control and Waste Resource Recycle, School of Ecology and Environment, Inner Mongolia University, Hohhot 010021, China
| | - Ping Du
- Technical Center for Soil, Agriculture and Rural Ecology and Environment, Ministry of Ecology and Environment, Beijing 100012, China.
| | - Fasheng Li
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China.
| |
Collapse
|
3
|
Zhang X, Shuai H, Xu C, Wang Z, Zheng S, Zhu H, Huang D, Zhang Q, Zhu Q. Effects of EDTANa 2Fe on phytoavailability of cadmium and arsenic to rice (Oryza sativa L.). ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 288:117409. [PMID: 39591732 DOI: 10.1016/j.ecoenv.2024.117409] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2024] [Revised: 11/22/2024] [Accepted: 11/22/2024] [Indexed: 11/28/2024]
Abstract
Cadmium (Cd) and arsenic (As) that accumulate in rice grains can enter the human body via ingestion, posing a human health threat. Chelated iron (Fe) fertilizer application is an effective strategy for reducing Cd and As concentrations in grains; however, its mechanism of action is unknown. We investigated effects of ethylenediamine tetraacetic acid disodium ferrous (EDTA·Na2Fe) at Fe application rates of 0, 25, 50, and 75 mg kg-1 on Cd and As availability in soil and accumulation in rice grains. EDTA·Na2Fe significantly reduced soil CdAs availability and significantly decreased CaCl2Cd and KH2PO4As concentrations by 27.8-39.2 % and 17.7-28.4 %, respectively. EDTA·Na2Fe facilitated Fe plaque (IP) formation and increased Cd (CdIP) and As (AsIP) sequestration in IP; furthermore, FeIP, CdIP, and AsIP increased significantly by 70.7-125 %, 109-150 %, and 88.1-168 %, respectively. In roots, EDTA·Na2Fe reduced the Cd concentration (CdR) but increased the As concentration (AsR). EDTA·Na2Fe reduced the Cd (CdG) and As (AsG) concentrations in grains by 29.8-46.2 % and 18.5-33.3 %, respectively. The optimal simultaneous reduction effect of CdG and AsG was observed at an EDTA·Na2Fe application rate of 50 mg kg-1 Fe. The results indicated that CdG was mainly affected by Cd availability, translocation factor (TF) CdR/CdIP, and TF CdG/CdR, and AsG was mainly affected by TF AsG/AsR, followed by TF AsR/AsIP and AsIP. In summary, EDTA·Na2Fe reduced CdG and AsG by reducing Cd and As availability in soil, improving Cd and As sequestration in IP, and reducing Cd transport from IP to roots and As transport from roots to grain. Moderate application of EDTA·Na2Fe effectively reduced CdG and AsG in CdAs-contaminated paddy soil.
Collapse
Affiliation(s)
- Xinhui Zhang
- Key Laboratory for Agro-ecological Processes in Subtropical Regions, Changsha Research Station for Agricultural & Environmental Monitoring, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha 410125, China; School of Geography Sciences, Hunan Normal University, Changsha 410081, China
| | - Hong Shuai
- School of Geography Sciences, Hunan Normal University, Changsha 410081, China
| | - Chao Xu
- Key Laboratory for Agro-ecological Processes in Subtropical Regions, Changsha Research Station for Agricultural & Environmental Monitoring, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha 410125, China.
| | - Zhongyuan Wang
- Key Laboratory for Agro-ecological Processes in Subtropical Regions, Changsha Research Station for Agricultural & Environmental Monitoring, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha 410125, China
| | - Shen Zheng
- Key Laboratory for Agro-ecological Processes in Subtropical Regions, Changsha Research Station for Agricultural & Environmental Monitoring, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha 410125, China
| | - Hanhua Zhu
- Key Laboratory for Agro-ecological Processes in Subtropical Regions, Changsha Research Station for Agricultural & Environmental Monitoring, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha 410125, China
| | - Daoyou Huang
- Key Laboratory for Agro-ecological Processes in Subtropical Regions, Changsha Research Station for Agricultural & Environmental Monitoring, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha 410125, China.
| | - Quan Zhang
- Key Laboratory for Agro-ecological Processes in Subtropical Regions, Changsha Research Station for Agricultural & Environmental Monitoring, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha 410125, China
| | - Qihong Zhu
- Key Laboratory for Agro-ecological Processes in Subtropical Regions, Changsha Research Station for Agricultural & Environmental Monitoring, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha 410125, China
| |
Collapse
|
4
|
Yasmin K, Hossain MS, Li WC. Simultaneous immobilization strategy of anionic metalloids and cationic metals in agricultural systems: A review. CHEMOSPHERE 2024; 364:143106. [PMID: 39153530 DOI: 10.1016/j.chemosphere.2024.143106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2024] [Revised: 07/31/2024] [Accepted: 08/14/2024] [Indexed: 08/19/2024]
Abstract
Concurrent heavy metals remediation in natural environments poses significant challenges due to factors like metal speciation and interactions with soil moisture. This review focuses on strategies for immobilizing both anionic and cationic metals simultaneously in soil-crop systems. Key approaches include water management, biochar utilization, stabilizing agents, nanotechnology, fertilization, and bioremediation. Sprinkler or intermittent irrigation combined with soil amendments/biochar effectively immobilizes As/Cd/Pb simultaneously. This immobilization occurs through continuous adsorption-desorption, oxidation-reduction, and precipitation mechanisms influenced by soil pH, redox reactions, and Fe-oxides. Biochar from sources like wine lees, sewage sludge, spent coffee, and Fe-nanoparticles can immobilize As/Cd/Pb/Cr/Co/Cu/Zn together via precipitation. In addition, biochar from rice, wheat, corn straw, rice husk, sawdust, and wood chips, modified with chemicals or nanoparticles, simultaneously immobilizes As and Cd, containing higher Fe3O4, Fe-oxide, and OH groups. Ligand exchange immobilizes As, while ion exchange immobilizes Cd. Furthermore, combining biochar especially with iron, hydroxyapatite, magnetite, goethite, silicon, graphene, alginate, compost, and microbes-can achieve simultaneous immobilization. Other effective amendments are selenium fertilizer, Ge-nanocomposites, Fe-Si materials, ash, hormone, and sterilization. Notably, combining nano-biochar with microbes and/or fertilizers with Fe-containing higher adsorption sites, metal-binding cores, and maintaining a neutral pH could stimulate simultaneous immobilization. The amendments have a positive impact on soil physio-chemical improvement and crop development. Crops enhance production of growth metabolites, hormones, and xylem tissue thickening, forming a protective barrier by root Fe-plaque containing higher Fe-oxide, restricting upward metal movement. Therefore, a holistic immobilization mechanism reduces plant oxidative damage, improves soil and crop quality, and reduces food contamination.
Collapse
Affiliation(s)
- Khadeza Yasmin
- Department of Science and Environmental Studies, The Education University of Hong Kong, Tai Po, Hong Kong Special Administrative Region, 999077, China; Department of Soil Science, Sylhet Agricultural University, Sylhet, 3100, Bangladesh.
| | - Md Shahadat Hossain
- Department of Soil Science, Sylhet Agricultural University, Sylhet, 3100, Bangladesh.
| | - Wai Chin Li
- Department of Science and Environmental Studies, The Education University of Hong Kong, Tai Po, Hong Kong Special Administrative Region, 999077, China.
| |
Collapse
|
5
|
Gu JF, Yi XT, Ouyang K, Li Q, You P, Zhou R, Zeng P, Liao Y, Zhou H. Rich-silicon rice husk ash increases iron plaque formation and decreases cadmium and arsenic accumulation in rice seedlings. CHEMOSPHERE 2024; 364:143239. [PMID: 39236928 DOI: 10.1016/j.chemosphere.2024.143239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Revised: 08/24/2024] [Accepted: 08/30/2024] [Indexed: 09/07/2024]
Abstract
Combined Cd (cadmium) and As (arsenic) pollution in cultivated land affects the safety of crops production and endangers human health. Rice (Oryza sativa L.) is a crop that uptakes Si (silicon), and Si can effectively promote rice growth and mitigate heavy metal toxicity. This study examined the effect and mechanism of Si-rich amendment (HA) prepared by aerobic combustion of rice husk on Cd and As accumulation in iron plaque and rice seedlings via hydroponic experiments. HA enhanced the vitality of rice growth because of its Si content and increased the amount of amorphous fraction iron plaques, furthermore, Cd content was decreased while the As was increased in both amorphous fraction and crystalline fraction iron plaques, resulting in the contents of Cd and As decreases by 10.0%-38.3% and 9.6%-42.8% for the shoots, and by 13.4%-45.2% and 9.9%-20.0% for the roots, respectively. In addition, X-ray diffraction and X-ray photoelectron spectroscopy illustrated significantly more Fe2O, MnO2 and MnO in the iron plaque after HA supply and the simultaneous existence of Mn-As and Mn-Si compounds. This result revealed less Cd from iron plaque and more As retention with HA supply, reducing the amount of Cd and As up taking and accumulation by rice seedlings. HA is beneficial to rice growth and reduce the absorption of heavy metals in plants. At the same time, HA is environmentally friendly, it can be used for the remediation of paddy fields contaminated by Cd and As.
Collapse
Affiliation(s)
- Jiao-Feng Gu
- College of Life and Environment Sciences, Central South University of Forestry and Technology, Changsha, 410004, China; Hunan Research Institute for Nonferrous Metals Co., Ltd., Changsha, Changsha, 410100, China; Hunan Provincial Soil Pollution Remediation and Carbon Fixation Engineering Technology Research Center, Changsha, 410004, China.
| | - Xuan-Tao Yi
- College of Life and Environment Sciences, Central South University of Forestry and Technology, Changsha, 410004, China.
| | - Kun Ouyang
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming, 650504, China; Hunan Research Institute for Nonferrous Metals Co., Ltd., Changsha, Changsha, 410100, China.
| | - Qian Li
- Hunan Research Institute for Nonferrous Metals Co., Ltd., Changsha, Changsha, 410100, China.
| | - Ping You
- Hunan Research Institute for Nonferrous Metals Co., Ltd., Changsha, Changsha, 410100, China.
| | - Rui Zhou
- Hunan Research Institute for Nonferrous Metals Co., Ltd., Changsha, Changsha, 410100, China.
| | - Peng Zeng
- College of Life and Environment Sciences, Central South University of Forestry and Technology, Changsha, 410004, China; Hunan Provincial Soil Pollution Remediation and Carbon Fixation Engineering Technology Research Center, Changsha, 410004, China.
| | - Ye Liao
- College of Life and Environment Sciences, Central South University of Forestry and Technology, Changsha, 410004, China; Hunan Provincial Soil Pollution Remediation and Carbon Fixation Engineering Technology Research Center, Changsha, 410004, China.
| | - Hang Zhou
- College of Life and Environment Sciences, Central South University of Forestry and Technology, Changsha, 410004, China; Hunan Provincial Soil Pollution Remediation and Carbon Fixation Engineering Technology Research Center, Changsha, 410004, China.
| |
Collapse
|
6
|
Wang Q, Wei S, Zhou Y, Mašek O, Khan MA, Li D, Liu Q, Liu Y, Lu W, Su X, Zhu Z, Zhao X, Bai Y, Li X, Jin F, Wang J, Huang Q. Rhizosphere effect on the relationship between dissolved organic matter and functional genes in contaminated soil. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2023; 342:118118. [PMID: 37196617 DOI: 10.1016/j.jenvman.2023.118118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 04/28/2023] [Accepted: 05/05/2023] [Indexed: 05/19/2023]
Abstract
Arsenic contamination in a mining area is a potential threat to the local population. In the context of one-health, biological pollution in contaminated soil should be known and understandable. This study was conducted to clarify the effects of amendments on arsenic species and potential threat factors (e.g., arsenic-related genes (AMGs), antibiotic resistance genes (ARGs) and heavy-metal resistance genes (MRGs)). Ten groups (control (CK), T1, T2, T3, T4, T5, T6, T7, T8, and T9) were set up by adding different ratio of organic fertilizer, biochar, hydroxyapatite and plant ash. The maize crop was grown in each treatment. Compared with CK, the bioavailability of arsenic was reduced by 16.2%-71.8% in the rhizosphere soil treatments, and 22.4%-69.2% in the bulk soil treatments, except for T8. The component 2 (C2), component 3 (C3) and component 5 (C5) of dissolved organic matter (DOM) increased by 22.6%-72.6%, 16.8%-38.1%, 18.4%-37.1%, respectively, relative to CK in rhizosphere soil. A total of 17 AMGs, 713 AGRs and 492 MRGs were detected in remediated soil. The humidification of DOM might directly correlate with MRGs in both soils, while it was influenced directly on ARGs in bulk soil. This may be caused by the rhizosphere effect, which affects the interaction between microbial functional genes and DOM. These findings provide a theoretical basis for regulating soil ecosystem function from the perspective of arsenic contaminated soil.
Collapse
Affiliation(s)
- Qingqing Wang
- Key Laboratory of Agro-Forestry Environmental Processes and Ecological Regulation of Hainan Province/Center for Eco-Environmental Restoration Engineering of Hainan Province/School of Ecology & Environment/State Key Laboratory of Marine Resource Utilization in South China Sea/Key Laboratory for Environmental Toxicology of Haikou, Hainan University, Haikou, Hainan, 570228, China
| | - Shiyang Wei
- Key Laboratory of Agro-Forestry Environmental Processes and Ecological Regulation of Hainan Province/Center for Eco-Environmental Restoration Engineering of Hainan Province/School of Ecology & Environment/State Key Laboratory of Marine Resource Utilization in South China Sea/Key Laboratory for Environmental Toxicology of Haikou, Hainan University, Haikou, Hainan, 570228, China
| | - Yang Zhou
- Key Laboratory of Agro-Forestry Environmental Processes and Ecological Regulation of Hainan Province/Center for Eco-Environmental Restoration Engineering of Hainan Province/School of Ecology & Environment/State Key Laboratory of Marine Resource Utilization in South China Sea/Key Laboratory for Environmental Toxicology of Haikou, Hainan University, Haikou, Hainan, 570228, China
| | - Ondřej Mašek
- UK Biochar Research Centre, School of Geosciences, University of Edinburgh, Edinburgh, UK
| | - Muhammad Amjad Khan
- Key Laboratory of Agro-Forestry Environmental Processes and Ecological Regulation of Hainan Province/Center for Eco-Environmental Restoration Engineering of Hainan Province/School of Ecology & Environment/State Key Laboratory of Marine Resource Utilization in South China Sea/Key Laboratory for Environmental Toxicology of Haikou, Hainan University, Haikou, Hainan, 570228, China
| | - Dong Li
- Key Laboratory of Agro-Forestry Environmental Processes and Ecological Regulation of Hainan Province/Center for Eco-Environmental Restoration Engineering of Hainan Province/School of Ecology & Environment/State Key Laboratory of Marine Resource Utilization in South China Sea/Key Laboratory for Environmental Toxicology of Haikou, Hainan University, Haikou, Hainan, 570228, China
| | - Quan Liu
- Key Laboratory of Agro-Forestry Environmental Processes and Ecological Regulation of Hainan Province/Center for Eco-Environmental Restoration Engineering of Hainan Province/School of Ecology & Environment/State Key Laboratory of Marine Resource Utilization in South China Sea/Key Laboratory for Environmental Toxicology of Haikou, Hainan University, Haikou, Hainan, 570228, China
| | - Yin Liu
- Key Laboratory of Agro-Forestry Environmental Processes and Ecological Regulation of Hainan Province/Center for Eco-Environmental Restoration Engineering of Hainan Province/School of Ecology & Environment/State Key Laboratory of Marine Resource Utilization in South China Sea/Key Laboratory for Environmental Toxicology of Haikou, Hainan University, Haikou, Hainan, 570228, China
| | - Wenkang Lu
- Key Laboratory of Agro-Forestry Environmental Processes and Ecological Regulation of Hainan Province/Center for Eco-Environmental Restoration Engineering of Hainan Province/School of Ecology & Environment/State Key Laboratory of Marine Resource Utilization in South China Sea/Key Laboratory for Environmental Toxicology of Haikou, Hainan University, Haikou, Hainan, 570228, China
| | - Xuesong Su
- Key Laboratory of Agro-Forestry Environmental Processes and Ecological Regulation of Hainan Province/Center for Eco-Environmental Restoration Engineering of Hainan Province/School of Ecology & Environment/State Key Laboratory of Marine Resource Utilization in South China Sea/Key Laboratory for Environmental Toxicology of Haikou, Hainan University, Haikou, Hainan, 570228, China
| | - Zhiqiang Zhu
- Key Laboratory of Agro-Forestry Environmental Processes and Ecological Regulation of Hainan Province/Center for Eco-Environmental Restoration Engineering of Hainan Province/School of Ecology & Environment/State Key Laboratory of Marine Resource Utilization in South China Sea/Key Laboratory for Environmental Toxicology of Haikou, Hainan University, Haikou, Hainan, 570228, China
| | - Xiaojun Zhao
- Key Laboratory of Agro-Forestry Environmental Processes and Ecological Regulation of Hainan Province/Center for Eco-Environmental Restoration Engineering of Hainan Province/School of Ecology & Environment/State Key Laboratory of Marine Resource Utilization in South China Sea/Key Laboratory for Environmental Toxicology of Haikou, Hainan University, Haikou, Hainan, 570228, China
| | - Yang Bai
- Key Laboratory of Agro-Forestry Environmental Processes and Ecological Regulation of Hainan Province/Center for Eco-Environmental Restoration Engineering of Hainan Province/School of Ecology & Environment/State Key Laboratory of Marine Resource Utilization in South China Sea/Key Laboratory for Environmental Toxicology of Haikou, Hainan University, Haikou, Hainan, 570228, China; China College of Management and Economics, Tianjin University, Tianjin, 300072, China
| | - Xiaohui Li
- Hainan Inspection and Detection Center for Modern Agriculture, Haikou, Hainan, 570100, China
| | - Fangming Jin
- Key Laboratory of Agro-Forestry Environmental Processes and Ecological Regulation of Hainan Province/Center for Eco-Environmental Restoration Engineering of Hainan Province/School of Ecology & Environment/State Key Laboratory of Marine Resource Utilization in South China Sea/Key Laboratory for Environmental Toxicology of Haikou, Hainan University, Haikou, Hainan, 570228, China; School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Junfeng Wang
- Key Laboratory of Agro-Forestry Environmental Processes and Ecological Regulation of Hainan Province/Center for Eco-Environmental Restoration Engineering of Hainan Province/School of Ecology & Environment/State Key Laboratory of Marine Resource Utilization in South China Sea/Key Laboratory for Environmental Toxicology of Haikou, Hainan University, Haikou, Hainan, 570228, China
| | - Qing Huang
- Key Laboratory of Agro-Forestry Environmental Processes and Ecological Regulation of Hainan Province/Center for Eco-Environmental Restoration Engineering of Hainan Province/School of Ecology & Environment/State Key Laboratory of Marine Resource Utilization in South China Sea/Key Laboratory for Environmental Toxicology of Haikou, Hainan University, Haikou, Hainan, 570228, China.
| |
Collapse
|