Dai Y, Shi X, Huang Z, Du W, Cheng J. Proposal of policies based on temporal-spatial dynamic characteristics and co-benefits of CO
2 and air pollutants from vehicles in Shanghai, China.
JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024;
351:119736. [PMID:
38064982 DOI:
10.1016/j.jenvman.2023.119736]
[Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 11/21/2023] [Accepted: 11/27/2023] [Indexed: 01/14/2024]
Abstract
In megacities, vehicle emissions face urgent challenges related to air pollution and CO2 control. To achieve the refinement of vehicle control policies for the co-control of air pollutants and CO2, this study established a vehicle emission inventory with high spatial and temporal resolution based on the hourly traffic flow in Shanghai and analyzed the spatial and temporal distribution characteristics of the real-time vehicle emissions. Meanwhile, a policy evaluation framework was constructed by combining pollutant emission predictions with quantitative co-control effect assessments. The results indicated that spatio-temporal variations in different air pollutants and CO2 could mainly be attributed to primary contributing vehicle types. The pollutants (CO2, CO and VOCs) primarily contributed by private cars exhibited a bimodal pattern in 24-h time series and their spatial distribution was concentrated in the urban city center. The spatial distribution of NOx and PM primarily contributed by heavy trucks was still obvious on non-urban center areas. Furthermore, the results of synergistic effect analysis revealed that the alternative energy replacement scenario demonstrated the most significant potential for the co-control. Based on temporal-spatial and co-benefit analysis, the precise control policy of vehicle emissions can be established through time-, region-, and model-control. This study provides references and research methods for the formulation of the vehicle refinement control policies in worldwide megacities.
Collapse