1
|
Guerrero F, Espinoza L, Vidal V, Carmona C, Krecl P, Targino AC, Ruggeri MF, Toledo M. Black carbon and particulate matter concentrations amid central Chile's extreme wildfires. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 951:175541. [PMID: 39151628 DOI: 10.1016/j.scitotenv.2024.175541] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 08/02/2024] [Accepted: 08/13/2024] [Indexed: 08/19/2024]
Abstract
The increase in the frequency and severity of global wildfires has been largely influenced by climate change and land use changes. From February 2 to 6, 2024, central Chile experienced its most devastating wildland-urban interface wildfire in history, severely impacting the Valparaíso region. This catastrophic event, which led to extensive forest destruction, the loss of thousands of homes, and over a hundred human fatalities, directly impacted the area surrounding the campus of Federico Santa María Technical University. In that period, an air quality monitoring campaign was set up on the campus to measure black carbon (BC) and particulate matter (PM) during the wildfire season. The monitoring station was located directly within the smoke plume, allowing for the collection of unprecedented air quality data. Extremely high concentrations of BC at 880 nm were reported during the wildfires, with a daily mean (±σ) of 14.83 ± 19.52 μg m-3. Peak concentrations measured at 880 nm and 375 nm reached 812.89 μg m-3 and 1561.24 μg m-3, respectively. The maximum daily mean BC concentrations at these wavelengths were 55 and 99 times higher, respectively, compared to the pre-event period. The mean Ångström absorbing coefficient during the event was 1.66, indicating biomass burning as the primary BC source, while the maximum BC/PM2.5 ratio (at 375 nm) reached 57 %. From February 2 to 5, 2024, PM concentrations exceeded the Chilean air quality standard by 82 % and 198 % for coarse and fine particles, respectively. These levels are 4.7 and 6.0 times higher than the World Health Organization's recommendations. These elevated concentrations persisted for up to three days after the fire was extinguished. This study provides unique evidence of the rapid deterioration of regional air quality during a wildfire event using in situ measurements, serving as a stark reminder of the far-reaching consequences of a warming climate.
Collapse
Affiliation(s)
- Fabián Guerrero
- Department of Mechanical Engineering, Universidad Técnica Federico Santa María, Avenida España 1680, 23400000 Valparaíso, Chile.
| | - Lorena Espinoza
- Department of Mechanical Engineering, Universidad Técnica Federico Santa María, Avenida España 1680, 23400000 Valparaíso, Chile
| | - Víctor Vidal
- Estudios Ambientales y Asesorías Limitada (E2A), Reñaca Norte 25, of. 608, 2542629 Viña del Mar, Valparaíso, Chile
| | - Camilo Carmona
- Department of Mechanical Engineering, Universidad Técnica Federico Santa María, Avenida España 1680, 23400000 Valparaíso, Chile
| | - Patricia Krecl
- Graduate Program in Environmental Engineering, Federal University of Technology, Av. Pioneiros 3131, 86036-370 Londrina, PR, Brazil
| | - Admir Créso Targino
- Graduate Program in Environmental Engineering, Federal University of Technology, Av. Pioneiros 3131, 86036-370 Londrina, PR, Brazil
| | - María F Ruggeri
- Centre for Environmental Technologies, Universidad Técnica Federico Santa María, Avenida España 1680, 23400000 Valparaíso, Chile
| | - Mario Toledo
- Department of Mechanical Engineering, Universidad Técnica Federico Santa María, Avenida España 1680, 23400000 Valparaíso, Chile
| |
Collapse
|
2
|
Santoro M, Costabile F, Gualtieri M, Rinaldi M, Paglione M, Busetto M, Di Iulio G, Di Liberto L, Gherardi M, Pelliccioni A, Monti P, Barbara B, Grollino MG. Associations between fine particulate matter, gene expression, and promoter methylation in human bronchial epithelial cells exposed within a classroom under air-liquid interface. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 358:124471. [PMID: 38950846 DOI: 10.1016/j.envpol.2024.124471] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 06/25/2024] [Accepted: 06/27/2024] [Indexed: 07/03/2024]
Abstract
Associations between indoor air pollution from fine particulate matter (PM with aerodynamic diameter dp < 2.5 μm) and human health are poorly understood. Here, we analyse the concentration-response curves for fine and ultrafine PM, the gene expression, and the methylation patterns in human bronchial epithelial cells (BEAS-2B) exposed at the air-liquid interface (ALI) within a classroom in downtown Rome. Our results document the upregulation of aryl hydrocarbon receptor (AhR) and genes associated with xenobiotic metabolism (CYP1A1 and CYP1B1) in response to single exposure of cells to fresh urban aerosols at low fine PM mass concentrations within the classroom. This is evidenced by concentrations of ultrafine particles (UFPs, dp < 0.1 μm), polycyclic aromatic hydrocarbons (PAH), and ratios of black carbon (BC) to organic aerosol (OA). Additionally, an interleukin 18 (IL-18) down-regulation was found during periods of high human occupancy. Despite the observed gene expression dysregulation, no changes were detected in the methylation levels of the promoter regions of these genes, indicating that the altered gene expression is not linked to changes in DNA methylation and suggesting the involvement of another epigenetic mechanism in the gene regulation. Gene expression changes at low exposure doses have been previously reported. Here, we add the possibility that lung epithelial cells, when singly exposed to real environmental concentrations of fine PM that translate into ultra-low doses of treatment, may undergo epigenetic alteration in the expression of genes related to xenobiotic metabolism. Our findings provide a perspective for future indoor air quality regulations. We underscore the potential role of indoor UFPs as carriers of toxic molecules with low-pressure weather conditions, when rainfall and strong winds may favour low levels of fine PM.
Collapse
Affiliation(s)
- Massimo Santoro
- Division of Health Protection Technologies, Italian National Agency for New Technologies, Energy and Sustainable Development (ENEA), 00123, Rome, Italy
| | - Francesca Costabile
- Institute of Atmospheric Sciences and Climate - Italian National Research Council (ISAC - CNR), Via Fosso del Cavaliere, 00133, Rome, Italy; NBFC - National Biodiversity Future Center, NBFC, 90133, Palermo, Italy.
| | - Maurizio Gualtieri
- Department of Earth and Environmental Sciences, University of Milano-Bicocca, Piazza della Scienza 1, 20126, Milan, Italy
| | - Matteo Rinaldi
- NBFC - National Biodiversity Future Center, NBFC, 90133, Palermo, Italy; Institute of Atmospheric Sciences and Climate - Italian National Research Council (ISAC - CNR), Via Gobetti, 40129, Bologna, Italy
| | - Marco Paglione
- NBFC - National Biodiversity Future Center, NBFC, 90133, Palermo, Italy; Institute of Atmospheric Sciences and Climate - Italian National Research Council (ISAC - CNR), Via Gobetti, 40129, Bologna, Italy
| | - Maurizio Busetto
- Institute of Atmospheric Sciences and Climate - Italian National Research Council (ISAC - CNR), Via Gobetti, 40129, Bologna, Italy
| | - Gianluca Di Iulio
- Institute of Atmospheric Sciences and Climate - Italian National Research Council (ISAC - CNR), Via Fosso del Cavaliere, 00133, Rome, Italy; Department of Public Health and Infectious Disease - University of Rome "La Sapienza", via Eudossiana 18, 00184, Rome, Italy
| | - Luca Di Liberto
- Institute of Atmospheric Sciences and Climate - Italian National Research Council (ISAC - CNR), Via Fosso del Cavaliere, 00133, Rome, Italy
| | - Monica Gherardi
- Department of Occupational and Environmental Medicine, Epidemiology and Hygiene, Italian Workers' Compensation Authority (INAIL), Monte Porzio Catone, 00078, Rome, Italy
| | - Armando Pelliccioni
- Department of Occupational and Environmental Medicine, Epidemiology and Hygiene, Italian Workers' Compensation Authority (INAIL), Monte Porzio Catone, 00078, Rome, Italy
| | - Paolo Monti
- Department of Civil, Building and Environmental Engineering - University of Rome "La Sapienza", via Eudossiana 18, 00184, Rome, Italy
| | - Benassi Barbara
- Division of Health Protection Technologies, Italian National Agency for New Technologies, Energy and Sustainable Development (ENEA), 00123, Rome, Italy
| | - Maria Giuseppa Grollino
- Division of Health Protection Technologies, Italian National Agency for New Technologies, Energy and Sustainable Development (ENEA), 00123, Rome, Italy
| |
Collapse
|
3
|
Targino AC, Moreno FL, Krecl P, Cardoso JV. Significant differences in black and brown carbon concentrations at urban and suburban sites. Heliyon 2023; 9:e18418. [PMID: 37520949 PMCID: PMC10374922 DOI: 10.1016/j.heliyon.2023.e18418] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Revised: 07/16/2023] [Accepted: 07/17/2023] [Indexed: 08/01/2023] Open
Abstract
Light-absorbing carbonaceous particles (LAC) may cause and/or exacerbate non-communicable diseases, interfere with the Earth's radiative balance, darken urban buildings and impair vistas. In this study, we explored the temporal behaviour of LAC concentrations measured at wavelengths of 370 nm (brown carbon, BrC) and 880 nm (black carbon, BC) at two sites of a mid-sized city in Brazil. We observed sharp changes in LAC concentrations at the city centre site in response to variations in traffic volume. The highest concentrations were observed when winds originated from both the city core and from the direction of the bus terminal. The suburban site exhibited a notably uniform diurnal pattern and consistently lower LAC concentrations throughout the day. Nevertheless, substantial increases during the evening led to mean BrC and BC concentrations (2.6 and 2.2 μg m-3, respectively) comparable to daytime peaks observed in the city centre (3 μg m-3 and 2.5 μg m-3). This phenomenon was attributed to the burning of residential waste and overgrown vegetation in nearby vacant lots. Moreover, the highest concentrations coincided with periods of low wind speeds, usually linked to non-buoyant plumes from point sources. BrC concentrations surpassed BC concentrations, even at the city centre site. Not only was the Ångström absorption exponent (Å370/880) larger at the suburban site compared to the city centre (95th percentiles of 1.73 and 1.38, respectively), but it also exhibited a wider span. Overall, the combined LAC and Å370/880 data indicated that i) biomass burning is a major source of LAC at the suburban site; ii) at the city centre, bare BC particles may become internally mixed with BrC from biomass or fossil fuel emissions and enhance absorption at lower wavelengths. The occurrence of LAC peaks outside the evening rush hours suggests that other sources but on-road vehicular emissions may contribute to the deterioration of the air quality in the urban core. Tackling air quality across the urban perimeter requires targeting other potential sources but traffic emissions.
Collapse
|
4
|
Xin J, Ma Y, Zhao D, Gong C, Ren X, Tang G, Xia X, Wang Z, Cao J, de Arellano JVG, Martin ST. The feedback effects of aerosols from different sources on the urban boundary layer in Beijing China. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 325:121440. [PMID: 36921656 DOI: 10.1016/j.envpol.2023.121440] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Revised: 03/03/2023] [Accepted: 03/10/2023] [Indexed: 06/18/2023]
Abstract
The interaction of aerosols and the planetary boundary layer (PBL) plays an important role in deteriorating urban air quality. Aerosols from different sources may have different effects on regulating PBL structures owing to their distinctive dominant compositions and vertical distributions. To characterize the complex feedback of aerosols on PBL over the Beijing megacity, multiple approaches, including in situ observations in the autumn and winter of 2016-2019, backward trajectory clusters, and large-eddy simulations, were adopted. The results revealed notable distinctions in aerosol properties, vertical distributions and thermal stratifications among three types of air masses from the West Siberian Plain (Type-1), Central Siberian Plateau (Type-2) and Mongolian Plateau (Type-3). Low loadings of 0.28 ± 0.26 and 0.15 ± 0.08 of aerosol optical depth (AOD) appeared in the Type-1 and Type-2, accompanied by cool and less stable stratification, with a large part (80%) of aerosols concentrated below 1500 m. For Type-3, the AOD and single scattering albedo (SSA) were as high as 0.75 ± 0.54 and 0.91 ± 0.05, demonstrating severe pollution levels of abundant scattering aerosols. Eighty percent of the aerosols were constrained within a lower height of 1150 m owing to the warmer and more stable environment. Large-eddy simulations revealed that aerosols consistently suppressed the daytime convective boundary layer regardless of their origins, with the PBL height (PBLH) decreasing from 1120 m (Type-1), 1160 m (Type-2) and 820 m (Type-3) in the ideal clean scenarios to 980 m, 1100 m and 600 m, respectively, under polluted conditions. Therefore, the promotion of absorbing aerosols below the residual layer on PBL could be greatly hindered by the suppression effects generated by both absorbing aerosols in the upper temperature inversion layer and scattering aerosols. Moreover, the results indicated the possible complexities of aerosol-PBL interactions under future emission-reduction scenarios and in other urban regions.
Collapse
Affiliation(s)
- Jinyuan Xin
- State Key Laboratory of Atmospheric Boundary Layer Physics and Atmospheric Chemistry, Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing, 100029, China; University of Chinese Academy of Sciences, Beijing, 100049, China.
| | - Yongjing Ma
- State Key Laboratory of Atmospheric Boundary Layer Physics and Atmospheric Chemistry, Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing, 100029, China
| | - Dandan Zhao
- State Key Laboratory of Atmospheric Boundary Layer Physics and Atmospheric Chemistry, Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing, 100029, China
| | - Chongshui Gong
- Institute of Arid Meteorology, China Meteorological Administration, Lanzhou, 730020, China
| | - Xinbing Ren
- State Key Laboratory of Atmospheric Boundary Layer Physics and Atmospheric Chemistry, Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing, 100029, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Guiqian Tang
- State Key Laboratory of Atmospheric Boundary Layer Physics and Atmospheric Chemistry, Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing, 100029, China
| | - Xiangao Xia
- State Key Laboratory of Atmospheric Boundary Layer Physics and Atmospheric Chemistry, Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing, 100029, China
| | - Zifa Wang
- State Key Laboratory of Atmospheric Boundary Layer Physics and Atmospheric Chemistry, Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing, 100029, China
| | - Junji Cao
- State Key Laboratory of Atmospheric Boundary Layer Physics and Atmospheric Chemistry, Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing, 100029, China
| | | | - Scot T Martin
- School of Engineering and Applied Sciences, Harvard University, Cambridge, MA, 02138, USA
| |
Collapse
|