1
|
Khan IU, Khairullah AR, Khan AY, Rehman AU, Mustofa I. Strategic approaches to improve equine breeding and stud farm outcomes. Vet World 2025; 18:311-328. [PMID: 40182817 PMCID: PMC11963589 DOI: 10.14202/vetworld.2025.311-328] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2024] [Accepted: 01/03/2025] [Indexed: 04/05/2025] Open
Abstract
This review explores advanced strategies for enhancing fertility and optimizing reproductive outcomes in equine breeding programs. Horses, being seasonal breeders, present unique reproductive challenges influenced by environmental and physiological factors such as photoperiods, hormone cycles, and aging. Key approaches discussed include hormonal therapies, artificial light manipulation, and nutritional supplementation to improve ovulation and conception rates during the breeding season. Specific hormones such as gonadotropin-releasing hormone analogs, equine follicle-stimulating hormone, and progesterone are analyzed for their roles in synchronizing estrus and increasing ovarian activity. The document also emphasizes the significance of dietary strategies, particularly the inclusion of omega-3 fatty acids, L-arginine, and essential vitamins, in improving reproductive health. In addition, the review underscores the importance of stallion management, addressing factors such as testicular health, age, and environmental stress. Practical methods to mitigate seasonal infertility and improve foaling rates through better reproductive management of mares and stallions are detailed. These insights aim to assist stud farm owners in maximizing breeding efficiency and achieving higher economic returns. The primary goal of this review is to provide a comprehensive guide to practical interventions that increase the productivity and sustainability of equine breeding operations.
Collapse
Affiliation(s)
- Imdad Ullah Khan
- Department of Clinical Sciences, Faculty of Veterinary and Animal Sciences, Gomal University, Dera Ismail Khan, Khyber Pakhtunkhwa, Pakistan
| | - Aswin Rafif Khairullah
- Research Center for Veterinary Science, National Research and Innovation Agency (BRIN), Jl. Raya Bogor Km. 46 Cibinong, Bogor 16911, West Java, Indonesia
| | - Asfand Yar Khan
- Department of Clinical Sciences, Faculty of Veterinary and Animal Sciences, Gomal University, DI Khan, KPK, Pakistan
| | - Atta Ur Rehman
- Department of Clinical Sciences, Faculty of Veterinary and Animal Sciences, Gomal University, DI Khan, KPK, Pakistan
| | - Imam Mustofa
- Division of Veterinary Reproduction, Faculty of Veterinary Medicine, Universitas Airlangga, Jl. Dr. Ir. H. Soekarno, Kampus C Mulyorejo, Surabaya 60115, East Java, Indonesia
| |
Collapse
|
2
|
Rodrigues LT, Segabinazzi L, Frasson M, Dell'Aqua C, Carmo MT, Takahira RK, Alvarenga M, Papa F. Periovulatory anticoagulant therapy enhances embryo recovery rates in superovulated mares. Theriogenology 2025; 231:182-189. [PMID: 39490086 DOI: 10.1016/j.theriogenology.2024.10.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Revised: 10/20/2024] [Accepted: 10/21/2024] [Indexed: 11/05/2024]
Abstract
Although protocols for superovulation have been described in horses, this technique has been discouraged due to the low embryo recovery rates in superovulated mares. The reason for these poor results is poorly understood, but the formation of a blood clot in the ovulation fossa following ovulations has been hypothesized. Therefore, this study aimed to assess the safety and effect of periovulatory anticoagulant therapy on embryo recovery of superovulated mares. In experiment 1, five mares were assigned to receive five anticoagulant treatments in a crossover design: intravenous injections of 150 (H1), 300 (H2), 400 (H3), 450 (H4), 600 (H5) IU/kg of unfractionated heparin (UFH, heparin sodium); and had blood samples sequentially collected for up to 48 h post-treatment to test Prothrombin (PT) and activated partial thromboplastin time (aPTT). In experiment 2, four mares were treated in a crossover design with intravenous injection of 450 IU/kg of UFH and 1 mg/kg of low molecular weight heparin (LMWH, enoxaparin) and had blood collected as previously for analysis of plasma anti-Xa activity. In experiment 3, eleven mares had four cycles randomly assigned to four groups. In the control group, mares did not receive any treatment. In contrast, in groups G1, G2, and G3, mares were superovulated with equine pituitary extract and treated 34 h after the induction of ovulation with a placebo (NaCl 0.9 %, G1), 450 IU/kg of UFH (G2), or 1 mg/kg of LMWH. Mares in all groups had ovulation induced with hCG plus histrelin acetate and were bred with fresh semen from one stallion. Embryo flushing was performed nine days post-ovulation. In experiment 1, only mares in groups H4 and H5 had increased aPTT and PT for up to 12 h, and in all groups, aPTT and PT values returned to baselines at 24 h post-treatment. In experiment 2, plasma anti-Xa activity was increased by both therapies for up to 12 h after treatment and was at baseline levels 24 h post-treatment. In experiment 3, periovulatory therapy with anticoagulants increased embryo recovery rates per cycle (G2, 250 %; G3, 260 %) compared to control-assigned cycles (60 %; P < 0.05), whereas G1-assigned cycles (160 %) had intermediate embryo recovery. In conclusion, periovulatory anticoagulant therapies may be an alternative to improve embryo recovery in superovulated mares.
Collapse
Affiliation(s)
- Lucas T Rodrigues
- São Paulo State University, School of Veterinary Medicine and Animal Science, Botucatu, São Paulo, Brazil
| | - Lorenzo Segabinazzi
- São Paulo State University, School of Veterinary Medicine and Animal Science, Botucatu, São Paulo, Brazil; Department of Clinical Sciences, Ross University School of Veterinary Medicine, PO Box 334, Basseterre, West Indies, Saint Kitts and Nevis.
| | - Mariana Frasson
- São Paulo State University, School of Veterinary Medicine and Animal Science, Botucatu, São Paulo, Brazil
| | - Camila Dell'Aqua
- São Paulo State University, School of Veterinary Medicine and Animal Science, Botucatu, São Paulo, Brazil
| | - Marcio T Carmo
- São Paulo State University, School of Veterinary Medicine and Animal Science, Botucatu, São Paulo, Brazil
| | - Regina K Takahira
- São Paulo State University, School of Veterinary Medicine and Animal Science, Botucatu, São Paulo, Brazil
| | - Marco Alvarenga
- São Paulo State University, School of Veterinary Medicine and Animal Science, Botucatu, São Paulo, Brazil
| | - Frederico Papa
- São Paulo State University, School of Veterinary Medicine and Animal Science, Botucatu, São Paulo, Brazil
| |
Collapse
|
3
|
Hallman I, Karikoski N, Kareskoski M. The effects of obesity and insulin dysregulation on mare reproduction, pregnancy, and foal health: a review. Front Vet Sci 2023; 10:1180622. [PMID: 37152686 PMCID: PMC10158983 DOI: 10.3389/fvets.2023.1180622] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Accepted: 04/05/2023] [Indexed: 05/09/2023] Open
Abstract
Obesity is a growing welfare concern in modern equine populations and predisposes horses to disturbances in energy metabolism such as insulin dysregulation. However, equine metabolic syndrome has only been recognized in recent decades. Functioning energy metabolism is pivotal to normal body homeostasis and affects essentially all organ systems, including reproduction. Previous literature suggests that obesity has an effect not only on the reproductive processes in mares but also on offspring health, predisposing the offspring to later-onset orthopedic and metabolic problems. This review focuses on the effects of obesity, insulin dysregulation and hyperinsulinemia on the reproductive functions of mares and the implications on foal health before and after birth. The points of interest are the cyclicity and ovarian function, uterine environment, gestation, the postpartum period, and the newborn foal. The aim is to review the current state of knowledge, and identify outstanding questions that could stimulate future research. This topic is important not only from the equine industry and production perspective but is also relevant for the welfare of future populations and individuals.
Collapse
Affiliation(s)
- Isa Hallman
- Department of Production Animal Medicine, Faculty of Veterinary Medicine, University of Helsinki, Helsinki, Finland
| | - Ninja Karikoski
- Department of Equine and Small Animal Medicine, Faculty of Veterinary Medicine, University of Helsinki, Helsinki, Finland
| | - Maria Kareskoski
- Department of Production Animal Medicine, Faculty of Veterinary Medicine, University of Helsinki, Helsinki, Finland
| |
Collapse
|
4
|
Chavatte-Palmer P, Derisoud E, Robles M. Pregnancy and placental development in horses: an update. Domest Anim Endocrinol 2022; 79:106692. [PMID: 34823139 DOI: 10.1016/j.domaniend.2021.106692] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Revised: 10/15/2021] [Accepted: 10/19/2021] [Indexed: 11/03/2022]
Abstract
Horses have been domesticated by man and historical information mostly associates horses with men. Nowadays, however, horse riding is essentially by women. Women are also very much involved in equine sciences, with a large contribution to the understanding of fetoplacental development. While highlighting the work of female scientists, this review describes the recent advances in equine fetoplacental studies, focusing on data obtained by new generation sequencing and progress on the understanding of the role of placental progesterone metabolites throughout gestation. A second emphasis is made on fetal programming, a currently very active field, where the importance of maternal nutrition, mare management or the use of embryo technologies has been shown to induce long term effects in the offspring that might affect progeny's performance. Finally, new perspectives for the study of equine pregnancy are drawn, that will rely on new methodologies applied to molecular explorations and imaging.
Collapse
Affiliation(s)
- P Chavatte-Palmer
- Université Paris-Saclay, UVSQ, INRAE, BREED, Jouy-en-Josas 78350, France; Ecole Nationale Vétérinaire d'Alfort, BREED, Maisons-Alfort 94700, France.
| | - E Derisoud
- Université Paris-Saclay, UVSQ, INRAE, BREED, Jouy-en-Josas 78350, France; Ecole Nationale Vétérinaire d'Alfort, BREED, Maisons-Alfort 94700, France
| | - M Robles
- Université Paris-Saclay, UVSQ, INRAE, BREED, Jouy-en-Josas 78350, France; Ecole Nationale Vétérinaire d'Alfort, BREED, Maisons-Alfort 94700, France; INRS Centre Armand-Frappier Santé Biotechnologie, Laval, Québec H7V1B7, Canada
| |
Collapse
|
5
|
Wang HQ, Wang WH, Chen CZ, Guo HX, Jiang H, Yuan B, Zhang JB. Regulation of FSH Synthesis by Differentially Expressed miR-488 in Anterior Adenohypophyseal Cells. Animals (Basel) 2021; 11:ani11113262. [PMID: 34827994 PMCID: PMC8614264 DOI: 10.3390/ani11113262] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Revised: 10/27/2021] [Accepted: 11/12/2021] [Indexed: 12/15/2022] Open
Abstract
Simple Summary GnRH and FSH play an important regulatory role in the reproductive activities of mammals. At present, many artificially synthesized GnRH analogues have been used in the regulation of cattle reproduction and the clinical treatment of various reproductive diseases. This study explored the potential mechanism of miR-488 in GnRH regulation of FSH synthesis and secretion and provides a theoretical basis for the application of GnRH analogue in cattle artificial breeding. We hope to provide a research foundation for improving the processing procedures of cattle estrus control and the domestic application of hormone products. Abstract Gonadotropin-releasing hormone (GnRH), which is synthesized and released by the hypothalamus, promotes the synthesis and secretion of follicle-stimulating hormone (FSH), thereby regulating the growth and reproduction of animals. GnRH analogues have been widely used in livestock production. MiRNAs, which are endogenous non-coding RNAs, have been found to play important roles in hormone regulation and other physiological processes in recent years. However, the roles of miRNAs in GnRH-mediated regulation of FSH secretion have rarely been studied. Herein, we treated bovine anterior adenohypophyseal cells with an exogenous GnRH analogue and found that miR-488 was differentially expressed. Through a combination of TargetScan prediction and dual luciferase reporter analysis, miR-488 was confirmed to be able to target the FSHB gene. Based on this finding, we verified the expression of Fshβ and Lhβ mRNA in the rat adenohypophysis before and after exogenous GnRH treatment in vivo and in vitro. Experiments on rat anterior adenohypophyseal cells showed that overexpression of miR-488 significantly inhibited Fshβ expression and FSH synthesis, while knockdown of miR-488 had the opposite effects. Our results demonstrate that GnRH relies on miR-488 to regulate FSH synthesis, providing additional useful evidence for the significance of miRNAs in the regulation of animal reproduction.
Collapse
Affiliation(s)
| | | | | | | | | | - Bao Yuan
- Correspondence: (B.Y.); (J.-B.Z.); Tel.: +86-431-8783-6536 (B.Y.); +86-431-8783-6551 (J.-B.Z.)
| | - Jia-Bao Zhang
- Correspondence: (B.Y.); (J.-B.Z.); Tel.: +86-431-8783-6536 (B.Y.); +86-431-8783-6551 (J.-B.Z.)
| |
Collapse
|
6
|
Benammar A, Derisoud E, Vialard F, Palmer E, Ayoubi JM, Poulain M, Chavatte-Palmer P. The Mare: A Pertinent Model for Human Assisted Reproductive Technologies? Animals (Basel) 2021; 11:2304. [PMID: 34438761 PMCID: PMC8388489 DOI: 10.3390/ani11082304] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2021] [Revised: 07/28/2021] [Accepted: 08/01/2021] [Indexed: 12/12/2022] Open
Abstract
Although there are large differences between horses and humans for reproductive anatomy, follicular dynamics, mono-ovulation, and embryo development kinetics until the blastocyst stage are similar. In contrast to humans, however, horses are seasonal animals and do not have a menstrual cycle. Moreover, horse implantation takes place 30 days later than in humans. In terms of artificial reproduction techniques (ART), oocytes are generally matured in vitro in horses because ovarian stimulation remains inefficient. This allows the collection of oocytes without hormonal treatments. In humans, in vivo matured oocytes are collected after ovarian stimulation. Subsequently, only intra-cytoplasmic sperm injection (ICSI) is performed in horses to produce embryos, whereas both in vitro fertilization and ICSI are applied in humans. Embryos are transferred only as blastocysts in horses. In contrast, four cells to blastocyst stage embryos are transferred in humans. Embryo and oocyte cryopreservation has been mastered in humans, but not completely in horses. Finally, both species share infertility concerns due to ageing and obesity. Thus, reciprocal knowledge could be gained through the comparative study of ART and infertility treatments both in woman and mare, even though the horse could not be used as a single model for human ART.
Collapse
Affiliation(s)
- Achraf Benammar
- Université Paris-Saclay, UVSQ, INRAE, BREED, 78350 Jouy-en-Josas, France; (A.B.); (E.D.); (F.V.); (J.M.A.); (M.P.)
- Ecole Nationale Vétérinaire d’Alfort, BREED, 94700 Maisons-Alfort, France
- Department of Gynaecology and Obstetrics, Foch Hospital, 92150 Suresnes, France
| | - Emilie Derisoud
- Université Paris-Saclay, UVSQ, INRAE, BREED, 78350 Jouy-en-Josas, France; (A.B.); (E.D.); (F.V.); (J.M.A.); (M.P.)
- Ecole Nationale Vétérinaire d’Alfort, BREED, 94700 Maisons-Alfort, France
| | - François Vialard
- Université Paris-Saclay, UVSQ, INRAE, BREED, 78350 Jouy-en-Josas, France; (A.B.); (E.D.); (F.V.); (J.M.A.); (M.P.)
- Ecole Nationale Vétérinaire d’Alfort, BREED, 94700 Maisons-Alfort, France
| | - Eric Palmer
- Académie d’Agriculture de France, 75007 Paris, France;
| | - Jean Marc Ayoubi
- Université Paris-Saclay, UVSQ, INRAE, BREED, 78350 Jouy-en-Josas, France; (A.B.); (E.D.); (F.V.); (J.M.A.); (M.P.)
- Ecole Nationale Vétérinaire d’Alfort, BREED, 94700 Maisons-Alfort, France
- Department of Gynaecology and Obstetrics, Foch Hospital, 92150 Suresnes, France
| | - Marine Poulain
- Université Paris-Saclay, UVSQ, INRAE, BREED, 78350 Jouy-en-Josas, France; (A.B.); (E.D.); (F.V.); (J.M.A.); (M.P.)
- Ecole Nationale Vétérinaire d’Alfort, BREED, 94700 Maisons-Alfort, France
- Department of Gynaecology and Obstetrics, Foch Hospital, 92150 Suresnes, France
| | - Pascale Chavatte-Palmer
- Université Paris-Saclay, UVSQ, INRAE, BREED, 78350 Jouy-en-Josas, France; (A.B.); (E.D.); (F.V.); (J.M.A.); (M.P.)
- Ecole Nationale Vétérinaire d’Alfort, BREED, 94700 Maisons-Alfort, France
| |
Collapse
|
7
|
Kaps M, Okada CTC, Gautier CM, Aurich J, Aurich C. Deslorelin Slow-Release Implants Delay Ovulation and Increase Plasma AMH Concentration and Small Antral Follicles in Haflinger Mares. Animals (Basel) 2021; 11:ani11061600. [PMID: 34071625 PMCID: PMC8229780 DOI: 10.3390/ani11061600] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Revised: 05/22/2021] [Accepted: 05/26/2021] [Indexed: 11/21/2022] Open
Abstract
Simple Summary In horses, oocyte collection followed by intra-cytoplasmatic sperm injection is increasingly used. The yield of oocytes is a limiting factor and depends on the number of follicles present on the ovary during oocyte collection. Therefore, the aim of this study was to analyze the effect of slow-release implants containing the GnRH analogue deslorelin on the number of follicles and on hormones regulating follicular development. Six mares received a deslorelin implant and six mares served as controls. The interval to the first spontaneous ovulation was prolonged in treated mares. The treatment changed the release pattern of the gonadotrophins LH and FSH. Changes in the number of follicles 10 to 15 mm in diameter were detected in deslorelin-treated mares. These changes were also reflected by increasing plasma anti-Muellerian hormone concentrations, a hormone produced by growing follicles. In conclusion, deslorelin implants induce changes in ovarian follicle subpopulations and could be a promising tool for the preparation of mares for assisted reproductive procedures. Abstract There is an increasing interest in the manipulation of ovarian follicular populations in large domestic animals because this could prove beneficial for assisted reproductive techniques such as ovum pick-up (OPU). The aim of the present study was to evaluate the effects of deslorelin slow-release implants (SRI) on the interovulatory interval, antral follicle count (AFC), number of follicles of different size ranges and plasma anti-Muellerian hormone (AMH) concentration in mares. To synchronize their estrous cycles, Haflinger mares (n = 12) were treated twice with a PGF2α analogue. One day after the second injection (day 0), mares received a 9.4 mg deslorelin SRI (group DES, n = 6) or 1.25 mg deslorelin in a short-acting formulation (CON; n = 6), respectively. Regular transrectal ultrasonography of the genital tract was performed and blood samples were collected for the analysis of progesterone, AMH and gonadotrophins. The interval from implant insertion to the first spontaneous ovulation was 23.8 ± 10.5 days in group DES compared to 17.0 ± 3.9 days in group CON (p < 0.05). For the concentrations of LH, FSH and AMH, interactions between time and treatment were detected (p < 0.05). The AFC and the mean number of follicles with 5 to 10, 10 to 15 and 15 to 20 mm in diameter changed over time (p < 0.05). A time x treatment interaction was demonstrated for follicles of 10 to 15 mm in diameter (p < 0.05). The changes in this follicular subpopulation were reflected by increased plasma AMH concentration in group DES. In conclusion, 9.4 mg deslorelin implants show minor effects with regard to estrus suppression in mares, whereas the changes in the subpopulation of small ovarian follicles could be a promising tool for preparation of mares for OPU.
Collapse
Affiliation(s)
- Martim Kaps
- Artificial Insemination and Embryo Transfer, Department for Small Animals and Horses, Vetmeduni Vienna, Veterinärplatz 1, 1210 Vienna, Austria; (M.K.); (C.T.C.O.); (C.M.G.)
| | - Carolina T. C. Okada
- Artificial Insemination and Embryo Transfer, Department for Small Animals and Horses, Vetmeduni Vienna, Veterinärplatz 1, 1210 Vienna, Austria; (M.K.); (C.T.C.O.); (C.M.G.)
| | - Camille M. Gautier
- Artificial Insemination and Embryo Transfer, Department for Small Animals and Horses, Vetmeduni Vienna, Veterinärplatz 1, 1210 Vienna, Austria; (M.K.); (C.T.C.O.); (C.M.G.)
| | - Jörg Aurich
- Obstetrics, Gynaecology and Andrology, Department for Small Animals and Horses, Vetmeduni Vienna, Veterinärplatz 1, 1210 Vienna, Austria;
| | - Christine Aurich
- Artificial Insemination and Embryo Transfer, Department for Small Animals and Horses, Vetmeduni Vienna, Veterinärplatz 1, 1210 Vienna, Austria; (M.K.); (C.T.C.O.); (C.M.G.)
- Correspondence: ; Tel.: +43-1-25077-6400
| |
Collapse
|
8
|
Villarraza CJ, Antuña S, Tardivo MB, Rodríguez MC, Mussio P, Cattaneo L, Fontana D, Díaz PU, Ortega HH, Tríbulo A, Macagno A, Bó GA, Ceaglio N, Prieto C. Development of a suitable manufacturing process for production of a bioactive recombinant equine chorionic gonadotropin (reCG) in CHO-K1 cells. Theriogenology 2021; 172:8-19. [PMID: 34082223 DOI: 10.1016/j.theriogenology.2021.05.013] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2020] [Revised: 05/12/2021] [Accepted: 05/13/2021] [Indexed: 11/28/2022]
Abstract
Equine chorionic gonadotropin (eCG) is a heterodimeric glycoprotein hormone produced by pregnant mares that has been used to improve reproductive performance in different domestic species. Several strategies to produce the hormone in a recombinant way have been reported; nevertheless, no approach has been able to produce a recombinant eCG (reCG) with significant in vivo bioactivity or in sufficient quantities for commercial purposes. For this reason, the only current product available on the market consists of partially purified preparations from serum of pregnant mares (PMSG). Herein, we describe a highly efficient process based on third-generation lentiviral vectors as delivery method for the production of reCG in suspension CHO-K1 cells, with productivities above 20 IU 106 cell-1.d-1 and 70% purification yields after one purification step. Importantly, reCG demonstrated biological activity in cattle, since around 30 μg of reCG were needed to exert the same biologic effect of 400 IU of PMSG in an ovulation synchronization protocol. The results obtained demonstrate that the developed strategy represents an attractive option for the production of reCG and constitutes an auspicious alternative for the replacement of animals as a source of PMSG.
Collapse
Affiliation(s)
- Carlos Javier Villarraza
- UNL, CONICET, FBCB (School of Biochemistry and Biological Sciences), CBL (Biotechnological Center of Litoral), Cell Culture Laboratory, Ciudad Universitaria, Ruta Nacional 168 - Km 472.4 - C.C. 242, (S3000ZAA), Santa Fe, Argentina
| | - Sebastián Antuña
- Biotecnofe S.A., PTLC, Ruta 168 Pje El Pozo, (CP3000), Santa Fe, Argentina
| | | | - María Celeste Rodríguez
- UNL, CONICET, FBCB (School of Biochemistry and Biological Sciences), CBL (Biotechnological Center of Litoral), Cell Culture Laboratory, Ciudad Universitaria, Ruta Nacional 168 - Km 472.4 - C.C. 242, (S3000ZAA), Santa Fe, Argentina
| | - Pablo Mussio
- UNL, FBCB (School of Biochemistry and Biological Sciences), CBL (Biotechnological Center of Litoral), Biotechnological Development Laboratory, Ciudad Universitaria, Ruta Nacional 168 - Km 472.4 - C.C. 242 - (S3000ZAA), Santa Fe, Argentina
| | | | - Diego Fontana
- UNL, CONICET, FBCB (School of Biochemistry and Biological Sciences), CBL (Biotechnological Center of Litoral), Cell Culture Laboratory, Ciudad Universitaria, Ruta Nacional 168 - Km 472.4 - C.C. 242, (S3000ZAA), Santa Fe, Argentina; Cellargen Biotech S.R.L., Antonia Godoy 6369 (S3000ZAA), Santa Fe, Argentina; Biotecnofe S.A., PTLC, Ruta 168 Pje El Pozo, (CP3000), Santa Fe, Argentina
| | - Pablo U Díaz
- UNL, FCV, R.P. Kreder, 2805, Esperanza, Santa Fe, Argentina; Laboratorio de Biología Celular y Molecular Aplicada, Instituto de Ciencias Veterinarias Del Litoral (ICiVet Litoral), Universidad Nacional Del Litoral (UNL) / Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Esperanza, Santa Fe, Argentina
| | - Hugo H Ortega
- UNL, FCV, R.P. Kreder, 2805, Esperanza, Santa Fe, Argentina; Laboratorio de Biología Celular y Molecular Aplicada, Instituto de Ciencias Veterinarias Del Litoral (ICiVet Litoral), Universidad Nacional Del Litoral (UNL) / Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Esperanza, Santa Fe, Argentina
| | - Andres Tríbulo
- Instituto de Reproducción Animal Córdoba (IRAC), Paraje Pozo Del Tigre, Zona Rural Gral, Paz, (X5145), Córdoba, Argentina
| | - Alejandro Macagno
- Instituto AP de Ciencias Básicas y Aplicadas, Universidad Nacional de Villa María (UNVM), Villa Del Rosario, (X5963), Córdoba, Argentina
| | - Gabriel A Bó
- Instituto AP de Ciencias Básicas y Aplicadas, Universidad Nacional de Villa María (UNVM), Villa Del Rosario, (X5963), Córdoba, Argentina; Instituto de Reproducción Animal Córdoba (IRAC), Paraje Pozo Del Tigre, Zona Rural Gral, Paz, (X5145), Córdoba, Argentina
| | - Natalia Ceaglio
- UNL, CONICET, FBCB (School of Biochemistry and Biological Sciences), CBL (Biotechnological Center of Litoral), Cell Culture Laboratory, Ciudad Universitaria, Ruta Nacional 168 - Km 472.4 - C.C. 242, (S3000ZAA), Santa Fe, Argentina
| | - Claudio Prieto
- UNL, FBCB (School of Biochemistry and Biological Sciences), CBL (Biotechnological Center of Litoral), Biotechnological Development Laboratory, Ciudad Universitaria, Ruta Nacional 168 - Km 472.4 - C.C. 242 - (S3000ZAA), Santa Fe, Argentina; Cellargen Biotech S.R.L., Antonia Godoy 6369 (S3000ZAA), Santa Fe, Argentina; Biotecnofe S.A., PTLC, Ruta 168 Pje El Pozo, (CP3000), Santa Fe, Argentina.
| |
Collapse
|
9
|
Antczak DF, Allen WRT. Placentation in Equids. ADVANCES IN ANATOMY, EMBRYOLOGY, AND CELL BIOLOGY 2021; 234:91-128. [PMID: 34694479 DOI: 10.1007/978-3-030-77360-1_6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
This chapter focuses on the early stages of placental development in horses and their relatives in the genus Equus and highlights unique features of equid reproductive biology. The equine placenta is classified as a noninvasive, epitheliochorial type. However, equids have evolved a minor component of invasive trophoblast, the chorionic girdle and endometrial cups, which links the equine placenta with the highly invasive hemochorial placentae of rodents and, particularly, with the primate placenta. Two types of fetus-to-mother signaling in equine pregnancy are mediated by the invasive equine trophoblast cells. First, endocrinological signaling mediated by equine chorionic gonadotrophin (eCG) drives maternal progesterone production to support the equine conceptus between days 40 and 100 of gestation. Only in primates and equids does the placenta produce a gonadotrophin, but the evolutionary paths taken by these two groups of mammals to produce this placental signal were very different. Second, florid expression of paternal major histocompatibility complex (MHC) class I molecules by invading chorionic girdle cells stimulates strong maternal anti-fetal antibody responses that may play a role in the development of immunological tolerance that protects the conceptus from destruction by the maternal immune system. In humans, invasive extravillous trophoblasts also express MHC class I molecules, but the loci involved, and their likely function, are different from those of the horse. Comparison of the cellular and molecular events in these disparate species provides outstanding examples of convergent evolution and co-option in mammalian pregnancy and highlights how studies of the equine placenta have produced new insights into reproductive strategies.
Collapse
Affiliation(s)
- Douglas F Antczak
- Department of Microbiology and Immunology, College of Veterinary Medicine, Baker Institute for Animal Health, Cornell University, Ithaca, NY, USA.
| | - W R Twink Allen
- Sharjah Equine Hospital, Sharjah, United Arab Emirates
- Robinson College, University of Cambridge, Cambridge, UK
- The Paul Mellon Laboratory of Equine Reproduction, 'Brunswick', Newmarket, Suffolk, UK
| |
Collapse
|
10
|
Squires EL. Perspectives on the development and incorporation of assisted reproduction in the equine industry. Reprod Fertil Dev 2020; 31:1753-1757. [PMID: 31727207 DOI: 10.1071/rd19365] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2019] [Accepted: 10/23/2019] [Indexed: 12/28/2022] Open
Abstract
Marked changes in equine breeding technologies have occurred over the past 25 years. Although there have been numerous reviews on assisted reproduction techniques for horses, few publications include the acceptance and impact of these techniques on the horse industry. In this review, several techniques are discussed, with an emphasis on how they developed in the horse industry and altered equine reproductive medicine. Embryo transfer has become a widely used technology, allowing multiple foals to be produced per year. Embryos can be collected, cooled or frozen, and shipped to a distant facility for transfer into recipient mares. Failure to obtain embryos from some mares stimulated the development of oocyte collection and transfer. Oocyte technologies became more practical when intracytoplasmic sperm injection was developed in the early 2000s. There are now facilities across the world that routinely produce embryos invitro. Cryopreservation of oocytes has lagged because of limited success, but embryo cryopreservation is commonplace. Techniques such as sex-sorted semen, superovulation and genetic diagnosis of embryos are not widely used, and they will require more development before they are established in the horse industry in a cost-efficient manner.
Collapse
Affiliation(s)
- E L Squires
- Reproductive Management, 5536 North County Road 3, Fort Collins, CO 80524, USA.
| |
Collapse
|
11
|
Palmer E, Chavatte-Palmer P. Contribution of Reproduction Management and Technologies to Genetic Progress in Horse Breeding. J Equine Vet Sci 2020; 89:103016. [PMID: 32563446 DOI: 10.1016/j.jevs.2020.103016] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2020] [Revised: 03/25/2020] [Accepted: 03/28/2020] [Indexed: 10/24/2022]
Abstract
Reproductive technologies aim at improving fertility with the ultimate result of improving genetic selection. In equidae, the respective contribution of different methods of horse management and breeding to genetic progress remain difficult to evaluate as breeding strategies affect the number of offspring per mare or stallion whereas different selection methods (based on pedigree, performance, genomics or progeny's performance) will be applicable at different ages, leading to different accuracy in the estimation of the breeding value. Here, a mathematical model was applied to evaluate theoretical genetic progress depending on breeding conditions in horses. The model showed that for breeding systems ranging from 0.6 to 2 foals/year/mare and from 10 to 150 foals/year for stallions, when selection of the best animals is strictly made by a truncation, the genetic progress is accelerated by (1) increasing the number of offspring per year, (2) the start of reproduction as soon as the age of 2 in both sexes, and (3) reducing the number of years of use for stallions from 10 to 5 years. The calculation showed that using all ways of improvement could provide an increase in genetic progress of up to +270% and +226% in mares and stallions, respectively, above the basal reference situation of 100%. In the Selle Français breed, the observed reproductive management parameters (10 years generation interval, 10 foals/stallion and 0.55 foals/mare) are close to the worst conditions of the model. In addition, the best mares are not selected for breeding. In conclusion, new reproductive technologies, genomic selection, and breeding younger animals will increase genetic gain.
Collapse
Affiliation(s)
- Eric Palmer
- Académie d'Agriculture de France, Paris, France.
| | - Pascale Chavatte-Palmer
- Université Paris-Saclay, UVSQ, INRAE, BREED, Jouy-en-Josas, France; Ecole Nationale Vétérinaire d'Alfort, BREED, Maisons-Alfort, France
| |
Collapse
|
12
|
Squires E. Current Reproductive Technologies Impacting Equine Embryo Production. J Equine Vet Sci 2020; 89:102981. [PMID: 32563442 DOI: 10.1016/j.jevs.2020.102981] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2020] [Revised: 02/25/2020] [Accepted: 02/26/2020] [Indexed: 10/24/2022]
Abstract
Numerous reproductive technologies have been developed in the past several decades, which have dramatically changed the way mares are bred. This review will focus on embryo recovery and transfer, cooled-shipped embryos, embryo freezing, oocyte freezing, oocyte collection and transfer, intracytoplasmic sperm injection (ICSI), and sexed semen. Embryo transfer procedures have been constant for many years and the costs have not changed. The major change has been the ability to store embryos at 5 C for 12-24 hours and transport them to recipient stations. Embryo freezing has become more common using the technique of vitrification of embryos >300 μm or deflating embryos >300 μm before freezing. Oocyte vitrification has resulted in poor pregnancy rates although the technique works well in women. The ability to collect oocytes from mares and fertilize them by sperm injection has revolutionized the veterinarian's approach to infertility in the mare and/or stallion. A transvaginal approach can be used to collect oocytes from preovulatory follicles and unstimulated follicles 5-25 mm in size. Although traditional in vitro fertilization does not work well in the horse, ICSI can be used to produce blastocysts which, upon nonsurgical transfer into recipients, provide a pregnancy rate similar to fresh embryos collected from donor mares. Sorting sperm by flow cytometry into X- and Y-bearing spermatozoa has been shown to provide about a 50% pregnancy rate with freshly sorted sperm but only 12% with sorted, frozen/thawed stallion sperm. It is likely that more advanced reproductive techniques will be developed in the future. Their acceptance will depend on how well they work, perceived need, cost, and, to some extent, the breed associations.
Collapse
Affiliation(s)
- Edward Squires
- Department of Veterinary Science, Reproductive Management, Fort Collins, CO.
| |
Collapse
|
13
|
Allen WRT, Wilsher S. Historical Aspects of Equine Embryo Transfer. J Equine Vet Sci 2020; 89:102987. [PMID: 32563443 DOI: 10.1016/j.jevs.2020.102987] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2019] [Revised: 03/01/2020] [Accepted: 03/02/2020] [Indexed: 11/18/2022]
Abstract
Early embryo transfer in equids was undertaken simultaneously in the early 1970s in Cambridge, England, and Kyoto, Japan. Both groups achieved limited success when flushing the uterine horn ipsilateral to the side of ovulation but the rates improved markedly when the whole uterus was flushed on realization of the continued movement of the embryo throughout the uterine lumen after day 6. Initial transfers of embryos to recipient mares were carried out surgically, but nonsurgical transfer via the cervix has been used subsequently with increasing success, culminating in pregnancy rates of 75%-90% today. Experimental use of embryo transfer in horses and donkeys demonstrated the unique ability of equids to carry to term a full range of interspecies hybrid conceptuses and extraspecies pregnancies created by embryo transfer. Furthermore, splitting of day 4-8 cell embryos and day 6 compact morulae allowed the creation of genetically identical twin foals. But despite these and other significant advances over the past 45 years, a persisting limitation is the relatively low embryo recovery rates from donor mares treated with exogenous gonadotropins in attempts to induce them to superovulate. This is due to the toughness of the ovarian tunica albuginea which forces ovulation through the ventrally situated ovulation fossa where multiple follicles compete with each other and luteinize before they can ovulate properly.
Collapse
Affiliation(s)
- W R Twink Allen
- The Paul Mellon Laboratory of Equine Reproduction, Newmarket, Suffolk, United Kingdom; Sharjah Equine Hospital Reproduction Laboratory, Sharjah, United Arab Emirates.
| | - Sandra Wilsher
- The Paul Mellon Laboratory of Equine Reproduction, Newmarket, Suffolk, United Kingdom; Sharjah Equine Hospital Reproduction Laboratory, Sharjah, United Arab Emirates
| |
Collapse
|