1
|
Aragona F, Rizzo M, Giudice E, Fazio F, Costa A, Di Bella B, De Caro S, Arfuso F, Briglia M, Piccione G, Giannetto C. Circadian Oscillation of Leukocyte Subpopulations and Inflammatory Cytokines over a 24-H Period in Horses. Vet Sci 2025; 12:386. [PMID: 40284888 PMCID: PMC12031226 DOI: 10.3390/vetsci12040386] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2025] [Revised: 04/14/2025] [Accepted: 04/17/2025] [Indexed: 04/29/2025] Open
Abstract
The objective of the present study was to investigate the influence of daily rhythms on the immune and inflammatory systems in horses, considering white blood cell count (WBCs), leukocyte subpopulations (neutrophils, basophils, eosinophils, lymphocytes, and monocytes), CD4+, and CD8+ lymphocyte populations, interleukin-1β (IL-1β), interleukin-6 (IL-6), and tumor necrosis factor-α (TNF-α). Ten Italian Saddle horses (7-12 years old, body weight 480 ± 30 kg) underwent blood sampling every 4 h over a 24-h period. The COSINOR method was used to identify rhythms and their parameters. A one-way analysis of variance (ANOVA) was applied to identify the differences in acrophase and robustness, and a multiple correlation analysis model (Pearson) was used to evaluate the relationships among the investigated parameters. WBCs, leukocyte subpopulations, CD4+, CD8+, IL-1β, IL-6, and TNFα exhibited daily rhythmicity. In particular, white WBCs, lymphocytes, IL-1β, and IL-6 reached their acrophases during the dark phase, while neuthrophils, CD4+, CD8+, and TNFα showed a diurnal acrophase. One-way ANOVA showed a statistical difference in the acrophase among the investigated parameters (p < 0.0001). The Pearson correlation matrix showed positive and negative relationships among the parameters. Circadian rhythms should be taken into consideration with the daily fluctuations in immune and inflammatory biomarkers to develop good management practices and improve welfare in horses.
Collapse
Affiliation(s)
- Francesca Aragona
- Department of Veterinary Science, University of Messina, Via Giovanni Palatucci, 98168 Messina, Italy; (F.A.); (E.G.); (F.F.); (A.C.); (F.A.); (G.P.); (C.G.)
| | - Maria Rizzo
- Department of Veterinary Science, University of Messina, Via Giovanni Palatucci, 98168 Messina, Italy; (F.A.); (E.G.); (F.F.); (A.C.); (F.A.); (G.P.); (C.G.)
| | - Elisabetta Giudice
- Department of Veterinary Science, University of Messina, Via Giovanni Palatucci, 98168 Messina, Italy; (F.A.); (E.G.); (F.F.); (A.C.); (F.A.); (G.P.); (C.G.)
| | - Francesco Fazio
- Department of Veterinary Science, University of Messina, Via Giovanni Palatucci, 98168 Messina, Italy; (F.A.); (E.G.); (F.F.); (A.C.); (F.A.); (G.P.); (C.G.)
| | - Antonino Costa
- Department of Veterinary Science, University of Messina, Via Giovanni Palatucci, 98168 Messina, Italy; (F.A.); (E.G.); (F.F.); (A.C.); (F.A.); (G.P.); (C.G.)
| | - Beatrice Di Bella
- Department of Engineering, University of Messina, C/da di Dio (S. Agata), 98166 Messina, Italy; (B.D.B.); (S.D.C.)
| | - Salvatore De Caro
- Department of Engineering, University of Messina, C/da di Dio (S. Agata), 98166 Messina, Italy; (B.D.B.); (S.D.C.)
| | - Francesca Arfuso
- Department of Veterinary Science, University of Messina, Via Giovanni Palatucci, 98168 Messina, Italy; (F.A.); (E.G.); (F.F.); (A.C.); (F.A.); (G.P.); (C.G.)
| | - Marilena Briglia
- Department of Medicine and Surgery “Kore”, University of Enna, 94100 Enna, Italy;
| | - Giuseppe Piccione
- Department of Veterinary Science, University of Messina, Via Giovanni Palatucci, 98168 Messina, Italy; (F.A.); (E.G.); (F.F.); (A.C.); (F.A.); (G.P.); (C.G.)
| | - Claudia Giannetto
- Department of Veterinary Science, University of Messina, Via Giovanni Palatucci, 98168 Messina, Italy; (F.A.); (E.G.); (F.F.); (A.C.); (F.A.); (G.P.); (C.G.)
| |
Collapse
|
2
|
Afzal A. Melatonin as a multifunctional modulator: emerging insights into its role in health, reproductive efficiency, and productive performance in livestock. Front Physiol 2024; 15:1501334. [PMID: 39703668 PMCID: PMC11655511 DOI: 10.3389/fphys.2024.1501334] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2024] [Accepted: 11/22/2024] [Indexed: 12/21/2024] Open
Abstract
Melatonin, a pleiotropic hormone plays a vital role in enhancing livestock performance not only by regulating circadian rhythms but also by exhibiting antioxidant, immunomodulatory, and metabolic regulatory effects that collectively improve resilience, fertility, and productivity. Melatonin's synthesis is predominantly influenced by light exposure, with increased production in darkness; however, factors such as diet and health status further modulate its levels. By helping animals adapt to environmental stressors, melatonin boosts immune responses, mitigates chronic illnesses, and optimizes production efficiency. Its regulatory influence extends to the hypothalamic-pituitary-gonadal (HPG) axis, enhancing hormone secretion, synchronizing estrous cycles, and improving embryo viability. This results in improved reproductive outcomes through the protection of gametes, increased sperm motility, and enhanced oocyte quality, all of which benefit the fertilization process. Additionally, melatonin positively impacts productive performance, promoting muscle growth, development, and optimizing milk yield and composition through its interaction with metabolic and endocrine systems. As ongoing research continues to uncover its broader physiological effects, melatonin supplementation emerges as a promising approach to improving livestock welfare, productivity, and sustainability in modern animal husbandry.
Collapse
Affiliation(s)
- Ali Afzal
- Animal Sciences Division, Nuclear Institute for Agriculture and Biology College (NIAB-C), Pakistan Institute of Engineering and Applied Sciences (PIEAS), Faisalabad, Pakistan
- School of Zoology, Minhaj University Lahore, Lahore, Pakistan
| |
Collapse
|
3
|
Aragona F, Fazio F, Piccione G, Giannetto C. Chronophysiology of domestic animals. Chronobiol Int 2024; 41:888-903. [PMID: 38832548 DOI: 10.1080/07420528.2024.2360723] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2024] [Accepted: 05/19/2024] [Indexed: 06/05/2024]
Abstract
This review highlights recent findings on biological rhythms and discusses their implications for the management and production of domestic animals. Biological rhythms provide temporal coordination between organs and tissues in order to anticipate environmental changes, orchestrating biochemical, physiological and behavioural processes as the right process may occur at the right time. This allows animals to adapt their internal physiological functions, such as sleep-wake cycles, body temperature, hormone secretion, food intake and regulation of physical performance to environmental stimuli that constantly change. The study and evaluation of biological rhythms of various physiological parameters allows the assessment of the welfare status of animals. Alteration of biological rhythms represents an imbalance of the state of homeostasis that can be found in different management conditions.
Collapse
Affiliation(s)
- Francesca Aragona
- Department of Veterinary Sciences, University of Messina, Messina, Italy
| | - Francesco Fazio
- Department of Veterinary Sciences, University of Messina, Messina, Italy
| | - Giuseppe Piccione
- Department of Veterinary Sciences, University of Messina, Messina, Italy
| | - Claudia Giannetto
- Department of Veterinary Sciences, University of Messina, Messina, Italy
| |
Collapse
|
4
|
Tkaczenko H, Lukash O, Kurhaluk N. Analysis of the season-dependent component in the evaluation of morphological and biochemical blood parameters in Shetland ponies of both sexes during exercise. J Vet Res 2024; 68:155-166. [PMID: 38525221 PMCID: PMC10960263 DOI: 10.2478/jvetres-2024-0017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Accepted: 03/13/2024] [Indexed: 03/26/2024] Open
Abstract
Introduction Determination of morphological and biochemical blood indices facilitates assessment of the health and welfare of horses, their nutrient demand, the effects of training already undertaken, and the horses' suitability for exercise. Identification of the season-dependent components and the effects of sex and exercise on changes in frequently referenced haematological and biochemical parameters was the main goal of the current study. Material and Methods The blood morphology of 21 healthy adult Shetland ponies (11 mares and 10 stallions) aged 6.5 ± 1.4 years from the central Pomeranian region in Poland was analysed. Blood samples were taken once per season for one year. Results No statistically significant season-dependent differences were found in the blood morphology parameters in either mares or stallions before or after exercise. Beta-coefficient results revealed the strength and type of the relationship of red blood cell distribution width (RDW) and granulocyte count (GRA) with the season, of red blood cell count (RBC), haematocrit, mean corpuscular volume and mean platelet volume with the sex, and of RDW, white blood cell count, GRA and RBC with the exercise factor. Biomarkers demonstrating the relationship between aerobic and anaerobic levels of energy metabolism in the blood did not show any sex dependency in regression analysis. Conclusion The sex-independence of energy metabolism biomarkers may indicate the universality of these parameters. Both seasonality itself and its combination with the exercise factor took part in the formation of effective adaptive reactions for maintenance of morphological blood indices in the ponies during exercise.
Collapse
Affiliation(s)
- Halina Tkaczenko
- Department of Zoology, Institute of Biology, Pomeranian University in Słupsk, 76-200Słupsk, Poland
| | - Oleksandr Lukash
- Department of Ecology, Geography and Nature Management, T. H. Shevchenko National University “Chernihiv Colehium”, 14013Chernihiv, Ukraine
| | - Natalia Kurhaluk
- Department of Animal Physiology, Institute of Biology, Pomeranian University in Słupsk, 76-200Słupsk, Poland
| |
Collapse
|
5
|
Basini G, Grasselli F. Role of Melatonin in Ovarian Function. Animals (Basel) 2024; 14:644. [PMID: 38396612 PMCID: PMC10885985 DOI: 10.3390/ani14040644] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 02/12/2024] [Accepted: 02/13/2024] [Indexed: 02/25/2024] Open
Abstract
Melatonin is a hormone mainly produced by the pineal gland in the absence of light stimuli. The light, in fact, hits the retina, which sends a signal to the suprachiasmatic nucleus, which inhibits the synthesis of the hormone by the epiphysis. Mostly by interacting with MT1/MT2 membrane receptors, melatonin performs various physiological actions, among which are its regulation of the sleep-wake cycle and its control of the immune system. One of its best known functions is its non-enzymatic antioxidant action, which is independent from binding with receptors and occurs by electron donation. The hormone is also an indicator of the photoperiod in seasonally reproducing mammals, which are divided into long-day and short-day breeders according to the time of year in which they are sexually active and fertile. It is known that melatonin acts at the hypothalamic-pituitary-gonadal axis level in many species. In particular, it inhibits the hypothalamic release of GnRH, with a consequent alteration of FSH and LH levels. The present paper mainly aims to review the ovarian effect of melatonin.
Collapse
Affiliation(s)
- Giuseppina Basini
- Dipartimento di Scienze Medico-Veterinarie, Università degli Studi di Parma, 43126 Parma, Italy;
| | | |
Collapse
|
6
|
Collery A, Browne JA, O'Brien C, Sheridan JT, Murphy BA. Optimised Stable Lighting Strengthens Circadian Clock Gene Rhythmicity in Equine Hair Follicles. Animals (Basel) 2023; 13:2335. [PMID: 37508112 PMCID: PMC10376498 DOI: 10.3390/ani13142335] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Revised: 07/13/2023] [Accepted: 07/14/2023] [Indexed: 07/30/2023] Open
Abstract
Hair follicles (HF) represent a useful tissue for monitoring the circadian clock in mammals. Irregular light exposure causes circadian disruption and represents a welfare concern for stabled horses. We aimed to evaluate the impact of two stable lighting regimes on circadian clock gene rhythmicity in HF from racehorses. Two groups of five Thoroughbred racehorses in training at a commercial racehorse yard were exposed to standard incandescent light or a customized LED lighting system. The control group received light from incandescent bulbs used according to standard yard practice. The treatment group received timed, blue-enriched white LED light by day and dim red LED light at night. On weeks 0 and 20, mane hairs were collected at 4 h intervals for 24 h. Samples were stored in RNAlater at -20 °C. RNA was isolated and samples interrogated by quantitative PCR for the core clock genes: ARNTL, CRY1, PER1, PER2, NR1D2, and the clock-controlled gene DBP. Cosinor analyses revealed 24 h rhythmicity for NR1D2 and PER2 and approached significance for CRY1 (p = 0.013, p = 0.013, and p = 0.051, respectively) in week 20 in the treatment group only. No rhythmicity was detected in week 0 or in week 20 in the HF of control horses. Results suggest that lighting practices in racehorse stables may be improved to better stimulate optimum functioning of the circadian system.
Collapse
Affiliation(s)
- Aileen Collery
- School of Agriculture and Food Science, University College Dublin, Belfield, D04 V1W8 Dublin, Co. Dublin, Ireland
| | - John A Browne
- School of Agriculture and Food Science, University College Dublin, Belfield, D04 V1W8 Dublin, Co. Dublin, Ireland
| | | | - John T Sheridan
- School of Electrical, Electronic and Mechanical Engineering, University College Dublin, Belfield, D04 V1W8 Dublin, Co. Dublin, Ireland
| | - Barbara A Murphy
- School of Agriculture and Food Science, University College Dublin, Belfield, D04 V1W8 Dublin, Co. Dublin, Ireland
| |
Collapse
|
7
|
Müller A, Glüge S, Vidondo B, Wróbel A, Ott T, Sieme H, Burger D. Increase of skin temperature prior to parturition in mares. Theriogenology 2022; 190:46-51. [DOI: 10.1016/j.theriogenology.2022.07.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Revised: 06/16/2022] [Accepted: 07/13/2022] [Indexed: 10/17/2022]
|
8
|
Kurhaluk N, Lukash O, Tkachenko H. Photoperiod-dependent changes in oxidative stress markers in the blood of Shetland pony mares and stallions involved in recreational horseback riding. Chronobiol Int 2022; 39:1419-1434. [PMID: 36043484 DOI: 10.1080/07420528.2022.2115922] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
The objective of the current study was to determine the photoperiod-induced variations and the impact of exercise on oxidative stress biomarkers [2-thiobarbituric acid reactive substances (TBARS), aldehydic (AD) and ketonic (KD) derivatives of oxidatively modified proteins (OMP), total antioxidant capacity (TAC), and activities of superoxide dismutase (SOD), catalase (CAT), and glutathione peroxidase (GPx)] and biomarkers of metabolic alterations [glucose, urea, and uric acid and the activity of lactate dehydrogenase (LDH)] in the blood of Shetland pony mares and stallions involved in recreational horseback riding. Twenty-one healthy adult Shetland ponies (11 mares and 10 stallions) aged 6.5 ± 1.4 years old from the central Pomeranian region in Poland were used in this study. Blood samples were taken once per season for one year: spring (3 April), summer (5 July), autumn (1 October) and winter (25 January). A MANOVA analysis revealed that the photoperiod factor had a leading role in alterations of these biomarkers, while the exercise and sex of the ponies exerted a lower impact. The lipid peroxidation biomarkers, for example, the plasma TBARS level, indicated the maximum adjusted coefficient of determination R2ad = 0.77. Before exercise (at rest), the plasma of the stallions and mares exhibited minimum values of TBARS levels in the spring and summer photoperiods and maximum levels in autumn and winter. A statistically significant reduction in the levels of both aldehydic and ketonic derivatives of OMP in the blood of ponies was observed during the autumn and winter periods; additionally, the level of ketonic derivatives of OMP declined after exercise in spring. TAC was statistically significant in the spring and winter photoperiods both before and after exercise. SOD activity did not have a pronounced photoperiod-induced pattern but was dependent on the sex and exercise. CAT activity varied and was statistically significant only in the plasma of the mares after exercise in the spring, summer, and winter photoperiods. The minimum GPx activity in the blood of the mares before exercise (at rest) was observed in autumn, while the maximum was noted in winter and summer. Photoperiod- and exercise-induced alterations in markers of oxidative stress and antioxidant defences may contribute to the adaptation of animals to exercise, depending on sex. The seasonal variations in the antioxidant defences demonstrated in our study, as well as substrates of energy metabolism in the blood of mares and stallions, depending on exercise capacity, could be an important aspect in the ability of endogenous adaptive mechanisms of animals to react in advance to environmental changes associated with seasons.
Collapse
Affiliation(s)
- Natalia Kurhaluk
- Department of Biology, Institute of Biology and Earth Sciences, Pomeranian University in Słupsk, Słupsk, Poland
| | - Oleksandr Lukash
- Department of Ecology and Nature Protection, T.G. Shevchenko National University "Chernihiv Collegium", Chernihiv, Ukraine
| | - Halyna Tkachenko
- Department of Biology, Institute of Biology and Earth Sciences, Pomeranian University in Słupsk, Słupsk, Poland
| |
Collapse
|
9
|
Giannetto C, Fazio F, Giudice E, Mazzullo G, Piccione G. Physiological role of circadian clock gene on the energetic metabolism in horses. J Vet Behav 2022. [DOI: 10.1016/j.jveb.2021.10.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
10
|
Giannetto C, Cannella V, Giudice E, Guercio A, Arfuso F, Piccione G. Clock genes determination in whole blood in goats housed under a long light cycle. Chronobiol Int 2021; 38:1283-1289. [PMID: 34000942 DOI: 10.1080/07420528.2021.1928158] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
An innate 24 h circadian clock drives various behavioral processes via expression of clock genes that regulate circadian rhythmicity and temporal signals. Elucidating the gene expression in goats may contribute to improving the knowledge of the regulation of circadian rhythms in this species. Five nonpregnant and nonlactating Maltese goats with no evidence of disease were kept in an indoor pen under the natural long photoperiod (05:05-20:56 h) and natural environmental temperature (23°C and 60% RH). They were fed an Alfalfa hay and concentrate mixture provided twice a day; water was available ad libitum. Blood samples were collected every 4 h over a 48 h period into PAX gene Blood RNA Tubes and stored at -80°C until processing. Clock genes (Clock; Cry1; Cry2; Per2; Per3) were determined using real-time quantitative polymerase chain reaction. During the experimental period, locomotor activity was monitored by an actigraphy-based data logger that records a digitally integrated measure of motor activity as a means to assess indices of discomfort during study and stability of the circadian rhythm. All of the tested genes showed daily rhythmicity in their expression in whole blood. Differences in their circadian parameters were observed. Mesor and amplitude were statistically different among the tested gene (Mesor: F(4.30) = 205.30; p < .0001; amplitude: F(4.30) = 104.80; p < .0001), with each gene showing its acrophase at a different time of day (F(4.30) = 81.17; p < .0001), and differences were observed between the two days of monitoring (F(1.30) = 10.25; p = .003). The application of two-way analysis of variance (ANOVA) on robustness of rhythm values did not show statistical differences among the tested genes (F(4.30) = 1.83; p = .14) and between the two days of monitoring (F(1.30) = 1.16; p = .28). Locomotor activity data recording were in accordance with the data reported in literature, indicating the absence of discomfort or alteration of circadian rhythms during the experimental period. Our results support the presence of a cyclic transcription of clock genes in whole blood of healthy goats housed under a long light natural photoperiod and natural environmental conditions.
Collapse
Affiliation(s)
- C Giannetto
- Dipartimento di Scienze Veterinarie, Università degli Studi di Messina, Polo Universitario dell'Annunziata, Messina, Italy
| | - V Cannella
- Istituto Zooprofilattico Sperimentale Della Sicilia "A. Mirri", Palermo, Italy
| | - E Giudice
- Dipartimento di Scienze Veterinarie, Università degli Studi di Messina, Polo Universitario dell'Annunziata, Messina, Italy
| | - A Guercio
- Istituto Zooprofilattico Sperimentale Della Sicilia "A. Mirri", Palermo, Italy
| | - F Arfuso
- Dipartimento di Scienze Veterinarie, Università degli Studi di Messina, Polo Universitario dell'Annunziata, Messina, Italy
| | - G Piccione
- Dipartimento di Scienze Veterinarie, Università degli Studi di Messina, Polo Universitario dell'Annunziata, Messina, Italy
| |
Collapse
|
11
|
Giannetto C, Arfuso F, Giudice E, Di Pietro S, Piccione G. Clock gene per 2 daily rhythm: Correlation with the serum level of uncoupling protein 1 (UCP1) in goat and horse. J Therm Biol 2021; 97:102891. [PMID: 33863449 DOI: 10.1016/j.jtherbio.2021.102891] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Revised: 01/30/2021] [Accepted: 02/16/2021] [Indexed: 01/06/2023]
Abstract
Recent studies evidenced that the circadian rhythm of Per2 is involved in adaptive thermogenesis by the modulating transcription of uncoupling protein 1 (UCP1). For this purpose, we investigated the linkage between the daily rhythm of Per2 and UCP1 in ruminant and non-ruminant mammalian species. Five clinically healthy, not pregnant, and not lactating Maltese female goats and five clinically healthy, not pregnant, and not lactating Italian Saddle horses were enrolled in the study. All animals were housed under natural photoperiod (sunrise 05:05, sunset 20:55) and environmental temperature and humidity. Goats were kept individually in 3.0 × 2.0 m box, horses were housed individually in 3.5 × 3.5 m box; all boxes were equipped with an opening window. On each subject, blood samples were collected every 4 h for a 48-h period. The Per2 gene expression was determined on blood samples collected in PAX gene Blood RNA Tube, whereas UCP1 concentration was assessed on serum. Per2 and UCP1 levels were statistically influenced by the species (p < 0.0001) and the time of data collection (p < 0.0001), but not by the day of monitoring. Per2 showed daily rhythmicity, statistically different in mesor and amplitude between the two species, diurnal in goats, nocturnal in horses; with the same robustness. UCP1 did not show daily rhythmicity. During the experimental period the two parameters showed a negative correlation in horses. According to the findings herein obtained, we can claim that the role of Per2 in the thermogenesis induced by the beige adipocytes throughout UCP1 activation did not reflect what found in other mammal species, but further studies are required to establish their correlation in equids.
Collapse
Affiliation(s)
- C Giannetto
- Department of Veterinary Sciences, University of Messina, polo Universitario dell'Annunziata, 98168, Messina, Italy.
| | - F Arfuso
- Department of Veterinary Sciences, University of Messina, polo Universitario dell'Annunziata, 98168, Messina, Italy
| | - E Giudice
- Department of Veterinary Sciences, University of Messina, polo Universitario dell'Annunziata, 98168, Messina, Italy
| | - S Di Pietro
- Department of Veterinary Sciences, University of Messina, polo Universitario dell'Annunziata, 98168, Messina, Italy
| | - G Piccione
- Department of Veterinary Sciences, University of Messina, polo Universitario dell'Annunziata, 98168, Messina, Italy
| |
Collapse
|
12
|
Janczarek I, Kędzierski W, Wilk I, Wnuk–Pawlak E, Rakowska A. Comparison of daily heart rate variability in old and young horses: A preliminary study. J Vet Behav 2020. [DOI: 10.1016/j.jveb.2020.05.005] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|