1
|
Szalai Z, Bednárik J, Tóth BS, Takács A, Tekula S, Kőhidai L, Karaghiosoff K, Drahos L, Keglevich G. Cytotoxic Activity of Bisphosphonic Derivatives Obtained by the Michaelis-Arbuzov or the Pudovik Reaction. Pharmaceuticals (Basel) 2025; 18:91. [PMID: 39861154 PMCID: PMC11768586 DOI: 10.3390/ph18010091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2024] [Revised: 01/08/2025] [Accepted: 01/09/2025] [Indexed: 01/27/2025] Open
Abstract
Background: Methylenebisphosphonic derivatives including hydroxy-methylenebisphosphonic species may be of potential biological activity, and a part of them is used in the treatment of bone diseases. Methods: Methylenebisphosphonates may be obtained by the Michaelis-Arbuzov reaction of suitably α-substituted methylphosphonates and trialkyl phosphites or phosphinous esters, while the hydroxy-methylene variations are prepared by the Pudovik reaction of α-oxophosphonates and different >P(O)H reagents, such as diethyl phosphite and diarylphosphine oxides. Results: After converting α-hydroxy-benzylphosphonates and -phosphine oxides to the α-halogeno- and α-sulfonyloxy derivatives, they were utilized in the Michaelis-Arbuzov reaction with trialkyl phosphites and ethyl diphenylphosphinite to afford the corresponding bisphosphonate, bis(phosphine oxide) and phosphonate-phosphine oxide derivatives. The Pudovik approach led to α-hydroxy-methylenebisphosphonic species and to their rearranged products. A part of the derivatives revealed a significant cytotoxic effect on pancreatic adenocarcinoma or multiple myeloma cells. Conclusions: The new families of compounds synthesized by our novel approaches may be of practical importance due to the significant cytotoxic activity on the cell cultures investigated. Compounds lacking hydroxy groups showed anti-myeloma activity or limited effect on pancreatic cancer (PANC-1) cells unless substituted with para-trifluoromethyl group. Hydroxy-containing bisphosphonates and their rearranged derivatives demonstrated varying effects depending on structural modifications. While myeloma (U266) cells indicated greater sensitivity overall, the most significant reductions in cell viability were observed in PANC-1 cancer cells, raising potential therapeutic applications of bisphosphonates beyond myeloma-associated bone disease, particularly for malignancies like pancreatic ductal adenocarcinoma.
Collapse
Affiliation(s)
- Zsuzsanna Szalai
- Department of Organic Chemistry and Technology, Faculty of Chemical Technology and Biotechnology, Budapest University of Technology and Economics, Műegyetem rkp. 3, 1111 Budapest, Hungary; (Z.S.); (J.B.); (B.S.T.)
| | - Janka Bednárik
- Department of Organic Chemistry and Technology, Faculty of Chemical Technology and Biotechnology, Budapest University of Technology and Economics, Műegyetem rkp. 3, 1111 Budapest, Hungary; (Z.S.); (J.B.); (B.S.T.)
| | - Boldizsár Szigfrid Tóth
- Department of Organic Chemistry and Technology, Faculty of Chemical Technology and Biotechnology, Budapest University of Technology and Economics, Műegyetem rkp. 3, 1111 Budapest, Hungary; (Z.S.); (J.B.); (B.S.T.)
| | - Angéla Takács
- Department of Genetics, Cell and Immunobiology, Semmelweis University, Nagyvárad tér 4, 1089 Budapest, Hungary; (A.T.); (L.K.)
| | - Szilárd Tekula
- Department of Genetics, Cell and Immunobiology, Semmelweis University, Nagyvárad tér 4, 1089 Budapest, Hungary; (A.T.); (L.K.)
| | - László Kőhidai
- Department of Genetics, Cell and Immunobiology, Semmelweis University, Nagyvárad tér 4, 1089 Budapest, Hungary; (A.T.); (L.K.)
| | - Konstantin Karaghiosoff
- Department Chemie, Ludwig-Maximilians-Universität München, Butenandtstr. 5-13, D-81377 München, Germany;
| | - László Drahos
- MS Proteomics Research Group, Research Centre for Natural Sciences, 1117 Budapest, Hungary;
| | - György Keglevich
- Department of Organic Chemistry and Technology, Faculty of Chemical Technology and Biotechnology, Budapest University of Technology and Economics, Műegyetem rkp. 3, 1111 Budapest, Hungary; (Z.S.); (J.B.); (B.S.T.)
| |
Collapse
|
2
|
Edwards L, Magdesian KG. Retrospective evaluation of acute kidney injury in horses treated with nonnitrogenous bisphosphonates (2013-2020): 8 cases. J Vet Emerg Crit Care (San Antonio) 2023; 33:685-695. [PMID: 37695208 DOI: 10.1111/vec.13324] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2022] [Revised: 06/19/2022] [Accepted: 06/30/2022] [Indexed: 09/12/2023]
Abstract
OBJECTIVE To describe a population of horses with acute kidney injury (AKI) following administration of bisphosphonates including clinical signs, clinicopathologic data, treatment, and outcome. DESIGN Retrospective study from August 2013 to July 2020. SETTING Veterinary university teaching hospital. ANIMALS Eight adult horses with AKI following administration of nonnitrogenous bisphosphonates. INTERVENTIONS None. MEASUREMENTS AND MAIN RESULTS Five horses received intramuscular clodronate (5/8; 62.5%) and 3 horses received intravenous tiludronate (3/8; 37.5%). Six horses (6/8; 75%) received concurrent nonsteroidal anti-inflammatory drugs. The most common initial presenting complaint was poor appetite (6/8; 75%), followed by abnormal urination (2/8; 25%). At the time of initial evaluation, the mean serum or plasma creatinine was 451.72 ± 190.06 μmol/L (5.11 ± 2.15 mg/dL) and BUN was 18.84 ± 8.85 mmol/L (52.75 ± 24.77 mg/dL). Five horses (5/6; 83.3%) had either an increased number of red blood cells (n = 4) or hemoprotein (n = 1) in the urine. All horses were treated with IV isotonic, balanced crystalloids either as a bolus, continuous rate infusion, or a combination of the 2. Seven horses (7/8; 87.5%) survived the initial episode of AKI and 1 horse (1/8; 12.5%) was euthanized. Of the 7 surviving horses, 2 horses (2/7; 28.5%) went on to develop chronic renal dysfunction. Warmblood breeds were overrepresented in the AKI group (P = 0.008; odds ratio: 11.5, 95% confidence interval: 1.8-72.1), when compared to horses that received bisphosphonates during the study period and did not develop AKI. CONCLUSIONS Bisphosphonate administration, with or without concurrent nonsteroidal anti-inflammatory drugs, can be associated with AKI in horses. Serum creatinine should be monitored prior to and following bisphosphonate treatment to minimize this risk. Further evaluation of renal function is warranted in horses that develop clinical signs of poor appetite, lethargy, or altered urination in the days following bisphosphonate treatment.
Collapse
Affiliation(s)
- Lisa Edwards
- William R. Pritchard Veterinary Medical Teaching Hospital, University of California, Davis, Davis, California, USA
| | - K Gary Magdesian
- Department of Medicine and Epidemiology, University of California, Davis, Davis, California, USA
| |
Collapse
|
3
|
Abstract
Not only macrophages, but also neutrophils, are a main target of clodronate. In this issue of JEM, Culemann et al. (2023. J. Exp. Med.https://doi.org/10.1084/jem.20220525) demonstrate that anti-inflammatory effects of clodronate liposomes are driven via stunning of polymorphonuclear neutrophils and not solely through depletion of macrophages.
Collapse
Affiliation(s)
- Elvira Mass
- Developmental Biology of the Immune System, Life & Medical Sciences Institute, University of Bonn, Bonn, Germany
| |
Collapse
|
4
|
Vergara-Hernandez FB, Nielsen BD, Colbath AC. Is the Use of Bisphosphonates Putting Horses at Risk? An Osteoclast Perspective. Animals (Basel) 2022; 12:ani12131722. [PMID: 35804621 PMCID: PMC9265010 DOI: 10.3390/ani12131722] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Revised: 06/26/2022] [Accepted: 07/01/2022] [Indexed: 12/03/2022] Open
Abstract
Simple Summary Bisphosphonates are a group of drugs that intervene in the bone resorption process, producing cellular death of osteoclasts. These drugs are used for skeletal conditions, such as osteoporosis in humans, and are available for veterinary medical use. Clodronate and tiludronate are bisphosphonates approved for the treatment of navicular syndrome in horses over four years old. However, these drugs are sometimes used in juvenile animals under exercise, where osteoclast activity is higher. Bisphosphonate use in juvenile and/or exercising animals could have adverse effects, including maladaptation to exercise or accumulation of microdamage. Furthermore, bisphosphonates can be bound to the skeleton for several years, resulting in a prolonged effect with no pharmaceutical reversal available. This review presents an overview of osteoclast function and a review of bisphosphonate characteristics, mechanisms of action, and side effects in order to contextualize the potential for adverse/side effects in young or exercising animals. Abstract Osteoclasts are unique and vital bone cells involved in bone turnover. These cells are active throughout the individual’s life and play an intricate role in growth and remodeling. However, extra-label bisphosphonate use may impair osteoclast function, which could result in skeletal microdamage and impaired healing without commonly associated pain, affecting bone remodeling, fracture healing, and growth. These effects could be heightened when administered to growing and exercising animals. Bisphosphonates (BPs) are unevenly distributed in the skeleton; blood supply and bone turnover rate determine BPs uptake in bone. Currently, there is a critical gap in scientific knowledge surrounding the biological impacts of BP use in exercising animals under two years old. This may have significant welfare ramifications for growing and exercising equids. Therefore, future research should investigate the effects of these drugs on skeletally immature horses.
Collapse
Affiliation(s)
- Fernando B. Vergara-Hernandez
- Department of Animal Science, Michigan State University, 474 S. Shaw Ln, East Lansing, MI 48824, USA; (F.B.V.-H.); (B.D.N.)
| | - Brian D. Nielsen
- Department of Animal Science, Michigan State University, 474 S. Shaw Ln, East Lansing, MI 48824, USA; (F.B.V.-H.); (B.D.N.)
| | - Aimee C. Colbath
- Department of Large Animal Clinical Sciences, College of Veterinary Medicine, Michigan State University, 736 Wilson Ave, East Lansing, MI 48864, USA
- Correspondence:
| |
Collapse
|
5
|
Abstract
Two early observations about the first generation bisphosphonate, clodronate, suggested that it would likely have clinical utility; specifically, it was a more potent anti-resorptive but a less potent inhibitor of mineralisation than its predecessor etidronate. The known mechanism of action differs from that of the later nitrogen-containing bisphosphonates, as clodronate is metabolised intracellularly to a toxic analog of adenosine triphosphate, AppCCl2p, which causes mitochondrial dysfunction, impaired cellular energy metabolism and osteoclast apoptosis. For pre-clinical studies in a variety of disease models, liposomal clodronate has become the agent of choice for macrophage depletion, for example in a recent study to enhance haematopoietic chimerism and donor-specific skin allograft tolerance in a mouse model. For clinical use, clodronate was developed in oral and injectable formulations; while poorly absorbed from the gastro-intestinal tract, its absorption at 1-3% of the administered dose is approximately three-fold higher than for nitrogen-containing bisphosphonates. Following an early setback due to an erroneous association with toxic adverse events, a number of successful clinical studies have established clodronate, predominantly in its oral formulations, as a highly successful treatment in Paget's disease, hypercalcaemia (benign and malignant), multiple myeloma, and early or metastatic breast cancer. Novel uses in other disease areas, including veterinary use, continue to be explored.
Collapse
Affiliation(s)
- Eugene McCloskey
- Centre for Metabolic Bone Diseases, University of Sheffield, Sheffield, UK; Centre for Integrated Research in Musculoskeletal Ageing (CIMA), Mellanby Centre for Bone Research, University of Sheffield, Sheffield, UK.
| | | | - Trevor Powles
- Cancer Centre London, 49 Parkside, Wimbledon, London SW19 5NB, UK
| | - John A Kanis
- Centre for Metabolic Bone Diseases, University of Sheffield, Sheffield, UK; Mary McKillop Institute for Health Research, Australian Catholic University, Melbourne, Australia
| |
Collapse
|
6
|
Suva LJ, Cooper A, Watts AE, Ebetino FH, Price J, Gaddy D. Bisphosphonates in veterinary medicine: The new horizon for use. Bone 2021; 142:115711. [PMID: 33141069 DOI: 10.1016/j.bone.2020.115711] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/17/2020] [Revised: 10/20/2020] [Accepted: 10/21/2020] [Indexed: 12/17/2022]
Abstract
Bisphosphonates (BPs) are characterized by their ability to bind strongly to bone mineral and inhibit bone resorption. However, BPs exert a wide range of pharmacological activities beyond the inhibition of bone resorption, including the inhibition of cancer cell metastases and angiogenesis and the inhibition of proliferation and apoptosis in vitro. Additionally, the inhibition of matrix metalloproteinase activity, altered cytokine and growth factor expression, as well as reductions in parameters of pain have also been reported. In humans, clinical BP use has transformed the treatment of post-menopausal osteoporosis, rare bone diseases such as osteogenesis imperfecta, as well as multiple myeloma and metastatic breast and prostate cancer, albeit not without infrequent but significant adverse events. Despite the well-characterized health benefits of BP use in humans, the evidence-base for the therapeutic efficacy of BPs in veterinary medicine is, by comparison, limited. Notwithstanding, BPs are used widely in small animal veterinary practice for the medical management of hyperparathyroidism, idiopathic hypercalcemia in cats, as well as for the palliative care of bone tumors which are common in dogs, and in particular, primary bone tumors such as osteosarcoma. Palliative BP treatment has also recently increased in veterinary oncology to alleviate tumor-associated bone pain. In equine veterinary practice, non-nitrogen-containing BPs are FDA-approved to control clinical signs associated with navicular syndrome in adult horses. However, there are growing concerns regarding the off-label use of BPs in juvenile horses. Here we discuss the current understanding of the strengths, weaknesses and current controversies surrounding BP use in veterinary medicine to highlight the future utility of these potentially beneficial drugs.
Collapse
Affiliation(s)
- Larry J Suva
- Department of Veterinary Physiology and Pharmacology, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX, USA.
| | - Alexis Cooper
- Department of Veterinary Physiology and Pharmacology, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX, USA
| | - Ashlee E Watts
- Department of Large Animal Clinical Sciences, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX, USA
| | - Frank H Ebetino
- Department of Chemistry, University of Rochester, Rochester, NY, USA; BioVinc, Pasadena, CA, USA
| | - Joanna Price
- Royal Agricultural University, Cirencester, Gloucestershire, UK
| | - Dana Gaddy
- Department of Veterinary Integrative Biosciences, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX, USA
| |
Collapse
|