1
|
Durmic Z, Duin EC, Bannink A, Belanche A, Carbone V, Carro MD, Crüsemann M, Fievez V, Garcia F, Hristov A, Joch M, Martinez-Fernandez G, Muetzel S, Ungerfeld EM, Wang M, Yáñez-Ruiz DR. Feed additives for methane mitigation: Recommendations for identification and selection of bioactive compounds to develop antimethanogenic feed additives. J Dairy Sci 2025; 108:302-321. [PMID: 39725500 DOI: 10.3168/jds.2024-25045] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Accepted: 10/15/2024] [Indexed: 12/28/2024]
Abstract
Despite the increasing interest in developing antimethanogenic additives to reduce enteric methane (CH4) emissions and the extensive research conducted over the last decades, the global livestock industry has a very limited number of antimethanogenic feed additives (AMFA) available that can deliver substantial reduction, and they have generally not reached the market yet. This work provides technical recommendations and guidelines for conducting tests intended to screen the potential to reduce, directly or indirectly, enteric CH4 of compounds before they can be further assessed in in vivo conditions. The steps involved in this work cover the discovery, isolation, and identification of compounds capable of affecting CH4 production by rumen microbes, followed by in vitro laboratory testing of potential candidates. The finding of new bioactive compounds as AMFA can be based on 2 approaches: empirical and mechanistic. The empirical approach involves obtaining and screening compounds present in databases and repositories that potentially possess the desired effect but have not yet been tested, screening natural sources of secondary compounds such as plants, fungi, and algae for their antimethanogenic effects, or examining compounds with antimethanogenic effect on microbes in other research domains outside the rumen. In contrast, the mechanistic approach is the theoretical process of discovery new bioactive compounds based on existing knowledge of a biological target or process. The in vitro methodologies reviewed include examining effects at the subcellular level, in single pure cultures of methanogens and examining in more complex mixed rumen microbial populations. Simple in vitro methodologies (subcellular assessments and batch culture) allow testing a large number of compounds, whereas more complex systems simulating the rumen microbial ecosystem can test a limited number of candidates but provide better insight about the antimethanogenic efficacy. This work collated the main advantages, limitations, and technical recommendations associated with each step and methodology use during the identification and screening of AMFA candidates.
Collapse
Affiliation(s)
- Zoey Durmic
- School of Agriculture and Environment, The University of Western Australia, Crawley, WA, 6009, Australia
| | - Evert C Duin
- Department of Chemistry and Biochemistry, Auburn University, Auburn, AL 36849
| | - André Bannink
- Wageningen Livestock Research, Wageningen University & Research, 6700 AH Wageningen, the Netherlands
| | - Alejandro Belanche
- Departamento de Producción Animal y Ciencia de los Alimentos, Universidad de Zaragoza, 50013, Zaragoza, Spain
| | | | - M Dolores Carro
- Departamento de Producción Agraria, Universidad Politécnica de Madrid, ETSIAAB, 28040 Madrid, Spain
| | - Max Crüsemann
- Institute of Pharmaceutical Biology, University of Bonn, 53115 Bonn, Germany
| | - Veerle Fievez
- Department of Animal Sciences and Aquatic Ecology, Ghent University, 9000 Gent, Belgium
| | - Florencia Garcia
- Universidad Nacional de Córdoba, Facultad de Ciencias Agropecuarias, Córdoba, 5000, Argentina.
| | - Alex Hristov
- Department of Animal Science, The Pennsylvania State University, University Park, PA 16802
| | - Miroslav Joch
- Department of Nutrition and Feeding of Farm Animals, Institute of Animal Science, 104 00 Prague, Czech Republic
| | | | - Stefan Muetzel
- AgResearch Ltd. Grasslands, Palmerston North, 4442, New Zealand
| | - Emilio M Ungerfeld
- Instituto de Investigaciones Agropecuarias, Centro Regional de Investigación Carillanca, Vilcún, La Araucanía, Chile, 4880000
| | - Min Wang
- Institute of Subtropical Agriculture, Chinese Academy of Sciences, 410125, Changsha, Hunan, China
| | | |
Collapse
|
2
|
Ranaweera KKTN, Baik M. In silico docking and molecular dynamics for the discovery of inhibitors of enteric methane production in ruminants - A review. Anim Biosci 2025; 38:1-18. [PMID: 39210806 PMCID: PMC11725728 DOI: 10.5713/ab.24.0291] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Revised: 06/14/2024] [Accepted: 07/19/2024] [Indexed: 09/04/2024] Open
Abstract
The increase in methane emissions, a major greenhouse gas, threatens human well-being and global ecosystems due to its contribution to global warming. Livestock, particularly ruminants, have been a major research topic in recent decades due to their methane production. Therefore, the objective of the current review was to comprehensively discuss the in silico techniques used to mitigate methane production from ruminants. The review covers the principles of in silico docking and molecular dynamics, which can be used to develop methanogenesis inhibitors. It also discusses specific methanogen enzymes as potential targets for inhibitor development. Furthermore, in silico-based methanogenesis inhibitor development studies have been reviewed with the authors' opinions. The further use of in silico-based research techniques, including artificial intelligence-based systems, is encouraged to help reduce methane production from livestock more efficiently and costeffectively.
Collapse
Affiliation(s)
- Kamburawala Kankanamge Tharindu Namal Ranaweera
- Department of Agricultural Biotechnology and Research Institute of Agriculture and Life Sciences, College of Agriculture and Life Sciences, Seoul National University, Seoul 08826,
Korea
- Department of Animal Science, Faculty of Animal Science and Export Agriculture, Uva Wellassa University, Badulla 90000,
Sri Lanka
| | - Myunggi Baik
- Department of Agricultural Biotechnology and Research Institute of Agriculture and Life Sciences, College of Agriculture and Life Sciences, Seoul National University, Seoul 08826,
Korea
- Institute of Green-Bio Science and Technology, Seoul National University, Pyeongchang 25354,
Korea
| |
Collapse
|
3
|
S H, Deora N, Khusro A. Molecular Docking and Pharmacokinetics Prediction of Piperine and Capsaicin as Human Pancreatic Lipase Inhibitors: An In Silico Study. Cureus 2024; 16:e67870. [PMID: 39328713 PMCID: PMC11424760 DOI: 10.7759/cureus.67870] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Accepted: 08/26/2024] [Indexed: 09/28/2024] Open
Abstract
Introduction Obesity is a complex multifaceted disease, characterized by excessive body fat accumulation. It is a major public health concern globally, affecting individuals of all ages, genders, and socioeconomic backgrounds. Lipase, a key enzyme involved in lipid metabolism, plays a crucial role in the hydrolysis of dietary fats. Pancreatic lipase performs hydrolysis of nearly 50%-70% of total dietary fats. Thus, inhibition of pancreatic lipase is recognized as one of the strategies for managing obesity. Aim To predict the effect of phytocompounds from pepper as pancreatic lipase inhibitors using computational approaches. Methodology The drug-likeness and pharmacokinetic properties of compounds were evaluated using Lipinski rule of five and absorption, distribution, metabolism, and excretion (ADME) analysis, respectively. The drug score value was computed using Molinspiration, while the lipase inhibitor potential of ligands was evaluated using prediction of activity spectra for substances. Molecular docking was carried out to evaluate the stability and ligand binding affinity. Results Computational approaches identified both piperine and capsaicin as potential candidates, exhibiting favorable affinities with binding energy values of -9.9 and -7.7 kcal/mol, respectively. Both piperine and capsaicin interacted with Ser-152 and His-263, demonstrating their binding at the substrate binding site. Conclusions Findings provide insights into the underlying anti-obesity potential of these bioactive compounds from pepper and support further experimental investigations for obesity treatment.
Collapse
Affiliation(s)
- Harismitha S
- Department of General Medicine, Saveetha Medical College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, IND
| | - Neha Deora
- Department of Research Analytics, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, IND
| | - Ameer Khusro
- Department of Research Analytics, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, IND
| |
Collapse
|
4
|
Khusro A, Sahibzada MUK, Khan SU, Rajakrishnan R, Elghandour MM, Salem AZ, Kuppusamy P, Alcala-Canto Y, Tirado-González DN. Anti-methanogenic traits of safflower oil compounds against Methyl-coenzyme M reductase receptor in equines: An in silico docking analysis. J Equine Vet Sci 2022; 113:103938. [DOI: 10.1016/j.jevs.2022.103938] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Revised: 03/18/2022] [Accepted: 03/21/2022] [Indexed: 01/27/2023]
|
5
|
Garcia EIC, Elghandour MMMY, Khusro A, Alcala-Canto Y, Tirado-González DN, Barbabosa-Pliego A, Salem AZM. Dietary supplements of vitamins E, C, and β-carotene to reduce oxidative stress in horses: An overview. J Equine Vet Sci 2022; 110:103863. [PMID: 35017039 DOI: 10.1016/j.jevs.2022.103863] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Revised: 12/28/2021] [Accepted: 01/04/2022] [Indexed: 11/28/2022]
Abstract
Oxidative stress is the excess generation of free radicals and/or a decrease in the response of the antioxidant system. It is known to cause damage to the equine health by unbalancing the stable molecules. The supplements of vitamins E, C, and β-carotene in the diet cause beneficial effect on horses' health. These supplements could transform free radicals into the stable radicals, thereby showing importance in the prevention of diseases associated with oxidative stress. Adding vitamins E, C, and β-carotene to the horses' diets in stressful conditions could decrease the production of free radicals that cause inflammation and tissue damage, the typical characteristics that have been associated with oxidative stress. This review spotlights the available evidence of the benefits of dietary supplements of vitamins E, C, and β-carotene towards the reduction of oxidative stress in horses.
Collapse
Affiliation(s)
- E I Ceja Garcia
- Facultad de Ciencias, Universidad Autónoma del Estado de México, Estado de México, México
| | - M M M Y Elghandour
- Facultad de Medicina Veterinaria y Zootecnia, Universidad Autónoma del Estado de México, Estado de México, México
| | - A Khusro
- Research Department of Plant Biology and Biotechnology, Loyola College, Chennai, Tamil Nadu, India
| | - Y Alcala-Canto
- Departamento de Parasitologia, Facultad de Medicina Veterinaria y Zootecnia. Universidad Nacional Autonoma de Mexico, Mexico
| | - D N Tirado-González
- CENID Agricultura Familiar/INIFAP. Km. 8.5 Carr. Lagos de Moreno-Jalisco, Jalisco, México. CP 47540
| | - A Barbabosa-Pliego
- Facultad de Medicina Veterinaria y Zootecnia, Universidad Autónoma del Estado de México, Estado de México, México
| | - A Z M Salem
- Facultad de Medicina Veterinaria y Zootecnia, Universidad Autónoma del Estado de México, Estado de México, México.
| |
Collapse
|
6
|
Abdelsayed EM, Medhat D, Mandour YM, Hanafi RS, Motaal AA. Niazimicin: A thiocarbamate glycoside from Moringa oleifera Lam. seeds with a novel neuroprotective activity. J Food Biochem 2021; 45:e13992. [PMID: 34747026 DOI: 10.1111/jfbc.13992] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Revised: 09/18/2021] [Accepted: 10/19/2021] [Indexed: 11/29/2022]
Abstract
Moringa oleifera (MO) known as the miracle tree is a famous nutritional source in many countries. In this study, the neuroprotective activity of MO seeds was investigated. Fractions of the 70% ethanol seed extract of MO were injected at a dose of 250 mg kg-1 day-1 to albino rats for 15 days, after-which induction of dementia was done using 100 mg/kg AlCl3 over 30 days. Results revealed that all fractions ameliorated the effects of AlCl3 where methylene chloride and ethyl acetate fractions, containing the major bioactive compound niazimicin (NZ), showed the best activities. Biological investigations proved NZ to be a highly potent neuroprotective drug lead as a first report, by causing a decrease in the levels of malondialdehyde, cholinesterase, nitric oxide (NO) and amyloid β by 47%, 34%, 53% and 59%, respectively, and increasing glutathione levels by 54%. Molecular docking studies suggested NZ neuroprotective effects to be mediated by inhibition of caspase-3 and inducible nitric oxide synthase enzymes. PRACTICAL APPLICATIONS: The current findings present the neuroprotective effect of Moringa oleifera seeds consumed as a food supplement and in daily diet. In addition, niazimicin is a promising lead for the development of novel agents against Alzheimer's disease as seen by the reported results.
Collapse
Affiliation(s)
- Eman M Abdelsayed
- School of Life and Medical Sciences, University of Hertfordshire Hosted by Global Academic Foundation, Cairo, Egypt.,Department of Pharmaceutical Chemistry, Faculty of Pharmacy and Biotechnology, German University in Cairo, Cairo, Egypt
| | - Dalia Medhat
- Department of Medical Biochemistry, National Research Centre, Giza, Egypt
| | - Yasmine M Mandour
- School of Life and Medical Sciences, University of Hertfordshire Hosted by Global Academic Foundation, Cairo, Egypt.,Department of Pharmaceutical Chemistry, Faculty of Pharmacy and Biotechnology, German University in Cairo, Cairo, Egypt
| | - Rasha S Hanafi
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy and Biotechnology, German University in Cairo, Cairo, Egypt
| | - Amira Abdel Motaal
- Department of Pharmacognosy, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| |
Collapse
|
7
|
Jiang D, Li Y, Wu W, Zhang H, Xu R, Xu H, Zhan R, Sun L. Identification and engineering on the nonconserved residues of metallo-β-lactamase-type thioesterase to improve the enzymatic activity. Biotechnol Bioeng 2021; 118:4623-4634. [PMID: 34427915 DOI: 10.1002/bit.27921] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Revised: 08/14/2021] [Accepted: 08/14/2021] [Indexed: 11/12/2022]
Abstract
The standalone metallo-β-lactamase-type thioesterase (MβL-TE), belongs to the group V nonreducing polyketide synthase agene cluster, catalyzes the rate-limiting step of product releasing. Our work first investigated on the orthologous MβL-TEs from different origins to determine which nonconserved amino acid residues are important to the hydrolysis efficiency. A series of chimeric MβL-TEs were constructed by fragment swapping and site-directed mutagenesis, in vivo enzymatic assay showed that two nonconserved residues A19 and E75 (numbering in HyTE) were critical to the catalytic performance. Protein structure modeling suggested that these two residues are located in different areas of HyTE. A19 is on the entrance to the active sites, whereas E75 resides in the linker between the two β strands which hold the metal-binding sites. Combining with computational simulations and comparative enzymatic assay, different screening criteria were set up for selecting the variants on the two noncatalytic and nonconserved key residues to improve the catalytic activity. The rational design on A19 and E75 gave five candidates in total, two (A19F and E75Q) of which were thus found significantly improved the enzymatic performance of HyTE. The double-point mutant was constructed to further improve the activity, which was increased by 28.4-fold on product accumulation comparing to the wild-type HyTE. This study provides a novel approach for engineering on nonconserved residues to optimize enzymatic performance.
Collapse
Affiliation(s)
- Dayong Jiang
- Research Center of Chinese Herbal Resource Science and Engineering, Guangzhou University of Chinese Medicine, Guangzhou, China.,Key Laboratory of Chinese Medicinal Resource from Lingnan (Guangzhou University of Chinese Medicine), Ministry of Education, Guangzhou, China.,Joint Laboratory of National Engineering Research Center for the Pharmaceutics of Traditional Chinese Medicines, Guangzhou, China
| | - Ya Li
- Research Center of Chinese Herbal Resource Science and Engineering, Guangzhou University of Chinese Medicine, Guangzhou, China.,Key Laboratory of Chinese Medicinal Resource from Lingnan (Guangzhou University of Chinese Medicine), Ministry of Education, Guangzhou, China.,Joint Laboratory of National Engineering Research Center for the Pharmaceutics of Traditional Chinese Medicines, Guangzhou, China
| | - Wanqi Wu
- Research Center of Chinese Herbal Resource Science and Engineering, Guangzhou University of Chinese Medicine, Guangzhou, China.,Key Laboratory of Chinese Medicinal Resource from Lingnan (Guangzhou University of Chinese Medicine), Ministry of Education, Guangzhou, China.,Joint Laboratory of National Engineering Research Center for the Pharmaceutics of Traditional Chinese Medicines, Guangzhou, China
| | - Hong Zhang
- Research Center of Chinese Herbal Resource Science and Engineering, Guangzhou University of Chinese Medicine, Guangzhou, China.,Key Laboratory of Chinese Medicinal Resource from Lingnan (Guangzhou University of Chinese Medicine), Ministry of Education, Guangzhou, China.,Joint Laboratory of National Engineering Research Center for the Pharmaceutics of Traditional Chinese Medicines, Guangzhou, China
| | - Ruoxuan Xu
- Research Center of Chinese Herbal Resource Science and Engineering, Guangzhou University of Chinese Medicine, Guangzhou, China.,Key Laboratory of Chinese Medicinal Resource from Lingnan (Guangzhou University of Chinese Medicine), Ministry of Education, Guangzhou, China.,Joint Laboratory of National Engineering Research Center for the Pharmaceutics of Traditional Chinese Medicines, Guangzhou, China
| | - Hui Xu
- Research Center of Chinese Herbal Resource Science and Engineering, Guangzhou University of Chinese Medicine, Guangzhou, China.,Key Laboratory of Chinese Medicinal Resource from Lingnan (Guangzhou University of Chinese Medicine), Ministry of Education, Guangzhou, China.,Joint Laboratory of National Engineering Research Center for the Pharmaceutics of Traditional Chinese Medicines, Guangzhou, China
| | - Ruoting Zhan
- Research Center of Chinese Herbal Resource Science and Engineering, Guangzhou University of Chinese Medicine, Guangzhou, China.,Key Laboratory of Chinese Medicinal Resource from Lingnan (Guangzhou University of Chinese Medicine), Ministry of Education, Guangzhou, China.,Joint Laboratory of National Engineering Research Center for the Pharmaceutics of Traditional Chinese Medicines, Guangzhou, China
| | - Lei Sun
- Research Center of Chinese Herbal Resource Science and Engineering, Guangzhou University of Chinese Medicine, Guangzhou, China.,Key Laboratory of Chinese Medicinal Resource from Lingnan (Guangzhou University of Chinese Medicine), Ministry of Education, Guangzhou, China.,Joint Laboratory of National Engineering Research Center for the Pharmaceutics of Traditional Chinese Medicines, Guangzhou, China
| |
Collapse
|
8
|
Pedraza-Hernández J, Elghandour MMMY, Khusro A, Salem MZM, Camacho-Diaz LM, Barbabosa-Pliego A, Salem AZM. Assessment on bioactive role of Moringa oleifera leaves as anthelmintic agent and improved growth performance in goats. Trop Anim Health Prod 2021; 53:318. [PMID: 33983523 DOI: 10.1007/s11250-021-02745-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2020] [Accepted: 04/26/2021] [Indexed: 10/21/2022]
Abstract
The aim of this study was to evaluate the bioactive effect of Moringa oleifera leaves hydroalcoholic extract as a dietary feed additive on helminths load and growth performances of goats. Initially, the availability of bioactive compounds in M. oleifera hydroalcoholic extract was analysed using gas chromatography-mass spectrometry (GC-MS), which showed the presence of heneicosane (35.69%), 1,2-benzenedicarboxylic acid (22.89%), heptacosane (18.26%), pentatriacontane (4.77%), and hexadecanoic acid ethyl ester (3%) as predominant compounds in the leaves extract. The anthelmintic effect of M. oleifera extract (0 and 60 mL of extract animal-1) was evaluated against disparate nematodes using standard methodology. M. oleifera leaves extract exhibited significant (P = 0.002) anthelmintic activities against Trichuris sp. and Ostertagia sp. with reduced counts of eggs. A completely randomized experiment of 3 treatments comprised of 10 goats in each treatment was designed for the growth performance study. Treatments used in the present experiment were as follows: treatment 1 (T1), 0 mL of extract animal-1; treatment 2 (T2), 30 mL of extract animal-1; and treatment 3 (T3), 60 mL of extract animal-1. Growth performance parameters (body weight, daily weight gain, and feed intake values) of goats fed varied concentrations of M. oleifera extract were estimated as per standard protocols. The T2 and T3 groups' goats offered significant (P < 0.05) increment in body weight. Daily weight gain of the T2 and T3 groups' goats was also increased. Group T3 exhibited maximum feed intake value of 588, 678, 652, and 678 g d-1 at 0, 30, 45, and 60 days, respectively. Feed conversion efficiency was increased for T2 and T3 groups' goats versus T1. Findings of this study concluded that M. oleifera hydroalcoholic extract can be used not only as an effective anthelmintic agent against disparate nematodes but also as a prominent feed additive to improve growth performances of goats.
Collapse
Affiliation(s)
- Juan Pedraza-Hernández
- Facultad de Medicina Veterinaria y Zootecnia, Universidad Autónoma del Estado de México, Toluca, México
| | - Mona M M Y Elghandour
- Facultad de Medicina Veterinaria y Zootecnia, Universidad Autónoma del Estado de México, Toluca, México
| | - Ameer Khusro
- Research Department of Plant Biology and Biotechnology, Loyola College, Nungambakkam, Chennai, 600034, India
| | - Mohamed Z M Salem
- Forestry and Wood Technology Department, Faculty of Agriculture (El-Shatby), Alexandria University, Alexandria, 21545, Egypt
| | - Luis M Camacho-Diaz
- Facultad de Medicina Veterinaria y Zootecnia, Universidad Autónoma de Gurrero, Chilpancingo, México
| | - Alberto Barbabosa-Pliego
- Facultad de Medicina Veterinaria y Zootecnia, Universidad Autónoma del Estado de México, Toluca, México
| | - Abdelfattah Z M Salem
- Facultad de Medicina Veterinaria y Zootecnia, Universidad Autónoma del Estado de México, Toluca, México.
| |
Collapse
|
9
|
Khusro A, Aarti C, Pliego AB, Cipriano-Salazar M. Hendra Virus Infection in Horses: A Review on Emerging Mystery Paramyxovirus. J Equine Vet Sci 2020; 91:103149. [PMID: 32684248 DOI: 10.1016/j.jevs.2020.103149] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2020] [Revised: 05/20/2020] [Accepted: 05/25/2020] [Indexed: 12/21/2022]
Abstract
Hendra virus (HeV) is a zoonotic paramyxovirus which causes acute and deadly infection in horses (Equus caballus). It is a rare and unmanaged emerging viral infection in horses which is harbored by bats of the genus Pteropus (Australian flying foxes or fruit bats). The virus is pleomorphic in shape and its genome contains nonsegmented negative-stranded RNA with 18234 nucleotides in length. The virus is transmitted from flying foxes to horses, horse to horse, and horse to humans. Human-to-human transmission of HeV infection is not reported yet. The infection of HeV in horses is highly variable and shows broad range of signs and lesions including distinct respiratory and neurological disorders. Currently, there are no specific antiviral drugs available for the treatment of HeV infection in horses. Vaccination is considered as prime option to prevent HeV infection in horses. A subunit vaccine, called as "Equivac HeV vaccine" has been approved recently for preventing this viral infection in horses. In addition, a plethora of common preventive strategies could help restrict the inter- and intra-species transmission of HeV. Considering the scanty but severe fatality cases of this mystery virus as well as lack of proper attention by veterinary scientists, this review article spotlights not only on the clinical signs, transmission, epidemiology, biology, pathogenesis, and diagnosis of HeV but also the preventive managements of this uncommon infection in horses by vaccination and other precautious strategies.
Collapse
Affiliation(s)
- Ameer Khusro
- Research Department of Plant Biology and Biotechnology, Loyola College, Nungambakkam, Chennai, Tamil Nadu, India.
| | - Chirom Aarti
- Research Department of Plant Biology and Biotechnology, Loyola College, Nungambakkam, Chennai, Tamil Nadu, India
| | - Alberto Barbabosa Pliego
- Facultad de Medicina Veterinaria y Zootecnia, Universidad Autónoma del Estado de México, Toluca, Mexico.
| | - Moises Cipriano-Salazar
- Facultad de Medicina Veterinaria y Zootecnia, Universidad Autónoma de Guerrero, Cd. Altamirano, Guerrero, México
| |
Collapse
|