1
|
Van Mol B, Janssens S, Oosterlinck M, Pille F, Buys N. Genetic factors of equine osteochondrosis and fetlock osteochondral fragments: A scoping review - Part 2. Vet J 2024; 308:106258. [PMID: 39442748 DOI: 10.1016/j.tvjl.2024.106258] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Revised: 10/20/2024] [Accepted: 10/20/2024] [Indexed: 10/25/2024]
Abstract
Equine osteochondrosis and osteochondral fragments in the fetlock joint are linked to various environmental and genetic risk factors. To assess the scope of the literature linking these risk factors to the development of these osteochondral disorders, while identifying knowledge gaps and challenges to guide future research, a scoping review was performed. This article constitutes the second part of this scoping review and focuses on genetic factors, with the first part addressing environmental factors. To identify potentially relevant papers, online bibliographical databases PubMed and Web of Science were utilised, supplemented with articles listed on the OMIA website (OMIA:000750-9796). After collecting entries, removing duplicates, screening titles, abstracts, and full-text documents for eligibility, and manually searching reference lists of the remaining articles, a total of 212 studies were identified for this scoping review. First, a brief overview of the etiopathogenesis of equine osteochondrosis and osteochondral fragments in the fetlock joint is provided. Subsequently, this article delves into the genetic aspects by presenting an overview of significantly associated quantitative trait loci and potential candidate genes. Next, the challenges in both phenotypic and genomic selection against these osteochondral disorders are discussed, with a focus on the difficulties in phenotyping, the establishment of large and representative reference populations, publication bias, lesion-specific heritabilities, and studbook policies. In conclusion, while there is considerable potential to implement preventive measures that can alleviate the economic burden and enhance animal welfare, further research is necessary. This research should utilize precise and standardized phenotype definitions applied across studies with preferably larger populations.
Collapse
Affiliation(s)
- B Van Mol
- Department of Large Animal Surgery, Anaesthesia and Orthopaedics, Faculty of Veterinary Medicine, Ghent University, Salisburylaan 133, Merelbeke 9820, Belgium; Center for Animal Breeding and Genetics, Department of Biosystems, KU Leuven, Kasteelpark Arenberg 30, Leuven 3001, Belgium.
| | - S Janssens
- Center for Animal Breeding and Genetics, Department of Biosystems, KU Leuven, Kasteelpark Arenberg 30, Leuven 3001, Belgium
| | - M Oosterlinck
- Department of Large Animal Surgery, Anaesthesia and Orthopaedics, Faculty of Veterinary Medicine, Ghent University, Salisburylaan 133, Merelbeke 9820, Belgium
| | - F Pille
- Department of Large Animal Surgery, Anaesthesia and Orthopaedics, Faculty of Veterinary Medicine, Ghent University, Salisburylaan 133, Merelbeke 9820, Belgium
| | - N Buys
- Center for Animal Breeding and Genetics, Department of Biosystems, KU Leuven, Kasteelpark Arenberg 30, Leuven 3001, Belgium
| |
Collapse
|
2
|
De Coster T, Zhao Y, Tšuiko O, Demyda-Peyrás S, Van Soom A, Vermeesch JR, Smits K. Genome-wide equine preimplantation genetic testing enabled by simultaneous haplotyping and copy number detection. Sci Rep 2024; 14:2003. [PMID: 38263320 PMCID: PMC10805710 DOI: 10.1038/s41598-023-48103-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Accepted: 11/22/2023] [Indexed: 01/25/2024] Open
Abstract
In different species, embryonic aneuploidies and genome-wide errors are a major cause of developmental failure. The increasing number of equine embryos being produced worldwide provides the opportunity to characterize and rank or select embryos based on their genetic profile prior to transfer. Here, we explored the possibility of generic, genome-wide preimplantation genetic testing concurrently for aneuploidies (PGT-A) and monogenic (PGT-M) traits and diseases in the horse, meanwhile assessing the incidence and spectrum of chromosomal and genome-wide errors in in vitro-produced equine embryos. To this end, over 70,000 single nucleotide polymorphism (SNP) positions were genotyped in 14 trophectoderm biopsies and corresponding biopsied blastocysts, and in 26 individual blastomeres from six arrested cleavage-stage embryos. Subsequently, concurrent genome-wide copy number detection and haplotyping by haplarithmisis was performed and the presence of aneuploidies and genome-wide errors and the inherited parental haplotypes for four common disease-associated genes with high carrier frequency in different horse breeds (GBE1, PLOD1, B3GALNT2, MUTYH), and for one color coat-associated gene (STX17) were compared in biopsy-blastocyst combinations. The euploid (n = 12) or fully aneuploid (n = 2) state and the inherited parental haplotypes for 42/45 loci of interest of the biopsied blastocysts were predicted by the biopsy samples in all successfully analyzed biopsy-blastocyst combinations (n = 9). Two biopsies showed a loss of maternal chromosome 28 and 31, respectively, which were confirmed in the corresponding blastocysts. In one of those biopsies, additional complex aneuploidies not present in the blastocyst were found. Five out of six arrested embryos contained chromosomal and/or genome-wide errors in most of their blastomeres, demonstrating their contribution to equine embryonic arrest in vitro. The application of the described PGT strategy would allow to select equine embryos devoid of genetic errors and pathogenetic variants, and with the variants of interest, which will improve foaling rate and horse quality. We believe this approach will be a gamechanger in horse breeding.
Collapse
Affiliation(s)
- T De Coster
- Department of Internal Medicine, Reproduction and Population Medicine, Ghent University, Merelbeke, Belgium.
- Department of Human Genetics, KU Leuven, Leuven, Belgium.
| | - Y Zhao
- Department of Human Genetics, KU Leuven, Leuven, Belgium
| | - O Tšuiko
- Department of Human Genetics, KU Leuven, Leuven, Belgium
| | - S Demyda-Peyrás
- Department of Genetics, University of Córdoba, Córdoba, Spain
- Department of Animal Production, Veterinary School, National University of La Plata, La Plata, Argentina
| | - A Van Soom
- Department of Internal Medicine, Reproduction and Population Medicine, Ghent University, Merelbeke, Belgium
| | - J R Vermeesch
- Department of Human Genetics, KU Leuven, Leuven, Belgium
| | - K Smits
- Department of Internal Medicine, Reproduction and Population Medicine, Ghent University, Merelbeke, Belgium.
| |
Collapse
|
3
|
Dementieva N, Nikitkina E, Shcherbakov Y, Nikolaeva O, Mitrofanova O, Ryabova A, Atroshchenko M, Makhmutova O, Zaitsev A. The Genetic Diversity of Stallions of Different Breeds in Russia. Genes (Basel) 2023; 14:1511. [PMID: 37510415 PMCID: PMC10378902 DOI: 10.3390/genes14071511] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 07/17/2023] [Accepted: 07/21/2023] [Indexed: 07/30/2023] Open
Abstract
The specifics of breeding and selection significantly affect genetic diversity and variability within a breed. We present the data obtained from the genetic analysis of 21 thoroughbred and warmblood horse breeds. The most detailed information is described from the following breeds: Arabian, Trakehner, French Trotter, Standardbred, and Soviet Heavy Horse. The analysis of 509,617 SNP variants in 87 stallions from 21 populations made it possible to estimate the genetic diversity at the genome-wide level and distinguish the studied horse breeds from each other. In this study, we searched for heterozygous and homozygous ROH regions, evaluated inbreeding using FROH analysis, and generated a population structure using Admixture 1.3 software. Our findings indicate that the Arabian breed is an ancestor of many horse breeds. The study of the full-genome architectonics of breeds is of great practical importance for preserving the genetic characteristics of breeds and managing breeding. Studies were carried out to determine homozygous regions in individual breeds and search for candidate genes in these regions. Fifty-six candidate genes for the influence of selection pressure were identified. Our research reveals genetic diversity consistent with breeding directions and the breeds' history of origin.
Collapse
Affiliation(s)
- Natalia Dementieva
- Russian Research Institute of Farm Animal Genetics and Breeding-Branch of the L.K. Ernst Federal Research Center for Animal Husbandry, 55A, Moskovskoye Sh., Tyarlevo, Pushkin, St. Petersburg 196625, Russia
| | - Elena Nikitkina
- Russian Research Institute of Farm Animal Genetics and Breeding-Branch of the L.K. Ernst Federal Research Center for Animal Husbandry, 55A, Moskovskoye Sh., Tyarlevo, Pushkin, St. Petersburg 196625, Russia
| | - Yuri Shcherbakov
- Russian Research Institute of Farm Animal Genetics and Breeding-Branch of the L.K. Ernst Federal Research Center for Animal Husbandry, 55A, Moskovskoye Sh., Tyarlevo, Pushkin, St. Petersburg 196625, Russia
| | - Olga Nikolaeva
- Russian Research Institute of Farm Animal Genetics and Breeding-Branch of the L.K. Ernst Federal Research Center for Animal Husbandry, 55A, Moskovskoye Sh., Tyarlevo, Pushkin, St. Petersburg 196625, Russia
| | - Olga Mitrofanova
- Russian Research Institute of Farm Animal Genetics and Breeding-Branch of the L.K. Ernst Federal Research Center for Animal Husbandry, 55A, Moskovskoye Sh., Tyarlevo, Pushkin, St. Petersburg 196625, Russia
| | - Anna Ryabova
- Russian Research Institute of Farm Animal Genetics and Breeding-Branch of the L.K. Ernst Federal Research Center for Animal Husbandry, 55A, Moskovskoye Sh., Tyarlevo, Pushkin, St. Petersburg 196625, Russia
| | - Mikhail Atroshchenko
- All-Russian Research Institute of Horse Breeding (ARRIH), Ryazan Region, Divovo, Rybnovskij District 391105, Russia
| | - Oksana Makhmutova
- All-Russian Research Institute of Horse Breeding (ARRIH), Ryazan Region, Divovo, Rybnovskij District 391105, Russia
| | - Alexander Zaitsev
- All-Russian Research Institute of Horse Breeding (ARRIH), Ryazan Region, Divovo, Rybnovskij District 391105, Russia
| |
Collapse
|
4
|
Hill EW, Stoffel MA, McGivney BA, MacHugh DE, Pemberton JM. Inbreeding depression and the probability of racing in the Thoroughbred horse. Proc Biol Sci 2022; 289:20220487. [PMID: 35765835 PMCID: PMC9240673 DOI: 10.1098/rspb.2022.0487] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Small effective population sizes and active inbreeding can lead to inbreeding depression due to deleterious recessive mutations exposed in the homozygous state. The Thoroughbred racehorse has low levels of population genetic diversity, but the effects of genomic inbreeding in the population are unknown. Here, we quantified inbreeding based on runs of homozygosity (ROH) using 297 K SNP genotypes from 6128 horses born in Europe and Australia, of which 13.2% were unraced. We show that a 10% increase in inbreeding (FROH) is associated with a 7% lower probability of ever racing. Moreover, a ROH-based genome-wide association study identified a haplotype on ECA14 which, in its homozygous state, is linked to a 32.1% lower predicted probability of ever racing, independent of FROH. The haplotype overlaps a candidate gene, EFNA5, that is highly expressed in cartilage tissue, which when damaged is one of the most common causes of catastrophic musculoskeletal injury in racehorses. Genomics-informed breeding aiming to reduce inbreeding depression and avoid damaging haplotype carrier matings will improve population health and racehorse welfare.
Collapse
Affiliation(s)
- Emmeline W. Hill
- Plusvital Ltd, The Highline, Dún Laoghaire Industrial Estate, Pottery Road, Dún Laoghaire, Co. Dublin, Ireland,UCD School of Agriculture and Food Science, University College Dublin, Belfield, Dublin D04 V1W8, Ireland
| | - Martin A. Stoffel
- Institute of Evolutionary Biology, School of Biological Sciences, University of Edinburgh, Edinburgh EH9 3FL, UK
| | - Beatrice A. McGivney
- Plusvital Ltd, The Highline, Dún Laoghaire Industrial Estate, Pottery Road, Dún Laoghaire, Co. Dublin, Ireland
| | - David E. MacHugh
- UCD School of Agriculture and Food Science, University College Dublin, Belfield, Dublin D04 V1W8, Ireland,UCD Conway Institute of Biomolecular and Biomedical Research, University College Dublin, Belfield, Dublin D04 V1W8, Ireland
| | - Josephine M. Pemberton
- Institute of Evolutionary Biology, School of Biological Sciences, University of Edinburgh, Edinburgh EH9 3FL, UK
| |
Collapse
|