1
|
Ali J, Tuzen M, Jatoi WB, Hazer B. A novel block copolymer containing gadolinium oxide nanoparticles in ultrasound assisted-dispersive solid phase microextraction of total arsenic in human foodstuffs: A multivariate optimization methodology. Food Chem 2024; 437:137908. [PMID: 37925781 DOI: 10.1016/j.foodchem.2023.137908] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2023] [Revised: 10/24/2023] [Accepted: 10/28/2023] [Indexed: 11/07/2023]
Abstract
A new poly(3-hydroxy butyrate)-b-poly(dimethyl amino ethyl methacrylate) amphiphilic block copolymer containing gadolinium oxide nanoparticles (PHB-PDMAEMA-Gd2O3-NPs) were synthesized and used as composite adsorbent for extraction of total arsenic. Characterization of the composite adsorbent material PHB-PDMAEMA-Gd2O3-NP was studied using spectroscopic techniques. Plackett-Burman design and central composite design were employed to screening and optimization of the experimental parameters. This composite adsorbent was utilized in ultrasound assisted-dispersive solid phase microextraction (UA-dSPµE) for the determination of total inorganic arsenic in foodstuffs through hydride generation atomic absorption spectrometry (HG-AAS). It demonstrates a linear relationship across arsenic concentration range of 0.07-1.12 µg/L with a correlation coefficient (0.996). It's showed an enrichment factor of 128 and a limit of detection 0.02 µg/L for total inorganic arsenic determination. Accuracy of the developed method was confirmed through the analysis of certified reference materials with 96.0-98.5% recovery. It proved to be significantly useful UA-dSPµE method for determining total inorganic arsenic in different foodstuffs.
Collapse
Affiliation(s)
- Jamshed Ali
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550081, China; Tokat Gaziosmanpaşa University, Faculty of Science and Arts, Chemistry Department, 60250 Tokat, Turkey; Institute of Chemistry, Shah Abdul Latif University, Khairpur Mir's 66020, Sindh, Pakistan
| | - Mustafa Tuzen
- Tokat Gaziosmanpaşa University, Faculty of Science and Arts, Chemistry Department, 60250 Tokat, Turkey.
| | - Wahid Bux Jatoi
- Institute of Chemistry, Shah Abdul Latif University, Khairpur Mir's 66020, Sindh, Pakistan
| | - Baki Hazer
- Department of Aircraft Airframe Engine Maintenance, Kapadokya University, 50420 Nevşehir, Turkey; Departments of Chemistry/Nano Technology Engineering, Zonguldak Bülent Ecevit University, 67100 Zonguldak, Turkey
| |
Collapse
|
2
|
Rahman N, Ahmad I. Coordination polymer gel mediated spectrophotometric, ICP-AES and spectrofluorimetric methods for trace As(III) determination in water and food samples. CHEMOSPHERE 2024; 351:141272. [PMID: 38262491 DOI: 10.1016/j.chemosphere.2024.141272] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 01/11/2024] [Accepted: 01/19/2024] [Indexed: 01/25/2024]
Abstract
Herein, a coordination polymer gel is proposed for the determination of As(III) in real samples through multispectroscopic techniques viz. spectrophotometry, spectrofluorimetry, and inductively coupled plasma atomic emission spectroscopy (ICP-AES). Taguchi L32 (46 21) design and adaptive neuro fuzzy inference system (ANFIS) optimized the controllable factors affecting the extraction yielding an experimental S/N ratio of 39.94 dB. The fluorescence quenching (KSV = 2.63 × 106 L mol-1) was static with photoelectron transfer being the main mechanism confirmed by the density functional theory calculations. The limits of detection (LODs), limits of quantification (LOQs) and linear ranges were 0.038 μg L-1, 0.13 μg L-1 and 1.67-116.67 μg L-1, 0.40 μg L-1, 1.21 μg L-1 and 1.67-33.33 μg L-1, 1.07 μg L-1, 3.24 μg L-1 and 3.32-35.37 μg L-1 for the developed enrichment coupled ICP-AES, spectrophotometry and fluorescence sensing methods. Among these methods, the enrichment - ICP-AES method has the lowest LOD, LOQ and the widest linear range followed by the enrichment - spectrophotometry and fluorescene sensing methods. Spectrofluorimetry offers high sensitivity, selectivity, and possible real time monitoring, spectrophotometry provides a cost-effective and versatile option, while ICP-AES manifests multi-element analysis with high sensitivity and low interference. The developed methods were validated and employed for the successful determination of trace As(III) in real samples. The employment of these methods enhances the overall analytical capability for a wide range of sample types and concentrations.
Collapse
Affiliation(s)
- Nafisur Rahman
- Department of Chemistry Aligarh Muslim University, Aligarh-202002, India.
| | - Izhar Ahmad
- Department of Chemistry Aligarh Muslim University, Aligarh-202002, India
| |
Collapse
|
3
|
Kowalska J, Drwal A, Tutaj K, Kovshun L, Krasnodębska-Ostręga B. On site separation of inorganic forms of thallium and arsenic in sea water systems followed by ICP-MS determination. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2023; 15:6082-6087. [PMID: 37929788 DOI: 10.1039/d3ay01292a] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/07/2023]
Abstract
Reduction of Tl(III) and oxidation of As(III), which are unstable speciation forms, start just after sampling as a result of disturbed chemical equilibrium. Separation of inorganic Tl and As species, unchanged, is thus crucial for reliable results of speciation analysis in water systems. Presented here a simple and fast sample pretreatment, based on ion exchange cartridges, which gives the possibility to separate Tl and As species already on the sampling site. Note the reduction of Tl(III) (15%) is in the range of losses typical for standard procedures based on Tl(III) fixation. The use of SCX-3 allows for Tl(III) and SAX for As(III) separation, which are then quantitated in the effluent by ICP-MS. Determination of non-retained species was done after reduction of the sample volume to 2 mL (50-fold preconcentration), which allowed for detection of As concentrations <0.1 ppb and Tl <0.01 ppb. For As, a collision chamber is required. The possibility of direct determination is very important for the forms being in trace amounts in sea water in the vicinity of harbors.
Collapse
Affiliation(s)
- Joanna Kowalska
- Faculty of Chemistry, University of Warsaw, ul. Pasteura 1, 02-093, Warsaw, Poland.
| | - Alicja Drwal
- Faculty of Chemistry, University of Warsaw, ul. Pasteura 1, 02-093, Warsaw, Poland.
| | - Klaudia Tutaj
- Faculty of Chemistry, University of Warsaw, ul. Pasteura 1, 02-093, Warsaw, Poland.
| | - Lidiia Kovshun
- Faculty of Chemistry, University of Warsaw, ul. Pasteura 1, 02-093, Warsaw, Poland.
| | | |
Collapse
|
4
|
A Novel Fluorescent Aptasensor for Arsenic(III) Detection Based on a Triple-Helix Molecular Switch. Molecules 2023; 28:molecules28052341. [PMID: 36903586 PMCID: PMC10005410 DOI: 10.3390/molecules28052341] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 02/21/2023] [Accepted: 03/01/2023] [Indexed: 03/06/2023] Open
Abstract
A novel aptamer-based fluorescent-sensing platform with a triple-helix molecular switch (THMS) was proposed as a switch for detecting the arsenic(III) ion. The triple helix structure was prepared by binding a signal transduction probe and arsenic aptamer. Additionally, the signal transduction probe labeled with fluorophore (FAM) and quencher (BHQ1) was employed as a signal indicator. The proposed aptasensor is rapid, simple and sensitive, with a limit of detection of 69.95 nM. The decrease in peak fluorescence intensity shows a linear dependence, with the concentration of As(III) in the range of 0.1 µM to 2.5 µM. The whole detection process takes 30 min. Moreover, the THMS-based aptasensor was also successfully used to detect As(III) in a real sample of Huangpu River water with good recoveries. The aptamer-based THMS also presents distinct advantages in stability and selectivity. The proposed strategy developed herein can be extensively applied in the field of food inspection.
Collapse
|
5
|
Low-cost, portable, on-site fluorescent detection of As(III) by a paper-based microfluidic device based on aptamer and smartphone imaging. Mikrochim Acta 2023; 190:109. [PMID: 36867213 DOI: 10.1007/s00604-023-05693-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Accepted: 02/08/2023] [Indexed: 03/04/2023]
Abstract
A turn-on fluorescent aptasensor based on a paper-based microfluidic chip was developed to detect arsenite via aptamer competition strategy and smartphone imaging. The chip was prepared by wax-printing hydrophilic channels on filter paper. It is portable, low-cost, and environmentally friendly. Double-stranded DNA consisting of aptamer and fluorescence-labeled complementary strands was immobilized on the reaction zone of the paper chip. Due to the specific strong binding between aptamer and arsenite, the fluorescent complementary strand was squeezed out and driven by capillary force to the detection area of the paper chip, so that the fluorescent signal arose in the detection area under the excitation wavelength of 488 nm. Arsenite can be quantified by using smartphone imaging and RGB image analysis. Under the optimal conditions, the paper-based microfluidic aptasensor exhibited excellent linear response over a wide range of 1 to 1000 nM, with a detection limit as low as 0.96 nM (3σ).
Collapse
|
6
|
Aslan F, Tor A. Determination and speciation of trace inorganic arsenic species in water samples by using metal organic framework mixed-matrix membrane and EDXRF spectrometry. CHEMOSPHERE 2022; 307:135661. [PMID: 35820479 DOI: 10.1016/j.chemosphere.2022.135661] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Revised: 07/05/2022] [Accepted: 07/07/2022] [Indexed: 06/15/2023]
Abstract
A facile method to selectively determine trace As(V) species in the existence of As(III) one in water samples was developed, which was based on the batch adsorption process by using a miniaturized MIL-101(Fe) mixed-matrix membrane (MOF-MMM) followed by a direct determination through energy dispersive X-ray fluorescence (EDXRF) spectrometry. The quantitative adsorption of As(V) was achieved at pH (3-6) from 30 mL sample in 120 min of equilibrium time by employing the membrane with a monolayer adsorption capacity of Qo = 1.953 mg g-1. The direct determination of As(V) adsorbed on the membrane by EDXRF spectroscopy provided a method, not only easy-to-use and operable without elution stage, but also cost effective due to low gas consumption during the analysis. With a limit of detection of 0.094 μg L-1, analytical performance of the method, which was evaluated on fortified real water samples with three levels of As(V) (5, 10 and 50 μg L-1), demonstrated good recoveries in the range of 98(±3)-105(±10)%. Furthermore, the speciation of As(III) and As(V) in the fortified real samples containing other ionic species was also successfully achieved by described approach with characteristics of simple, cheap, viable and reproducible.
Collapse
Affiliation(s)
- Fuat Aslan
- Science and Technology Research and Application Center (BITAM), Necmettin Erbakan University, Konya, Turkey
| | - Ali Tor
- Department of Environmental Engineering, Necmettin Erbakan University, Konya, Turkey.
| |
Collapse
|
7
|
Ortegón S, Peñaranda PA, Rodríguez CF, Noguera MJ, Florez SL, Cruz JC, Rivas RE, Osma JF. Magnetic Torus Microreactor as a Novel Device for Sample Treatment via Solid-Phase Microextraction Coupled to Graphite Furnace Atomic Absorption Spectroscopy: A Route for Arsenic Pre-Concentration. Molecules 2022; 27:molecules27196198. [PMID: 36234749 PMCID: PMC9572641 DOI: 10.3390/molecules27196198] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Revised: 09/15/2022] [Accepted: 09/19/2022] [Indexed: 11/25/2022] Open
Abstract
This work studied the feasibility of using a novel microreactor based on torus geometry to carry out a sample pretreatment before its analysis by graphite furnace atomic absorption. The miniaturized retention of total arsenic was performed on the surface of a magnetic sorbent material consisting of 6 mg of magnetite (Fe3O4) confined in a very small space inside (20.1 µL) a polyacrylate device filling an internal lumen (inside space). Using this geometric design, a simulation theoretical study demonstrated a notable improvement in the analyte adsorption process on the solid extractant surface. Compared to single-layer geometries, the torus microreactor geometry brought on flow turbulence within the liquid along the curvatures inside the device channels, improving the efficiency of analyte–extractant contact and therefore leading to a high preconcentration factor. According to this design, the magnetic solid phase was held internally as a surface bed with the use of an 8 mm-diameter cylindric neodymium magnet, allowing the pass of a fixed volume of an arsenic aqueous standard solution. A preconcentration factor of up to 60 was found to reduce the typical “characteristic mass” (as sensitivity parameter) determined by direct measurement from 53.66 pg to 0.88 pg, showing an essential improvement in the arsenic signal sensitivity by absorption atomic spectrometry. This methodology emulates a miniaturized micro-solid-phase extraction system for flow-through water pretreatment samples in chemical analysis before coupling to techniques that employ reduced sample volumes, such as graphite furnace atomic absorption spectroscopy.
Collapse
Affiliation(s)
- Sofía Ortegón
- Department of Chemistry, Universidad de Los Andes, Cra. 1E No. 19a-40, Bogotá 111711, Colombia
| | - Paula Andrea Peñaranda
- Department of Electrical and Electronic Engineering, Universidad de Los Andes, Cra. 1E No. 19a-40, Bogotá 111711, Colombia
| | - Cristian F. Rodríguez
- Department of Biomedical Engineering, Universidad de Los Andes, Cra. 1E No. 19a-40, Bogotá 111711, Colombia
| | - Mabel Juliana Noguera
- Department of Electrical and Electronic Engineering, Universidad de Los Andes, Cra. 1E No. 19a-40, Bogotá 111711, Colombia
| | - Sergio Leonardo Florez
- Department of Electrical and Electronic Engineering, Universidad de Los Andes, Cra. 1E No. 19a-40, Bogotá 111711, Colombia
| | - Juan C. Cruz
- Department of Biomedical Engineering, Universidad de Los Andes, Cra. 1E No. 19a-40, Bogotá 111711, Colombia
| | - Ricardo E. Rivas
- Department of Chemistry, Universidad de Los Andes, Cra. 1E No. 19a-40, Bogotá 111711, Colombia
- Correspondence: (R.E.R.); (J.F.O.); Tel.: +57-1-339-4949 (J.F.O.)
| | - Johann F. Osma
- Department of Electrical and Electronic Engineering, Universidad de Los Andes, Cra. 1E No. 19a-40, Bogotá 111711, Colombia
- Correspondence: (R.E.R.); (J.F.O.); Tel.: +57-1-339-4949 (J.F.O.)
| |
Collapse
|
8
|
Elik A, Tuzen M, Hazer B, Kaya S, Katin KP, Altunay N. Development of sensitive and accurate solid-phase microextraction procedure for preconcentration of As(III) ions in real samples. Sci Rep 2021; 11:5481. [PMID: 33750835 PMCID: PMC7970910 DOI: 10.1038/s41598-021-84819-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2020] [Accepted: 02/08/2021] [Indexed: 12/31/2022] Open
Abstract
We synthesized the poly(methyl methacrylate-co-2-aminoethyl methacrylate (PMaema) amphiphilic copolymer in a form of solid phase adsorbent. Then it was used for separation, preconcentration and determination of trace amount of As(III) ions from foods and waters with hydride generation atomic absorption spectrometry. The PMaema was characterized by fourier transform infrared spectrometer and nuclear magnetic resonance spectrometer. The adsorption of As(III) to the PMaema was also supported using computational chemistry studies. The experimental parameters (pH, PMaema amount, adsorption time and ethanol volume) were optimized using a three-level Box-Behnken design with four experimental factors. We observed linear calibration curve for the PMaema amount in the 10-500 ng L-1 range (R2 = 0.9956). Limit of detection, preconcentration factor and sorbent capacity of PMaema were equal to 3.3 ng L-1, 100 and 75.8 mg g-1, respectively. The average recoveries (spiked at 50 ng L-1) changes in the range of 91.5-98.6% with acceptable relative standard deviation less than 4.3%. After validation studies, the method was successfully applied for separation, preconcentration and determination of trace amount of As(III) from foods and waters.
Collapse
Affiliation(s)
- Adil Elik
- Department of Chemistry, Sivas Cumhuriyet University, 58140, Sivas, Turkey
| | - Mustafa Tuzen
- Faculty of Science and Arts, Chemistry Department, Tokat Gaziosmanpasa University, 60250, Tokat, Turkey.
- Center for Environment and Water, King Fahd University of Petroleum and Minerals, Research Institute, Dhahran, 31261, Saudi Arabia.
| | - Baki Hazer
- Department of Aircraft Airframe Engine Maintenance, Kapadokya University, Urgup, 50420, Nevşehir, Turkey
- Chemistry Department, Zonguldak Bulent Ecevit University, 67100, Zonguldak, Turkey
| | - Savaş Kaya
- Health Services Vocational School, Department of Pharmacy, Sivas Cumhuriyet University, 58140, Sivas, Turkey
| | - K P Katin
- Institute of Nanoengineering in Electronics, Spintronics and Photonics, National Research Nuclear University "MEPhI", Kashirskoe Shosse 31, Moscow, 115409, Russia
| | - Nail Altunay
- Department of Biochemistry, Sivas Cumhuriyet University, TR-58140, Sivas, Turkey.
| |
Collapse
|