1
|
Iwamoto A, Inoue Y, Tachibana H, Kawahara H. Immunomodulatory effect of glyceraldehyde-3-phosphate dehydrogenase (GAPDH) in allergic conditions in vitro and in vivo. Cytotechnology 2021; 73:333-342. [PMID: 34149169 PMCID: PMC8166990 DOI: 10.1007/s10616-020-00438-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Accepted: 11/04/2020] [Indexed: 12/14/2022] Open
Abstract
We found that strawberry extract suppressed immunoglobulin (Ig) E production in vitro and in vivo, and identified glyceraldehyde-3-phosphate dehydrogenase (GAPDH) as one of the IgE suppressor in the extract. We report here the effect of GAPDH on various Ig productions in vitro and in vivo. GAPDH suppressed IgE and enhanced IgA, IgG and IgM productions in ovalbumin (OVA)-stimulated human peripheral blood mononuclear cells. Oral administration of GAPDH at 10 mg/kg/day to OVA-induced allergy model mice tended to decrease total IgE level and increase total IgA and IgG levels in sera, and also decreased OVA-specific IgE and IgG levels. It is known that the increase of total IgA as well as the decrease of total and specific IgE is important for alleviating allergic symptoms. In addition, GAPDH accelerated IgA production and increased some cytokine secretions such as IL-4, TGF-β1 and IFN-γ in the OVA-immunized mice spleen lymphocytes. These cytokines involved in the class-switching, IgA enhancement, and IgE suppression, respectively, supporting above results. Our study suggests a possibility that oral administration of GAPDH may induce the immunomodulation in allergic responses.
Collapse
Affiliation(s)
- Akira Iwamoto
- Division of Applied Biological Chemistry, Department of Bioscience and Biochemistry, Faculty of Agriculture, Kyushu University, 744 Motooka Nishi-ku, Fukuoka, 819-0395 Japan
| | - Yuichi Inoue
- Department of Creative Engineering, National Institute of Technology, Kitakyushu College, 5-20-1 Shii, Kokuraminami-ku, Kitakyushu, Fukuoka, 802-0985 Japan
| | - Hirofumi Tachibana
- Division of Applied Biological Chemistry, Department of Bioscience and Biochemistry, Faculty of Agriculture, Kyushu University, 744 Motooka Nishi-ku, Fukuoka, 819-0395 Japan
| | - Hiroharu Kawahara
- Department of Creative Engineering, National Institute of Technology, Kitakyushu College, 5-20-1 Shii, Kokuraminami-ku, Kitakyushu, Fukuoka, 802-0985 Japan
| |
Collapse
|
2
|
Iwamoto A, Hamajima H, Tsuge K, Tsuruta Y, Nagata Y, Yotsumoto H, Yanagita T. Inhibitory Effects of Green Asparagus Extract, Especially Phospholipids, on Allergic Responses in Vitro and in Vivo. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2020; 68:15199-15207. [PMID: 33306387 DOI: 10.1021/acs.jafc.0c05615] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Asparagus (Asparagus officinalis L.) is one of the widely consumed vegetables. To investigate the mechanism underlying the anti-allergic responses of asparagus, we extracted different fractions from asparagus and measured their inhibitory effects on β-hexosaminidase release in RBL-2H3 cells in vitro and an atopic dermatitis NC/Nga mouse model in vivo. The lipid fractions from asparagus were extracted with 50% ethanol, separated using chloroform by liquid-liquid phase separation, and fractionated by solid-phase extraction. Among them, acetone fraction (rich in glycolipid) and MeOH fraction (rich in phospholipid) markedly inhibited β-hexosaminidase release from RBL-2H3 cells. In NC/Nga mice treated with picryl chloride, atopic dermatitis was alleviated following exposure to the 50% EtOH extract, acetone fraction, and methanol fraction. The inhibitory effects of asparagus fractions in vivo were supported by the significant decrease in serum immunoglobulin E (IgE) levels. The phospholipid fractions showed significantly better inhibitory effects, and phosphatidic acid from this fraction showed the best inhibitory effect on β-hexosaminidase release. In mice challenged with ovalbumin (OVA), oral administration of asparagus extract and its fractions decreased the OVA-specific IgE level and total IgE, indicating that these effects may be partly mediated through the downregulation of antigen-specific IgE production. Taken together, the present study shows for the first time that asparagus extract and its lipid fractions could potentially mitigate allergic reactions by decreasing degranulation in granulocytes. Our study provides useful information to develop nutraceuticals and functional foods fortified with asparagus.
Collapse
Affiliation(s)
- Akira Iwamoto
- Division of Food Industry, Industrial Technology Center of Saga, 114 Yaemizo, Nabeshima-machi, Saga 829-0932, Japan
| | - Hiroshi Hamajima
- Saga Food & Cosmetic Laboratory, Division of Research and Development Promotion, Saga Regional Industry Support Center, 114 Yaemizo, Nabeshima-machi, Saga 829-0932, Japan
| | - Keisuke Tsuge
- Division of Food Industry, Industrial Technology Center of Saga, 114 Yaemizo, Nabeshima-machi, Saga 829-0932, Japan
| | - Yumi Tsuruta
- Division of Food Industry, Industrial Technology Center of Saga, 114 Yaemizo, Nabeshima-machi, Saga 829-0932, Japan
| | - Yasuo Nagata
- Saga Food & Cosmetic Laboratory, Division of Research and Development Promotion, Saga Regional Industry Support Center, 114 Yaemizo, Nabeshima-machi, Saga 829-0932, Japan
- Center for Industry, University and Government Cooperation, Nagasaki University, 1-14 Bunkyo-machi, Nagasaki 852-8521, Japan
| | - Hiroaki Yotsumoto
- Department of Health and Nutrition Sciences, Nishikyushu University, 4490-9 Ozaki, Saga 842-8585, Japan
| | - Teruyoshi Yanagita
- Saga Food & Cosmetic Laboratory, Division of Research and Development Promotion, Saga Regional Industry Support Center, 114 Yaemizo, Nabeshima-machi, Saga 829-0932, Japan
- Department of Health and Nutrition Sciences, Nishikyushu University, 4490-9 Ozaki, Saga 842-8585, Japan
- Department of Applied Biochemistry and Food Science, Saga University, 1 Honjo, Honjo-machi, Saga 840-8502, Japan
| |
Collapse
|
3
|
Iwamoto A, Inoue Y, Tachibana H, Kawahara H. Alkali-soluble pectin suppresses IgE production in human myeloma cell line in vitro. Cytotechnology 2019; 71:573-581. [PMID: 30771057 DOI: 10.1007/s10616-019-00306-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2018] [Accepted: 02/11/2019] [Indexed: 11/29/2022] Open
Abstract
We found that strawberry (Fragaria x ananassa) extract has an IgE production suppressive activity and its oral administration improved skin manifestation in atopic dermatitis model mice. In present study, we identified an active substance using the IgE-producing human myeloma cell line U266. Gel filtration experiment indicated that the IgE suppressor was more than 6 kDa in molecular size. In addition, its pectinase treatment inhibited the activity, suggesting that the active substance in strawberry extract is pectin. Among solutions of water-(WP), hexametaphosphate-(HXP), acid-(HP) and alkali soluble pectin (OHP) extracted from strawberry, only OHP suppressed IgE production, and their suppressive activity was cancelled by pectinase treatment. In addition, OHP extracted from apple also inhibited IgE production. Furthermore, OHP also suppressed IgE production and did not affect IgG and IgM production in human peripheral blood mononuclear cells in an in vitro immunization condition. From these results, we concluded that OHP was an IgE suppressor in strawberry extract.
Collapse
Affiliation(s)
- Akira Iwamoto
- Division of Applied Biological Chemistry, Department of Bioscience and Biochemistry, Faculty of Agriculture, Kyushu University, Fukuoka, 812-8581, Japan
| | - Yuichi Inoue
- Department of Creative Engineering, National Institute of Technology, Kitakyushu College, 5-20-1 Shii, Kokuraminami-ku, Kitakyushu, Fukuoka, 802-0985, Japan.
| | - Hirofumi Tachibana
- Division of Applied Biological Chemistry, Department of Bioscience and Biochemistry, Faculty of Agriculture, Kyushu University, Fukuoka, 812-8581, Japan
| | - Hiroharu Kawahara
- Department of Creative Engineering, National Institute of Technology, Kitakyushu College, 5-20-1 Shii, Kokuraminami-ku, Kitakyushu, Fukuoka, 802-0985, Japan
| |
Collapse
|
4
|
Zhu Q, Nakagawa T, Kishikawa A, Ohnuki K, Shimizu K. In vitro bioactivities and phytochemical profile of various parts of the strawberry (Fragaria × ananassa var. Amaou). J Funct Foods 2015. [DOI: 10.1016/j.jff.2014.12.026] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
|