1
|
Graça ICR, Martins C, Ribeiro F, Nunes A. Understanding Hypertension: A Metabolomic Perspective. BIOLOGY 2025; 14:403. [PMID: 40282268 PMCID: PMC12025236 DOI: 10.3390/biology14040403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2025] [Revised: 04/07/2025] [Accepted: 04/09/2025] [Indexed: 04/29/2025]
Abstract
Metabolomics approaches, such as Fourier transform infrared (FTIR) spectroscopy, nuclear magnetic resonance (NMR) spectroscopy, and mass spectrometry (MS), have emerged as powerful tools for studying cardiovascular diseases (CVD), including hypertension. The use of biological fluids, like plasma and serum, has garnered significant interest due to their accessibility and potential in elucidating disease mechanisms. This review aims to summarize the current literature on the application of metabolomics techniques (FTIR, NMR, and MS) in the study of hypertension, focusing on their contributions to understanding disease pathophysiology, biomarker discovery, and therapeutic advancements. A comprehensive analysis of metabolomic studies was performed, with a particular emphasis on the diversity of altered metabolites associated with systolic blood pressure (SBP), diastolic blood pressure (DBP), and sex-related differences. Metabolomics techniques, including FTIR, NMR, and MS, provide comprehensive insights into the biochemical alterations underlying hypertension, such as amino acid and fatty acid metabolism impairment or inflammation and oxidative stress processes. This review underscores their role in advancing biomarker identification, deepening our understanding of disease mechanisms, and supporting the development of targeted therapeutic strategies. The integration of these tools highlights their potential in personalized medicine and their capacity to improve clinical outcomes.
Collapse
Affiliation(s)
- Inês C. R. Graça
- CICECO—Aveiro Institute of Materials, Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal;
| | - Cláudia Martins
- Institute of Biomedicine (iBiMED), Department of Medical Sciences (DCM), University of Aveiro, 3810-193 Aveiro, Portugal;
| | - Fernando Ribeiro
- Institute of Biomedicine (iBiMED), School of Health Sciences (ESSUA), University of Aveiro, 3810-193 Aveiro, Portugal;
| | - Alexandra Nunes
- Institute of Biomedicine (iBiMED), Department of Medical Sciences (DCM), University of Aveiro, 3810-193 Aveiro, Portugal;
| |
Collapse
|
2
|
dos Santos PP, Fujimori ASS, Polegato BF, Okoshi MP. The Therapeutic Potential of Orange Juice in Cardiac Remodeling: A Metabolomics Approach. Metabolites 2025; 15:198. [PMID: 40137162 PMCID: PMC11944373 DOI: 10.3390/metabo15030198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2024] [Revised: 02/13/2025] [Accepted: 02/17/2025] [Indexed: 03/27/2025] Open
Abstract
Cardiovascular diseases are a leading cause of death worldwide, and the process of cardiac remodeling lies at the core of most of these diseases. Sustained cardiac remodeling almost unavoidably ends in progressive muscle dysfunction, heart failure, and ultimately death. Therefore, in order to attenuate cardiac remodeling and reduce mortality, different therapies have been used, but it is important to identify adjuvant factors that can help to modulate this process. One of these factors is the inclusion of affordable foods in the diet with potential cardioprotective properties. Orange juice intake has been associated with several beneficial metabolic changes, which may influence cardiac remodeling induced by cardiovascular diseases. Current opinion highlights how the metabolites and metabolic pathways modulated by orange juice consumption could potentially attenuate cardiac remodeling. It was observed that orange juice intake significantly modulates phospholipids, energy metabolism, endocannabinoid signaling, amino acids, and gut microbiota diversity, improving insulin resistance, dyslipidemia, and metabolic syndrome. Specifically, modulation of phosphatidylethanolamine (PE) metabolism and activation of PPARα and PPARγ receptors, associated with improved energy metabolism, mitochondrial function, and oxidative stress, showed protective effects on the heart. Furthermore, orange juice intake positively impacted gut microbiota diversity and led to an increase in beneficial bacterial populations, correlated with improved metabolic syndrome. These findings suggest that orange juice may act as a metabolic modulator, with potential therapeutic implications for cardiac remodeling associated with cardiovascular diseases.
Collapse
Affiliation(s)
- Priscila Portugal dos Santos
- Internal Medicine Department, Botucatu Medical School, Sao Paulo State University (UNESP), Botucatu 18618-687, Brazil; (A.S.S.F.); (B.F.P.); (M.P.O.)
| | | | | | | |
Collapse
|
3
|
Olivieri OCL, Souza HOA, Bastos LM, Sommerfeld S, Guimarães EC, Martins MM, Vieira BS, Neves ACRS, Fonseca BB. Can chick meconium serve as a source of biomarkers linked to hatchling quality and the age of parent stock? Poult Sci 2025; 104:104715. [PMID: 39823833 PMCID: PMC11786726 DOI: 10.1016/j.psj.2024.104715] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 12/02/2024] [Accepted: 12/20/2024] [Indexed: 01/20/2025] Open
Abstract
One possible approach to selecting chicks based on quality involves identifying biomarkers in biological samples. Concurrently, understanding the metabolic profile of chicks from different-aged breeders is essential for developing strategies to mitigate the age-related effects on hatchability. This study investigated whether chick quality and breeder age influence the metabolic profile of layer chick meconium. A total of 143 chicks from laying breeder hens, categorized as young, middle-aged or old, were visually assessed for quality, and meconium samples were collected for metabolomic analysis. Sixteen metabolites were found to be associated with good-quality chicks across all breeder ages, with an overall accuracy of 81.94 %. Using metabolite profiles, the accuracy for predicting young-hen-chick quality was 93.2 %, with high sensitivity (92.30 %) and specificity (93.75 %). Four metabolites were associated with poor-quality chicks with an overall accuracy of 77.53 %. Partial least squares discriminant analysis (PLS-DA) revealed enhanced metabolite separation in good-quality chicks, with five metabolites exhibiting high area under the curve (AUC) values (>90 %) in chicks from young hens compared to chicks from hens of other ages, including metabolites related to energy metabolism, hormonal activity, vitamin D synthesis and peptide constitution. Disregarding maternal age, five metabolites varied between good- and poor-quality chicks, but with a low accuracy of 61.26 % for quality discrimination. Chicks from young, middle-aged, and old hens exhibited 12, 11, and 2 metabolites that varied the expression between good and poor qualities, with accuracies for predicting good-quality chicks of 74.46 %, 70.83 %, and 51.06 %, respectively. Certain metabolites with 70 < AUC < 80 % have emerged as potential biomarkers for distinguishing between good- and poor-quality layer chicks. These include metabolites related to energy and growth metabolism, tryptophan and methionine metabolism, antioxidants and some with no known function in embryos. This work identified potential metabolites that can be investigated to mitigate the effects of hen age on hatchability. Additionally, several metabolites have emerged as potential biomarkers for distinguishing between good- and poor-quality chicks, depending on the breeder's age.
Collapse
Affiliation(s)
- O C L Olivieri
- Postgraduate Program in Veterinary Sciences, Faculty of Veterinary Medicine, Federal University of Uberlândia, Brazil
| | - H O A Souza
- Postgraduate Program in Genetics and Biochemistry, Federal University of Uberlândia, Brazil
| | - L M Bastos
- Postgraduate Program in Genetics and Biochemistry, Federal University of Uberlândia, Brazil
| | - S Sommerfeld
- Postgraduate Program in Veterinary Sciences, Faculty of Veterinary Medicine, Federal University of Uberlândia, Brazil
| | - E C Guimarães
- Postgraduate Program in Veterinary Sciences, Faculty of Veterinary Medicine, Federal University of Uberlândia, Brazil; Faculty of Mathematics, Federal University of Uberlândia, Brazil
| | - M M Martins
- Postgraduate Program in Genetics and Biochemistry, Federal University of Uberlândia, Brazil
| | - B S Vieira
- Postgraduate Program in Veterinary Sciences, Faculty of Veterinary Medicine, Federal University of Uberlândia, Brazil
| | - A C R S Neves
- Postgraduate Program in Veterinary Sciences, Faculty of Veterinary Medicine, Federal University of Uberlândia, Brazil
| | - B B Fonseca
- Postgraduate Program in Veterinary Sciences, Faculty of Veterinary Medicine, Federal University of Uberlândia, Brazil; Postgraduate Program in Genetics and Biochemistry, Federal University of Uberlândia, Brazil
| |
Collapse
|
4
|
Bravo FI, Calvo E, López-Villalba RA, Torres-Fuentes C, Muguerza B, García-Ruiz A, Morales D. Valorization of Chicken Slaughterhouse Byproducts to Obtain Antihypertensive Peptides. Nutrients 2023; 15:457. [PMID: 36678328 PMCID: PMC9864718 DOI: 10.3390/nu15020457] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 01/09/2023] [Accepted: 01/11/2023] [Indexed: 01/18/2023] Open
Abstract
Hypertension (HTN) is the leading cause of premature deaths worldwide and the main preventable risk factor for cardiovascular diseases. Therefore, there is a current need for new therapeutics to manage this condition. In this regard, protein hydrolysates containing antihypertensive bioactive peptides are of increasing interest. Thus, agri-food industry byproducts have emerged as a valuable source to obtain these hydrolysates as they are rich in proteins and inexpensive. Among these, byproducts from animal origin stand out as they are abundantly generated worldwide. Hence, this review is focused on evaluating the potential role of chicken slaughterhouse byproducts as a source of peptides for managing HTN. Several of these byproducts such as blood, bones, skins, and especially, chicken feet have been used to obtain protein hydrolysates with angiotensin-converting enzyme (ACE)-inhibitory activity and blood pressure-lowering effects. An increase in levels of endogenous antioxidant compounds, a reduction in ACE activity, and an improvement of HTN-associated endothelial dysfunction were the mechanisms underlying their effects. However, most of these studies were carried out in animal models, and further clinical studies are needed in order to confirm these antihypertensive properties. This would increase the value of these byproducts, contributing to the circular economy model of slaughterhouses.
Collapse
Affiliation(s)
| | | | | | | | | | - Almudena García-Ruiz
- Nutrigenomics Research Group, Department of Biochemistry and Biotechnology, Universitat Rovira i Virgili, 43007 Tarragona, Spain
| | | |
Collapse
|
5
|
Romero Garay MGG, Becerra-Verdin EMG, Soto-Domínguez A, Montalvo-González E, García-Magaña MDL. Health effects of peptides obtained from hydrolysed chicken by-products by the action of Bromelia pinguin and B. karatas proteases in Wistar rats induced with metabolic syndrome. INTERNATIONAL FOOD RESEARCH JOURNAL 2022. [DOI: 10.47836/ifrj.29.5.10] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Metabolic syndrome (MS) is considered a major public health problem because it is associated with the development of cardiovascular disease and type 2 diabetes. Bioactive peptides can play an important role in the prevention and treatment of MS. The possible health effects of peptides obtained from hydrolysed chicken by-products (CH) by the action of plant proteases from Bromelia pinguin (BP), B. karatas (BK), and bromelain (BRO) were evaluated in a model of induced MS. Thirty male Wistar rats were randomised into the following groups: (1) standard diet (STD); (2) induction of MS with a hypercaloric diet (MS+CH); (3) CH-BP 200 mg CH/kg; (4) CH-BK 200 mg CH/kg; (5) CH-BRO 200 mg CH/kg; and (6) carnosine (CAR) 50 mg of carnosine/kg of body weight. The CH decreased the glucose levels (p < 0.05) and improved the lipid profile (p < 0.05) in the serum of the groups with induced MS. Liver lesions were attenuated with a decrease in hepatic enzymatic activities (p < 0.05), and the accumulation of lipid inclusions in the liver decreased. The data showed that CH and the use of proteases to obtain peptides with health effects could be a good therapeutic alternative for individuals with MS.
Collapse
|
6
|
Romero-Garay MG, Montalvo-González E, Hernández-González C, Soto-Domínguez A, Becerra-Verdín EM, De Lourdes García-Magaña M. Bioactivity of peptides obtained from poultry by-products: A review. Food Chem X 2022; 13:100181. [PMID: 35498958 PMCID: PMC9039914 DOI: 10.1016/j.fochx.2021.100181] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Revised: 12/02/2021] [Accepted: 12/03/2021] [Indexed: 10/26/2022] Open
Abstract
The production and consumption of poultry products (chicken, duck, and turkey) are continually growing throughout the world, leading to the generation of thousands of tons of organic by-products, which may be important sources of bioactive peptides. The bioactive peptides isolated from poultry by-products have biological properties that can be useful in the prevention of different metabolic diseases and hence, their consumption could be beneficial for human health. Such peptides can be used as nutraceuticals, and their inclusion as active components of functional food products is increasingly gaining attention. The aim of this review was to present the investigations of the biological effect of the peptides obtained from different poultry by-products and the possible mechanisms of action underlying these effects.
Collapse
Affiliation(s)
- Martha Guillermina Romero-Garay
- Integral Research Laboratory Food, Instituto Tecnológico de Tepic, Av. Tecnológico 2595, Col. Lagos del Country 63175, Tepic, Nayarit, Mexico
| | - Efigenia Montalvo-González
- Integral Research Laboratory Food, Instituto Tecnológico de Tepic, Av. Tecnológico 2595, Col. Lagos del Country 63175, Tepic, Nayarit, Mexico
| | - Crisantema Hernández-González
- Centro de Investigación en Alimentación y Desarrollo, A. C., Unidad Mazatlán, Av. Sábalo Cerritos s/n. Mazatlán, Sinaloa 89010, Mexico
| | - Adolfo Soto-Domínguez
- Histology Department, Facultad de Medicina, Universidad Autónoma de Nuevo León, Madero y E. Aguirre Pequeño SN, C.P. 64460. Monterrey, Nuevo León, Mexico
| | - Eduardo Mendeleev Becerra-Verdín
- Clinical Research and Histology Laboratory, Universidad Autónoma de Nayarit, Ciudad de la Cultura Amado Nervo S/N, 63155 Tepic, Nayarit, Mexico
| | - María De Lourdes García-Magaña
- Integral Research Laboratory Food, Instituto Tecnológico de Tepic, Av. Tecnológico 2595, Col. Lagos del Country 63175, Tepic, Nayarit, Mexico
| |
Collapse
|
7
|
Wu S, Zhao W, Yu Z, Liu J. Antihypertensive effect and underlying mechanism of tripeptide NCW on spontaneously hypertensive rats using metabolomics analysis. Food Funct 2022; 13:1808-1821. [PMID: 35084009 DOI: 10.1039/d1fo03924e] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Tripeptide NCW identified in our previous study displayed a strong ACE inhibitory activity, but whether it has any antihypertensive effect in vivo remains unknown. Thus, in this study, we aimed to investigate the protective effects of tripeptide NCW in spontaneously hypertensive rats (SHRs) and to further figure out the serum metabolic profiling variations due to its oral administration via UPLC-Q-TOF-MS/MS-based metabolomics analysis to clarify the underlying hypotensive mechanism. After three weeks of oral administration, the tripeptide NCW-treated group (NCW/SHR group, 80 mg per kg BW per d) showed significantly reduced systolic and diastolic blood pressure by 48.08 ± 3.84 mmHg and 48.92 ± 5.77 mmHg, respectively. Additionally, a total of 25 blood pressure-related metabolites were identified as being significantly changed in SHRs given tripeptide NCW after three weeks. These 25 metabolites might be biomarkers that indicated that the tripeptide NCW exhibits antihypertensive activity via regulating bile acid metabolism, lipid metabolism, amino acid metabolism, purinergic signaling, pantothenate and CoA biosynthesis, and the citrate cycle. Collectively, tripeptide NCW has a protective effect on SHRs associated with serum metabolite abnormalities.
Collapse
Affiliation(s)
- Sijia Wu
- College of Food Science and Engineering, Bohai University, Jinzhou 121013, P.R. China. .,Lab of Nutrition and Functional Food, Jilin University, Changchun 130062, P.R. China
| | - Wenzhu Zhao
- College of Food Science and Engineering, Bohai University, Jinzhou 121013, P.R. China.
| | - Zhipeng Yu
- College of Food Science and Engineering, Bohai University, Jinzhou 121013, P.R. China.
| | - Jingbo Liu
- Lab of Nutrition and Functional Food, Jilin University, Changchun 130062, P.R. China
| |
Collapse
|
8
|
Onuh JO, Qiu H. Metabolic Profiling and Metabolites Fingerprints in Human Hypertension: Discovery and Potential. Metabolites 2021; 11:687. [PMID: 34677402 PMCID: PMC8539280 DOI: 10.3390/metabo11100687] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Revised: 09/28/2021] [Accepted: 10/05/2021] [Indexed: 12/12/2022] Open
Abstract
Early detection of pathogenesis through biomarkers holds the key to controlling hypertension and preventing cardiovascular complications. Metabolomics profiling acts as a potent and high throughput tool offering new insights on disease pathogenesis and potential in the early diagnosis of clinical hypertension with a tremendous translational promise. This review summarizes the latest progress of metabolomics and metabolites fingerprints and mainly discusses the current trends in the application in clinical hypertension. We also discussed the associated mechanisms and pathways involved in hypertension's pathogenesis and explored related research challenges and future perspectives. The information will improve our understanding of the development of hypertension and inspire the clinical application of metabolomics in hypertension and its associated cardiovascular complications.
Collapse
Affiliation(s)
| | - Hongyu Qiu
- Center for Molecular and Translational Medicine, Institute of Biomedical Sciences, Georgia State University, Atlanta, GA 30303, USA;
| |
Collapse
|
9
|
Fahmi R, Ryland D, Sopiwnyk E, Malcolmson L, Shariati-Ievari S, McElrea A, Barthet V, Blewett H, Aliani M. Effect of Revtech thermal processing on volatile organic compounds and chemical characteristics of split yellow pea (Pisum sativum L.) flour. J Food Sci 2021; 86:4330-4353. [PMID: 34535898 DOI: 10.1111/1750-3841.15913] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Revised: 08/05/2021] [Accepted: 08/22/2021] [Indexed: 11/28/2022]
Abstract
Yellow pea (Pisumsativum L.) is an economically rich source of nutrients with health-promoting effects. However, the consumption of pea ingredients is minimal due to their off-flavor characteristics. The present study investigated the effect of Revtech heat treatment on the chemical profile and volatile compounds in split yellow pea flour. Revtech treatment (RT) was applied at 140°C with a residence time of 4 min in dry condition (RT 0%) and in the presence of 10% steam (RT 10%). Both thermal treatments resulted in a significant reduction (p < 0.05) in lipoxygenase activity and the concentration of key beany-related odors such as heptanal, (E)-2-heptenal, 1-octen-3-ol, octanal, and (E)-2-octenal. In addition, RT 10% resulted in a significant reduction in pentanal, 1-penten-3-ol, hexanal, and 1-hexanol compared to untreated flour. The content of known precursors of lipoxygenase such as linoleic and linolenic acids was found in higher concentrations in heat-treated flours, indicating the efficacy of Revtech technology in minimizing the degradation of polyunsaturated fatty acids. No significant changes in the amino acid composition or the 29 selected phenolic compounds in pea flours were observed with Revtech processing except for two compounds, caffeic acid and gallocatechin, which were found at higher concentrations in RT 0%. PRACTICAL APPLICATION: Thermal processing of split yellow pea flours at 140°C using Revtech technology successfully decreased the concentrations of volatile compounds responsible for beany off-flavor while improving the nutritional quality of studied yellow pea flours. These results provide valuable information to the food industry for developing novel pulse-based products with enhanced sensory characteristics.
Collapse
Affiliation(s)
- Ronak Fahmi
- Department of Food and Human Nutritional Sciences, University of Manitoba, Winnipeg, Canada
- The Canadian Centre for Agri-Food Research in Health and Medicine (CCARM), Winnipeg, Canada
| | - Donna Ryland
- Department of Food and Human Nutritional Sciences, University of Manitoba, Winnipeg, Canada
| | - Elaine Sopiwnyk
- Canadian International Grains Institute (Cigi), Winnipeg, Canada
| | | | - Shiva Shariati-Ievari
- The Canadian Centre for Agri-Food Research in Health and Medicine (CCARM), Winnipeg, Canada
| | - April McElrea
- The Canadian Centre for Agri-Food Research in Health and Medicine (CCARM), Winnipeg, Canada
| | - Veronique Barthet
- Grain Research Laboratory, Canadian Grain Commission, Winnipeg, Canada
| | - Heather Blewett
- Department of Food and Human Nutritional Sciences, University of Manitoba, Winnipeg, Canada
- The Canadian Centre for Agri-Food Research in Health and Medicine (CCARM), Winnipeg, Canada
- Morden Research and Development Centre, Agriculture and Agri-Food Canada, Morden, Canada
| | - Michel Aliani
- Department of Food and Human Nutritional Sciences, University of Manitoba, Winnipeg, Canada
- The Canadian Centre for Agri-Food Research in Health and Medicine (CCARM), Winnipeg, Canada
| |
Collapse
|
10
|
Xue L, Yin R, Howell K, Zhang P. Activity and bioavailability of food protein-derived angiotensin-I-converting enzyme-inhibitory peptides. Compr Rev Food Sci Food Saf 2021; 20:1150-1187. [PMID: 33527706 DOI: 10.1111/1541-4337.12711] [Citation(s) in RCA: 67] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2020] [Revised: 12/11/2020] [Accepted: 12/11/2020] [Indexed: 12/22/2022]
Abstract
Angiotensin-I-converting enzyme (ACE) inhibitory peptides are able to inhibit the activity of ACE, which is the key enzymatic factor mediating systemic hypertension. ACE-inhibitory peptides can be obtained from edible proteins and have the function of antihypertension. The amino acid sequences and the secondary structures of ACE-inhibitory peptides determine the inhibitory activities and stability. The resistance of ACE-inhibitory peptides to digestive enzymes and peptidase affect their antihypertensive bioactivity in vivo. In this paper, the mechanism of ACE-inhibition, sources of the inhibitory peptides, structure-activity relationships, stability during digestion, absorption and transportation of ACE-inhibitory peptides, and consumption of ACE-inhibitory peptides are reviewed, which provide guidance to the development of new functional foods and production of antihypertensive nutraceuticals and pharmaceuticals.
Collapse
Affiliation(s)
- Lu Xue
- College of Biotechnology and Food Science, Tianjin University of Commerce, Tianjin, China.,School of Agriculture and Food, Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Parkville, Victoria, Australia
| | - Rongxin Yin
- School of Agriculture and Food, Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Parkville, Victoria, Australia
| | - Kate Howell
- School of Agriculture and Food, Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Parkville, Victoria, Australia
| | - Pangzhen Zhang
- School of Agriculture and Food, Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Parkville, Victoria, Australia
| |
Collapse
|
11
|
Onuh JO, Aliani M. Metabolomics profiling in hypertension and blood pressure regulation: a review. Clin Hypertens 2020; 26:23. [PMID: 33292736 PMCID: PMC7666763 DOI: 10.1186/s40885-020-00157-9] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Accepted: 10/19/2020] [Indexed: 02/08/2023] Open
Abstract
Hypertension is a chronic health condition in which blood pressure is usually elevated beyond normal levels. It can progress with serious complications if left undetected and untreated. Incidence of hypertension is on the increase worldwide with debilitating consequences on the health systems of many countries. It is a multifactorial disorder that requires a multi-pronged approach to address it. One such approach is the use of metabolomics or metabolite profiling to understand its underlying cause and possibly control it. Changes in metabolites profiles have been used to accurately predict so many disease conditions in addition to identifying possible biomarkers and pathways associated in their pathogenicity. This will enable their early detection, diagnosis and treatment as well as likely complications that may arise and also assist in development of biomarkers for clinical uses. The objective of this review therefore is to present some of the current knowledge on the application of metabolomics profiling in hypertension and blood pressure control.
Collapse
Affiliation(s)
- John O Onuh
- Center for Molecular and Translational Medicine, Georgia State University, 100 Piedmont Ave SE, Atlanta, GA, 30303, USA
| | - Michel Aliani
- Department of Food and Human Nutritional Sciences, University of Manitoba, Winnipeg, MB, R3T 2N2, Canada. .,St. Boniface Hospital Research Centre, 351 Tache Ave, Winnipeg, MB, R2H 2A6, Canada.
| |
Collapse
|
12
|
Metabolomics as a tool to study the mechanism of action of bioactive protein hydrolysates and peptides: A review of current literature. Trends Food Sci Technol 2019. [DOI: 10.1016/j.tifs.2019.08.002] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
13
|
Zhou R, Grant J, Goldberg EM, Ryland D, Aliani M. Investigation of low molecular weight peptides (<1 kDa) in chicken meat and their contribution to meat flavor formation. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2019; 99:1728-1739. [PMID: 30226639 DOI: 10.1002/jsfa.9362] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2018] [Revised: 09/04/2018] [Accepted: 09/09/2018] [Indexed: 05/26/2023]
Abstract
BACKGROUND Low molecular weight peptides (LMWPs) (<1 kDa) generated in meat during chilled conditioning can act as flavor precursors in the Maillard reaction with a potential contribution to key volatile organic compound (VOC) formation upon heating. Liquid chromatography/quadrupole time-of-flight mass spectrometry (LC/QTOF-MS) successfully detected 44 LMWPs in chicken breast and thigh muscles stored at 4 °C for up to 6 days. Carnosine (350 mg per 100 g), glutathione (GSH, 20 mg per 100 g) (concentrations based on reported values in the literature) and cysteine glycine (Cys Gly, 5 mg per 100 g) (concentration based on results from LC/QTOF-MS) were used in model systems containing ribose (25 mg per 100 g). The three model systems were heated at 180 °C for 2 h at pH 6.3. VOCs were measured by simultaneous distillation solvent extraction/gas chromatography/mass spectrometry. RESULTS Of 33 VOCs detected, 26 were significantly different (P ≤ 0.05) between the three peptides. The majority of nitrogen-containing volatiles, pyrazines and pyridines, dominated the carnosine mixture, while sulfur-containing VOCs dominated the GSH and Cys Gly peptide mixtures. CONCLUSION Known key aroma compounds such as thiazole (meaty), 2-methyl-3-furanthiol (beef and meat), 2-furfurylthiol (roasted), dihydro-2-methyl-3(2H)-thiophenone (meaty), 2-acetylthiazole (meaty and roasted) and pyrazine (meaty) were detected under conditions specific to aged and thermally treated chicken, suggesting a potential contribution to the overall sensory quality of cooked meat. © 2018 Society of Chemical Industry.
Collapse
Affiliation(s)
- Ruiyin Zhou
- Department of Food and Human Nutritional Sciences, University of Manitoba, Winnipeg, Canada
| | - Jennifer Grant
- Department of Food and Human Nutritional Sciences, University of Manitoba, Winnipeg, Canada
| | - Erin M Goldberg
- Department of Food and Human Nutritional Sciences, University of Manitoba, Winnipeg, Canada
| | - Donna Ryland
- Department of Food and Human Nutritional Sciences, University of Manitoba, Winnipeg, Canada
| | - Michel Aliani
- Department of Food and Human Nutritional Sciences, University of Manitoba, Winnipeg, Canada
- The Canadian Centre for Agri-Food Research in Health and Medicine (CCARM), St. Boniface Hospital Albrechtsen Research Centre, Winnipeg, Canada
| |
Collapse
|
14
|
Aluko RE. Food protein-derived renin-inhibitory peptides: in vitro and in vivo properties. J Food Biochem 2018; 43:e12648. [PMID: 31353494 DOI: 10.1111/jfbc.12648] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2018] [Revised: 08/01/2018] [Accepted: 08/03/2018] [Indexed: 11/30/2022]
Abstract
Renin catalyzes the rate-determining step in the renin-angiotensin-aldosterone system that regulates mammalian blood pressure by converting angiotensinogen to angiotensin I (Ang I). Excessive plasma levels of Ang I is a causative factor in hypertension development. Therefore, inhibition of renin activity can lower blood pressure and provide relief from clinical symptoms associated with hypertension. Synthetic compounds are currently the most used group of renin inhibitors; however, only aliskiren is approved as a drug for hypertension treatment. But some negative side effects are associated with aliskiren therapy, which have necessitated the search for alternative natural compounds such as food protein-derived renin-inhibitory peptides with blood pressure-reducing effects. This paper is a concise review of the currently known sources and methods of production of renin-inhibitory peptides including their potential in vitro and in vivo extent of renin inhibition. PRACTICAL APPLICATIONS: Hypertension is a major human chronic disease that leads to severe cardiovascular impairment and ultimately death if not managed properly. Current therapeutic approach to hypertension management involves the use of drugs that inhibit excessive activities of renin and angiotensin converting enzyme (ACE), the two main enzymes that control mammalian blood pressure. Since renin catalyzes a single reaction that is the rate-determining step in the renin-angiotensin system, inhibition of this enzyme activity could be a highly effective strategy for controlling blood pressure without severe negative side effects. However, therapeutic control of renin activity remains difficult with only one approved drug. Some food protein-derived peptides have been found to inhibit renin activity inhibition, which could offer a drug-free treatment for hypertension. Therefore, this review provides a summary of recent developments in the advances and efficacy testing of renin-inhibitory peptides.
Collapse
Affiliation(s)
- Rotimi E Aluko
- Department of Food and Human Nutritional Sciences, University of Manitoba, Winnipeg, Canada
| |
Collapse
|
15
|
Mas-Capdevila A, Pons Z, Aleixandre A, Bravo FI, Muguerza B. Dose-Related Antihypertensive Properties and the Corresponding Mechanisms of a Chicken Foot Hydrolysate in Hypertensive Rats. Nutrients 2018; 10:E1295. [PMID: 30213138 PMCID: PMC6164708 DOI: 10.3390/nu10091295] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2018] [Revised: 09/07/2018] [Accepted: 09/10/2018] [Indexed: 12/20/2022] Open
Abstract
The antihypertensive properties of different doses of a chicken foot hydrolysate, Hpp11 and the mechanisms involved in this effect were investigated. Spontaneously hypertensive rats (SHR) were administered water, Captopril (50 mg/kg) or Hpp11 at different doses (25, 55 and 85 mg/kg), and the systolic blood pressure (SBP) was recorded. The SBP of normotensive Wistar-Kyoto (WKY) rats administered water or Hpp11 was also recorded. Additionally, plasmatic angiotensin-converting enzyme (ACE) activity was determined in the SHR administered Hpp11. Moreover, the relaxation caused by Hpp11 in isolated aortic rings from Sprague-Dawley rats was evaluated. Hpp11 exhibited antihypertensive activity at doses of 55 and 85 mg/kg, with maximum activity 6 h post-administration. At this time, no differences were found between these doses and Captopril. Initial SBP values of 55 and 85 mg/kg were recovered 24 or 8 h post-administration, respectively, 55 mg/kg being the most effective dose. At this dose, a reduction in the plasmatic ACE activity in the SHR was found. However, Hpp11 did not relax the aortic ring preparations. Therefore, ACE inhibition could be the mechanism underlying Hpp11 antihypertensive effect. Remarkably, Hpp11 did not modify SBP in WKY rats, showing that the decreased SBP effect is specific to the hypertensive state.
Collapse
Affiliation(s)
- Anna Mas-Capdevila
- Nutrigenomics Research Group, Department of Biochemistry and Biotechnology, Universitat Rovira i Virgili, 43007 Tarragona, Spain.
| | - Zara Pons
- Nutrigenomics Research Group, Department of Biochemistry and Biotechnology, Universitat Rovira i Virgili, 43007 Tarragona, Spain.
| | - Amaya Aleixandre
- Department of Pharmacology, School of Medicine, Universidad Complutense de Madrid, 28040 Madrid, Spain.
| | - Francisca I Bravo
- Nutrigenomics Research Group, Department of Biochemistry and Biotechnology, Universitat Rovira i Virgili, 43007 Tarragona, Spain.
| | - Begoña Muguerza
- Nutrigenomics Research Group, Department of Biochemistry and Biotechnology, Universitat Rovira i Virgili, 43007 Tarragona, Spain.
- Technological Unit of Nutrition and Health, EURECAT-Technology Centre of Catalonia, 43204 Reus, Spain.
| |
Collapse
|
16
|
Liu YT, Cheng FY, Takeda S, Enomoto H, Yen GC, Lin LC, Sakata R. Production, Analysis and in Vivo Antihypertensive Evaluation of Novel Angiotensin-I-converting Enzyme Inhibitory Peptides from Porcine Brain. FOOD SCIENCE AND TECHNOLOGY RESEARCH 2018. [DOI: 10.3136/fstr.24.541] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Affiliation(s)
| | | | - Shiro Takeda
- Department of Animal Science and Biotechnology, School of Veterinary Medicine, Azabu University
| | - Hirofumi Enomoto
- Department of Biosciences, Faculty of Science and Engineering, Teikyo Unibersity
| | | | | | - Ryoichi Sakata
- Department of Animal Science and Biotechnology, School of Veterinary Medicine, Azabu University
| |
Collapse
|
17
|
Li Y, Xu J, Su X. Analysis of Urine Composition in Type II Diabetic Mice after Intervention Therapy Using Holothurian Polypeptides. Front Chem 2017; 5:54. [PMID: 28798909 PMCID: PMC5526924 DOI: 10.3389/fchem.2017.00054] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2017] [Accepted: 07/11/2017] [Indexed: 12/21/2022] Open
Abstract
Hydrolysates and peptide fractions (PF) obtained from sea cucumber with commercial enzyme were studied on the hyperglycemic and renal protective effects on db/db rats using urine metabolomics. Compared with the control group the polypeptides from the two species could significantly reduce the urine glucose and urea. We also tried to address the compositions of highly expressed urinary proteins using a proteomics approach. They were serum albumins, AMBP proteins, negative trypsin, elastase, and urinary protein, GAPDH, a receptor of urokinase-type plasminogen activator (uPAR), and Ig kappa chain C region. We used the electronic nose to quickly detect changes in the volatile substances in mice urine after holothurian polypeptides (HPP) fed, and the results show it can identify the difference between treatment groups with the control group without overlapping. The protein express mechanism of HPP treating diabetes was discussed, and we suggested these two peptides with the hypoglycemic and renal protective activity might be utilized as nutraceuticals.
Collapse
Affiliation(s)
- Yanyan Li
- School of Marine Science, Ningbo UniversityZhejiang, China
- Department of Food Science, Cornell UniversityIthaca, NY, United States
| | - Jiajie Xu
- School of Marine Science, Ningbo UniversityZhejiang, China
- College of Engineering, China Agricultural UniversityBeijing, China
| | - Xiurong Su
- School of Marine Science, Ningbo UniversityZhejiang, China
| |
Collapse
|