1
|
Fontana A, Knuf F, Monasterio R, Schieber A. Screening of wine industry by-products as a source of bioactive peptides: Fractionation, in vitro antihypertensive activity and peptidomics analysis. Food Chem 2025; 476:143478. [PMID: 40023130 DOI: 10.1016/j.foodchem.2025.143478] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2024] [Revised: 02/07/2025] [Accepted: 02/16/2025] [Indexed: 03/04/2025]
Abstract
The suitability of grape pomace and wine lees protein isolates as a source of bioactive peptides with antihypertensive activity was evaluated through hydrolysis with different proteolytic enzymes. Peptides were initially fractionated by ultrafiltration. The determination of the angiotensin-converting enzyme inhibitory activity evidenced that hydrolysates of Flavourzyme from grape pomace and of Alcalase from wine lees showed higher bioactivities. The fractions <3 kDa of these hydrolysates were further purified by semipreparative reversed-phase liquid chromatography. The peptidome of the fractions showing the highest angiotensin-converting enzyme inhibitory activities was characterised by nano-liquid chromatography-Orbitrap tandem mass spectrometry. The analysis of the chemical features of identified peptides like hydrophobicity and the frequency of angiotensin-converting enzyme inhibitory-active di-, tri- and tetrapeptide motives was associated with the antihypertensive activity. The peptides GPCKFYYGK, FSSFYYGK and YYGKF, among others, appear to contribute significantly to the antihypertensive activity of the hydrolysates.
Collapse
Affiliation(s)
- Ariel Fontana
- Institute of Nutritional and Food Sciences, Molecular Food Technology, University of Bonn, Friedrich-Hirzebruch-Allee 7, D-53115 Bonn, Germany; Grupo de Bioquímica Vegetal, Instituto de Biología Agrícola de Mendoza CONICET-UNCuyo, Almirante Brown 500, Chacras de Coria, M5507, Argentina; Instituto de Hortofruticultura Subtropical y Mediterránea "La Mayora" (IHSM "La Mayora"), Universidad de Málaga-Consejo Superior de Investigaciones Científicas (UMA-CSIC), Campus Teatinos, 29010 Málaga, Spain
| | - Franziska Knuf
- Institute of Nutritional and Food Sciences, Molecular Food Technology, University of Bonn, Friedrich-Hirzebruch-Allee 7, D-53115 Bonn, Germany
| | - Romina Monasterio
- Grupo de Bioquímica Vegetal, Instituto de Biología Agrícola de Mendoza CONICET-UNCuyo, Almirante Brown 500, Chacras de Coria, M5507, Argentina
| | - Andreas Schieber
- Institute of Nutritional and Food Sciences, Molecular Food Technology, University of Bonn, Friedrich-Hirzebruch-Allee 7, D-53115 Bonn, Germany.
| |
Collapse
|
2
|
Azad H, Akbar MY, Sarfraz J, Haider W, Ghazanfar S. Simulation studies to identify high-affinity probiotic peptides for inhibiting PAK1 gastric cancer protein: A comparative approach. Comput Biol Chem 2025; 115:108345. [PMID: 39818002 DOI: 10.1016/j.compbiolchem.2025.108345] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2024] [Revised: 09/09/2024] [Accepted: 01/03/2025] [Indexed: 01/18/2025]
Abstract
A major threat to world health is the high death rate from gastrointestinal (GI) cancer, especially in Asia, South America, and Europe. The new approaches are needed because of the complexity and heterogeneity of gastrointestinal (GI) cancer, which has made the development of effective treatments difficult. To investigate the potential of peptide-based therapies that target the P21 Activated Kinase 1 (PAK1) in GI cancer, we are using the DBsORF database to predict peptides from the genomes of two bacterial strains: Lactobacillus plantarum and Pediococcus pentosaceus. Energy minimization is then applied for stability after the three-dimensional (3D) structures of these peptides are modeled using the Swiss Model tool. ToxinPred is used for toxicity analysis to verify the safety profiles of the identified peptides. The three-dimensional structure of the target protein PAK1 is taken out of the Protein Data Bank (PDB) and ready for computer analyses. To identify the top-performing peptides for each strain that have good PAK1 binding properties, molecular docking analysis is performed using the ClusPro server. The peptide repertoires of L.plantarum and P. pentosaceus are distinct, and some candidates display low toxicity; for instance, VOIOYA_1513 from P. pentosaceus and BVNTGZ_2921 from L. plantarum demonstrate high binding energies and stable interactions with PAK1. Once the binding energies, hydrogen bonds, and non-bonded contacts have been evaluated, promising peptide candidates are selected. Understanding the dynamics of the peptide-PAK1 complexes is achieved through molecular dynamics simulations performed with the Groningen machine for molecular simulation (Gromacs). Trajectory analysis measures like Radius of Gyration (Rg), Root Mean Square Deviation (RMSD), and Root Mean Square Fluctuation (RMSF) provide insight into the stability and fluctuations of the structure during a 100 ns simulation. Molecular dynamics simulations validate the stability of these complexes, suggesting that, subject to further experimental validation, they could be promising therapeutic candidates. Future research projects and drug development initiatives will benefit from the detailed computational approach, which offers information about the design and evaluation of peptide-based treatments that target PAK1 in GI cancer.
Collapse
Affiliation(s)
- Humera Azad
- Department of Biosciences (Bioinformatics) Islamabad, Comsats University Islamabad, Pakistan.
| | - Muhammad Yasir Akbar
- National Institute for Genomics and Advanced Biotechnology (NIGAB), National Agricultural Research Center (NARC), Pakistan.
| | | | - Waseem Haider
- Department of Biosciences (Bioinformatics) Islamabad, Comsats University Islamabad, Pakistan.
| | - Shakira Ghazanfar
- National Institute for Genomics and Advanced Biotechnology (NIGAB), National Agricultural Research Center (NARC), Pakistan.
| |
Collapse
|
3
|
Liu X, Zhao W, Gai X, Zhang M, Cui T, Du H, Jia A. Anticoagulant and angiotensin-converting enzyme inhibitory activities of a fucoidan from Sargassum horneri and its low molecular weight fragments prepared by acid degradation. Nat Prod Res 2025:1-10. [PMID: 40164128 DOI: 10.1080/14786419.2025.2478530] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2024] [Revised: 02/17/2025] [Accepted: 03/06/2025] [Indexed: 04/02/2025]
Abstract
A purified fucoidan SF (348 kDa) was isolated from Sargassum horneri. Six low molecular weight fragments SFs (75-8.1 kDa) were prepared by acid degradation from SF. Anticoagulant properties of SF and SFs were evaluated. SF and SFs with 75-17 kDa had better anticoagulant activities with the activated partial thromboplastin time (APTT) greater than 120 s at 200 μg/mL. The decrease in the molecular weight caused a decrease in anticoagulant activity, and a slight decrease almost resulted in loss of anticoagulant activity when below 17 kDa (APTT < 59 s). Angiotensin-converting-enzyme (ACE)-inhibitory activities were also detected. Only when the molecular weight dropped to a certain extent (8.1 kDa), the fucoidan showed ACE-inhibitory activity (IC50=2.16 mg/mL). Structure analysis indicated the main change of SFs was a reduction in molecular weight. Thus molecular weight is an essential factor affecting the bioactivities. Longer chains were essential to complete thrombin inhibition, whereas ACE-inhibitory activity required shorter ones.
Collapse
Affiliation(s)
- Xue Liu
- Biology Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan, China
| | - Wen Zhao
- Biology Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan, China
| | - Xinyue Gai
- Biology Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan, China
| | - Miansong Zhang
- Biology Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan, China
- Centre for Marine Bioproducts Development, College of Medicine and Public Health, Flinders University, Adelaide, South Australia, Australia
| | - Tingting Cui
- Biology Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan, China
| | - Hongfang Du
- Weihai Rensheng Pharmaceutical Group Co. Ltd, Weihai, China
- Weihai Rensheng Pharmaceutical Co. Ltd, Weihai, China
| | - Airong Jia
- Biology Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan, China
| |
Collapse
|
4
|
Chen C, Yu W, Kou X, Niu Y, Ji J, Shao Y, Wu S, Liu M, Xue Z. Recent advances in the effect of simulated gastrointestinal digestion and encapsulation on peptide bioactivity and stability. Food Funct 2025; 16:1634-1655. [PMID: 39943857 DOI: 10.1039/d4fo04447a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/04/2025]
Abstract
Food-derived bioactive peptides have garnered significant attention from researchers due to their specific biological functions, including antihypertensive, antioxidant, antidiabetic, anticancer, anti-inflammatory, and anti-osteoporosis properties. Despite extensive in vitro research, the bioactivity of these peptides may be compromised in the gastrointestinal tract due to enzymatic hydrolysis before reaching the bloodstream or target cells. Therefore, understanding the fate of bioactive peptides during digestion is crucial before advancing to clinical trials and commercial applications. To exert their health-promoting effects, these peptides must maintain their bioactivity throughout digestion. Encapsulation has emerged as a promising strategy for protecting peptides in the gastrointestinal tract. This review examines the effects of in vitro simulated gastrointestinal digestion on peptide bioactivity and stability, highlighting recent research on encapsulation strategies designed to enhance their gastrointestinal stability. Furthermore, the review addresses existing research gaps and suggests future research directions to advance our understanding and the application of bioactive peptides.
Collapse
Affiliation(s)
- Chenlong Chen
- School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, China.
| | - Wancong Yu
- Biotechnology Research Institute, Tianjin Academy of Agricultural Sciences, Tianjin 300384, China
| | - Xiaohong Kou
- School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, China.
| | - Yujia Niu
- School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, China.
| | - Jiaxin Ji
- School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, China.
| | - Ying Shao
- School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, China.
| | - Shuqi Wu
- School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, China.
| | - Mengyi Liu
- School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, China.
| | - Zhaohui Xue
- School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, China.
| |
Collapse
|
5
|
Cruz-Casas DE, Ramos-González R, Prado-Barragán LA, Iliná A, Aguilar CN, Rodríguez-Herrera R, Tsopmo A, Flores-Gallegos AC. Protein hydrolysates with ACE-I inhibitory activity from amaranth seeds fermented with Enterococcus faecium-LR9: Identification of peptides and molecular docking. Food Chem 2025; 464:141598. [PMID: 39413603 DOI: 10.1016/j.foodchem.2024.141598] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Revised: 09/25/2024] [Accepted: 10/07/2024] [Indexed: 10/18/2024]
Abstract
One of the causes of hypertension is the activity of angiotensin-I converting enzyme (ACEI), making its inhibition a crucial strategy for controlling the disease. Protein hydrolysates are a known source of bioactive peptides that contribute to ACE-I inhibition. This study aims to evaluate the ACE-I inhibitory activity of amaranth seed hydrolysates after fermentation with Enterococcus faecium-LR9 and to compare it with Leuconostoc mesenteroides-18C6 and enzymatic hydrolysis (Alcalase®). The fermentation strategy with LR9 proved to be more effective in inhibiting ACE-I (79.1 ± 2.6 %) in vitro compared to 18C6 (68.0 ± 9.8 %) and enzymatic hydrolysis (69.4 ± 1.2 %). Consequently, these protein hydrolysates were subjected to in silico analysis, identifying 125 novel peptides. Bioinformatics and molecular docking analyses revealed 10 peptides with high ACE-I inhibitory potential. Among them, the IFQFPKTY and VIKPPSRAW peptides stood out. Therefore, E. faecium-LR9 is a promising strain for the release of bioactive peptides from seed storage proteins.
Collapse
Affiliation(s)
- Dora Elisa Cruz-Casas
- School of Chemistry, Universidad Autónoma de Coahuila, Boulevard Venustiano Carranza e Ing. José Cárdenas Valdés s/n Col. República, 25280 Saltillo, Coahuila, Mexico
| | - Rodolfo Ramos-González
- CONAHCYT-Universidad Autónoma de Coahuila, Boulevard Venustiano Carranza e Ing. José Cárdenas Valdés s/n Col. República, 25280 Saltillo, Coahuila, Mexico
| | - Lilia Arely Prado-Barragán
- Biotechnology Department, Biological. Health Sciences Division, Universidad Autónoma Metropolitana, Iztapalapa Campus, 09340 Ciudad de México, Mexico
| | - Anna Iliná
- Nanobioscience Group, School of Chemistry, Universidad Autónoma de Coahuila. Boulevard Venustiano Carranza e Ing. José Cárdenas Valdés s/n Col. República, 25280 Saltillo, Coahuila, Mexico
| | - Cristóbal N Aguilar
- School of Chemistry, Universidad Autónoma de Coahuila, Boulevard Venustiano Carranza e Ing. José Cárdenas Valdés s/n Col. República, 25280 Saltillo, Coahuila, Mexico
| | - Raúl Rodríguez-Herrera
- School of Chemistry, Universidad Autónoma de Coahuila, Boulevard Venustiano Carranza e Ing. José Cárdenas Valdés s/n Col. República, 25280 Saltillo, Coahuila, Mexico
| | - Apollinaire Tsopmo
- Food Science Program, Department of Chemistry, Carleton University, 1125 Colonel By Drive, Ottawa, ON K1S 5B6, Canada..
| | - Adriana Carolina Flores-Gallegos
- School of Chemistry, Universidad Autónoma de Coahuila, Boulevard Venustiano Carranza e Ing. José Cárdenas Valdés s/n Col. República, 25280 Saltillo, Coahuila, Mexico.
| |
Collapse
|
6
|
Knuf F, Caspers-Weiffenbach R, Schieber A, Fontana A. Peptidomics profiling and biological activities of grape pomace protein hydrolysates. Food Chem 2025; 463:141032. [PMID: 39236395 DOI: 10.1016/j.foodchem.2024.141032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Revised: 08/16/2024] [Accepted: 08/27/2024] [Indexed: 09/07/2024]
Abstract
Grape pomace protein isolate was hydrolysed by Alcalase, Flavourzyme and Protease either individually or in combination to produce hydrolysates with antihypertensive and antimicrobial properties. The degree of hydrolysis (DH) ranged between 22 and 52 % for Protease and Flavourzyme, respectively. Among all treatments, hydrolysates prepared using Flavourzyme exhibited the highest angiotensin-converting enzyme inhibitory (ACEi) activity, with an IC50 value of 91 μg/mL. The peptidomics analysis revealed that the peptides identified in Flavourzyme hydrolysate presented molecular features compatible with its bioactivity, like a high density of ACEi sequences per peptide. The hydrolysates were also able to inhibit the growth of Escherichia coli in a range between 9 and 54 % for Alcalase and Alcalase + Flavourzyme, respectively. Peptides in the most active hydrolysate evidenced a high occurrence of proline residues, which is a structural feature of some antimicrobial peptides.
Collapse
Affiliation(s)
- Franziska Knuf
- Institute of Nutritional and Food Sciences, Molecular Food Technology, University of Bonn, Friedrich-Hirzebruch-Allee 7, 53115 Bonn, Germany
| | - Rita Caspers-Weiffenbach
- Institute of Nutritional and Food Sciences, Molecular Food Technology, University of Bonn, Friedrich-Hirzebruch-Allee 7, 53115 Bonn, Germany
| | - Andreas Schieber
- Institute of Nutritional and Food Sciences, Molecular Food Technology, University of Bonn, Friedrich-Hirzebruch-Allee 7, 53115 Bonn, Germany.
| | - Ariel Fontana
- Institute of Nutritional and Food Sciences, Molecular Food Technology, University of Bonn, Friedrich-Hirzebruch-Allee 7, 53115 Bonn, Germany; Grupo de Bioquímica Vegetal, Instituto de Biología Agrícola de Mendoza CONICET-UNCuyo, Almirante Brown 500, Chacras de Coria, M5507, Argentina.
| |
Collapse
|
7
|
Feng D, Han D, Li M, Li H, Li N, Liu T, Wang J. Protein nutritional support: The prevention and regulation of colorectal cancer and its mechanism research. FOOD FRONTIERS 2024; 5:2515-2532. [DOI: 10.1002/fft2.478] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2025] Open
Abstract
AbstractColorectal cancer (CRC) is a common malignant tumor of the digestive tract in China; its incidence rates and mortality rates have been on the rise in recent years, ranking third in terms of incidence and second in mortality. Rational dietary intervention plays an important role in human health, and prevention and adjuvant treatment of CRC through dietary supplementation is the most ideal and safest way to treat the disease at present. More importantly, dietary protein is the basis of our diet and the key nutrient to maintain the normal function of the human body. Therefore, this narrative review delivered an overview of the common causes and therapeutic treatments for CRC. It emphasized the importance of dietary interventions, with a particular focus on elucidating the distinct regulatory impacts of plant proteins, animal proteins, and their mixed proteins.
Collapse
Affiliation(s)
- Duo Feng
- Institute of Food and Nutrition Development Ministry of Agriculture and Rural Affairs Beijing China
| | - Di Han
- Institute of Food and Nutrition Development Ministry of Agriculture and Rural Affairs Beijing China
| | - Mengjie Li
- Institute of Food and Nutrition Development Ministry of Agriculture and Rural Affairs Beijing China
| | - Hu Li
- Institute of Food and Nutrition Development Ministry of Agriculture and Rural Affairs Beijing China
| | - Na Li
- Institute of Food and Nutrition Development Ministry of Agriculture and Rural Affairs Beijing China
| | - Tianxin Liu
- Institute of Food and Nutrition Development Ministry of Agriculture and Rural Affairs Beijing China
| | - Jing Wang
- Institute of Food and Nutrition Development Ministry of Agriculture and Rural Affairs Beijing China
| |
Collapse
|
8
|
Rodríguez Longarela N, Paredes Ramos M, López Vilariño JM. Bioinformatics tools for the study of bioactive peptides from vegetal sources: evolution and future perspectives. Crit Rev Food Sci Nutr 2024:1-20. [PMID: 38907628 DOI: 10.1080/10408398.2024.2367571] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/24/2024]
Abstract
Bioactive peptides from vegetal sources have been shown to have functional properties as anti-inflammatory, antioxidant, antihypertensive or antidiabetic capacity. For this reason, they have been proposed as an interesting and promising alternative to improve human health. In recent years, the numerous advances in the bioinformatics field for in silico prediction have speeded up the discovery of bioactive peptides, also reducing the associated costs when using an integrated approach between the classical and bioinformatics discovery. This review aims to provide an overview of the evolution, limitations and latest advances in the field of bioinformatics and computational tools, and specifically make a critical and comprehensive insight into computational techniques used to study the mechanism of interaction that allows the explanation of plant bioactive peptide functionality. In particular, molecular docking is considered key to explain the different functionalities that have been previously identified. The assumptions to simplify such a high complex environment implies a degree of uncertainty that can only be guaranteed and validated by in vitro or in vivo studies, however, the combination of databases, software and bioinformatics applications with the classical approach has become a promising procedure for the study of bioactive peptides.
Collapse
|
9
|
Flaibam B, da Silva MF, de Mélo AHF, Carvalho PH, Galland F, Pacheco MTB, Goldbeck R. Non-animal protein hydrolysates from agro-industrial wastes: A prospect of alternative inputs for cultured meat. Food Chem 2024; 443:138515. [PMID: 38277934 DOI: 10.1016/j.foodchem.2024.138515] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Revised: 01/17/2024] [Accepted: 01/18/2024] [Indexed: 01/28/2024]
Abstract
In light of the growing demand for alternative protein sources, laboratory-grown meat has been proposed as a potential solution to the challenges posed by conventional meat production. Cultured meat does not require animal slaughter and uses sustainable production methods, contributing to animal welfare, human health, and environmental sustainability. However, some challenges still need to be addressed in cultured meat production, such as the use of fetal bovine serum for medium supplementation. This ingredient has limited availability, increases production costs, and raises ethical concerns. This review explores the potential of non-animal protein hydrolysates derived from agro-industrial wastes as substitutes for critical components of fetal bovine serum in cultured meat production. Despite the lack of standardization of hydrolysate composition, the potential benefits of this alternative protein source may outweigh its disadvantages. Future research holds promise for increasing the accessibility of cultured meat.
Collapse
Affiliation(s)
- Bárbara Flaibam
- Bioprocess and Metabolic Engineering Laboratory, Department of Food Engineering and Technology, School of Food Engineering, University of Campinas (UNICAMP), Rua Monteiro Lobato, 80, Campinas, SP 13083-862, Brazil
| | - Marcos F da Silva
- Bioprocess and Metabolic Engineering Laboratory, Department of Food Engineering and Technology, School of Food Engineering, University of Campinas (UNICAMP), Rua Monteiro Lobato, 80, Campinas, SP 13083-862, Brazil
| | - Allan H Félix de Mélo
- Bioprocess and Metabolic Engineering Laboratory, Department of Food Engineering and Technology, School of Food Engineering, University of Campinas (UNICAMP), Rua Monteiro Lobato, 80, Campinas, SP 13083-862, Brazil
| | - Priscila Hoffmann Carvalho
- Bioprocess and Metabolic Engineering Laboratory, Department of Food Engineering and Technology, School of Food Engineering, University of Campinas (UNICAMP), Rua Monteiro Lobato, 80, Campinas, SP 13083-862, Brazil
| | - Fabiana Galland
- Institute of Food Technology (ITAL), Avenida Brasil, 2880, PO Box 139, Campinas, SP 13070-178, Brazil
| | | | - Rosana Goldbeck
- Bioprocess and Metabolic Engineering Laboratory, Department of Food Engineering and Technology, School of Food Engineering, University of Campinas (UNICAMP), Rua Monteiro Lobato, 80, Campinas, SP 13083-862, Brazil.
| |
Collapse
|
10
|
Berraquero-García C, Martínez-Sánchez L, Guadix EM, García-Moreno PJ. Encapsulation of Tenebrio molitor Hydrolysate with DPP-IV Inhibitory Activity by Electrospraying and Spray-Drying. NANOMATERIALS (BASEL, SWITZERLAND) 2024; 14:840. [PMID: 38786796 PMCID: PMC11123797 DOI: 10.3390/nano14100840] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 05/07/2024] [Accepted: 05/08/2024] [Indexed: 05/25/2024]
Abstract
This study investigates the encapsulation of Tenebrio molitor hydrolysate exhibiting DPP-IV inhibitory activity by spray-drying and electrospraying techniques. First, we optimized the feed formulation and processing conditions required to obtain nano-microcapsules by electrospraying when using Arabic gum as an encapsulating agent and pullulan and Tween 20 as additives. The optimum formulation was also dried by spray-drying, where the removal of the additives was also assayed. Morphology analysis reveals that electrosprayed capsules have a smaller size (1.2 ± 0.5 µm vs. 12.4 ± 8.7 µm) and greater uniformity compared to those obtained by spray-drying. Regarding the surface nitrogen content and DPP-IV inhibitory activity, our results show no significant difference between the electrosprayed capsules and spray-dried capsules containing additives (IC50 of ~1.5 mg protein/mL). Therefore, it was concluded that adding additives during spray-drying allows for a similar encapsulation efficiency and reduced degradation during processing, as achieved by electrospraying technique but providing higher productivity. On the other hand, spray-dried capsules without additives displayed a higher surface nitrogen content percentage, which was mainly due to the absence of Tween 20 in the feed formulation. Consequently, these capsules presented a higher IC50 value (IC50 of 1.99 ± 0.03 mg protein/mL) due to the potential degradation of surface-exposed peptides.
Collapse
Affiliation(s)
| | | | | | - Pedro J. García-Moreno
- Department of Chemical Engineering, Faculty of Sciences, University of Granada, 18071 Granada, Spain; (L.M.-S.); (E.M.G.)
| |
Collapse
|
11
|
Cacak-Pietrzak G, Sujka K, Księżak J, Bojarszczuk J, Ziarno M, Studnicki M, Krajewska A, Dziki D. Assessment of Physicochemical Properties and Quality of the Breads Made from Organically Grown Wheat and Legumes. Foods 2024; 13:1244. [PMID: 38672916 PMCID: PMC11049594 DOI: 10.3390/foods13081244] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2024] [Revised: 04/15/2024] [Accepted: 04/17/2024] [Indexed: 04/28/2024] Open
Abstract
This study aimed to explore the feasibility of substituting wheat flour with varying levels (10%, 15%, 20%, and 25%) of flour derived from field bean, chickpea, lentil, and pea seeds. The investigation focused on assessing the physical properties of wheat dough and the physicochemical characteristics of bread samples. The addition of legume seed flours significantly influenced the dough's development time, particularly with chickpea flour causing a notable increase in this parameter. While dough stability was generally shorter for mixtures containing wheat flour and legume seed flour, chickpea flour was an exception, significantly prolonging dough stability time. Furthermore, the inclusion of legume flours resulted in increased protein, ash, fiber, fat, and phenolic contents in the enriched bread, while the carbohydrate content decreased. Additionally, the crumb exhibited increased redness and yellowness and decreased lightness due to the enrichment of the bread. Notably, the antioxidant activity of bread containing legume flour also increased, with the most significant increase observed when pea flour was utilized. Conversely, negative effects on bread volume, crumb density, and texture parameters were noted with the incorporation of legume additives. Taking into consideration the results of both physicochemical analyses and sensory evaluation, it is recommended that the incorporation of the specified legume flours should not exceed 15% in relation to the quantity of wheat flour used.
Collapse
Affiliation(s)
- Grażyna Cacak-Pietrzak
- Department of Food Technology and Assessment, Institute of Food Sciences, Warsaw University of Life Sciences, 159C Nowoursynowska Street, 02-776 Warsaw, Poland; (G.C.-P.); (K.S.); (M.Z.)
| | - Katarzyna Sujka
- Department of Food Technology and Assessment, Institute of Food Sciences, Warsaw University of Life Sciences, 159C Nowoursynowska Street, 02-776 Warsaw, Poland; (G.C.-P.); (K.S.); (M.Z.)
| | - Jerzy Księżak
- Department of Forage Crop Production, Institute of Soil Sciences and Plant Cultivation—State Research Institute, 8 Czartoryskich Street, 24-100 Pulawy, Poland; (J.K.); (J.B.)
| | - Jolanta Bojarszczuk
- Department of Forage Crop Production, Institute of Soil Sciences and Plant Cultivation—State Research Institute, 8 Czartoryskich Street, 24-100 Pulawy, Poland; (J.K.); (J.B.)
| | - Małgorzata Ziarno
- Department of Food Technology and Assessment, Institute of Food Sciences, Warsaw University of Life Sciences, 159C Nowoursynowska Street, 02-776 Warsaw, Poland; (G.C.-P.); (K.S.); (M.Z.)
| | - Marcin Studnicki
- Department of Biometry, Institute of Agricuture, Warsaw University of Life Sciences, 159C Nowoursynowska Street, 02-776 Warsaw, Poland;
| | - Anna Krajewska
- Department of Thermal Technology and Food Process Engineering, University of Life Sciences in Lublin, 31 Głęboka Street, 20-612 Lublin, Poland;
| | - Dariusz Dziki
- Department of Thermal Technology and Food Process Engineering, University of Life Sciences in Lublin, 31 Głęboka Street, 20-612 Lublin, Poland;
| |
Collapse
|
12
|
Cipollone MA, Abraham AG, Fontana A, Tironi VA. Autochthonous Fermentation as a Means to Improve the Bioaccessibility and Antioxidant Activity of Proteins and Phenolic Compounds of Yellow Pea Flour. Foods 2024; 13:659. [PMID: 38472775 DOI: 10.3390/foods13050659] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 02/12/2024] [Accepted: 02/17/2024] [Indexed: 03/14/2024] Open
Abstract
This study focused on evaluating the potential of the natural fermentation of pea flour to improve the release of antioxidant compounds. Preliminary fermentations of 36.4% w/w flour dispersions were performed in tubes under different conditions (24 and 48 h, 30 and 37 °C). Finally, fermented flours (FFs) were obtained in a bioreactor under two conditions: 1: 36.4% w/w, 24 h, 30 °C (FF1); 2: 14.3% w/w, 24 h, 37 °C (FF2). The pH values decreased to 4.4-4.7, with a predominance of lactic acid bacteria. As in the fermentations in tubes, an increment in the proteolysis degree (TNBS method) (greater for FF2), polypeptide aggregation and a decrease in their solubility, an increase in <2 kDa peptides, and an increase in the Oxygen Radical Absorption Capacity (ORAC) potency of PBS-soluble fractions after fermentation were demonstrated. Also, fermentation increased the proteolysis degree after simulated gastrointestinal digestion (SGID, COST-INFOGEST) with respect to the non-fermented flour digests, with some differences in the molecular composition of the different digests. ORAC and Hydroxyl Radical Averting Capacity (HORAC) potencies increased in all cases. The digest of FF2 (FF2D) presented the greater ORAC value, with higher activities for >4 kDa, as well as for some fractions in the ranges 2-0.3 kDa and <0.10 kDa. Fermentation also increased the 60%-ethanol-extracted phenolic compounds, mainly flavonoids, and the ORAC activity. After SGID, the flavan-3-ols disappeared, but some phenolic acids increased with respect to the flour. Fermentation in condition 2 was considered the most appropriate to obtain a functional antioxidant ingredient.
Collapse
Affiliation(s)
- María Agustina Cipollone
- Centro de Investigación y Desarrollo en Criotecnología de Alimentos (CIDCA), Centro Científico Tecnológico La Plata-Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Comisión de Investigaciones Científicas de la Provincia de Buenos Aires (CICPBA), Universidad Nacional de La Plata (UNLP), 47 y 116, La Plata B1900AJJ, Argentina
| | - Analía G Abraham
- Centro de Investigación y Desarrollo en Criotecnología de Alimentos (CIDCA), Centro Científico Tecnológico La Plata-Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Comisión de Investigaciones Científicas de la Provincia de Buenos Aires (CICPBA), Universidad Nacional de La Plata (UNLP), 47 y 116, La Plata B1900AJJ, Argentina
- Área Bioquímica y Control de Alimentos, Facultad de Ciencias Exactas, Universidad Nacional de La Plata (UNLP), 47 y 115, La Plata B1900AJJ, Argentina
| | - Ariel Fontana
- Instituto de Biología Agrícola de Mendoza (IBAM), CONICET, Facultad de Ciencias Agrarias (FCA), Universidad Nacional de Cuyo (IBAM-CONICET-FCA-UNCuyo), Almirante Brown 500, Chacras de Coria M5528AHB, Argentina
| | - Valeria A Tironi
- Centro de Investigación y Desarrollo en Criotecnología de Alimentos (CIDCA), Centro Científico Tecnológico La Plata-Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Comisión de Investigaciones Científicas de la Provincia de Buenos Aires (CICPBA), Universidad Nacional de La Plata (UNLP), 47 y 116, La Plata B1900AJJ, Argentina
| |
Collapse
|
13
|
Szerszunowicz I, Kozicki S. Plant-Derived Proteins and Peptides as Potential Immunomodulators. Molecules 2023; 29:209. [PMID: 38202792 PMCID: PMC10780438 DOI: 10.3390/molecules29010209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2023] [Revised: 12/26/2023] [Accepted: 12/27/2023] [Indexed: 01/12/2024] Open
Abstract
The immune response of humans may be modulated by certain biopeptides. The present study aimed to determine the immunomodulatory potential of plant-derived food proteins and hydrolysates obtained from these proteins via monocatalytic in silico hydrolysis (using ficin, stem bromelainm or pepsin (pH > 2)). The scope of this study included determinations of the profiles of select bioactivities of proteins before and after hydrolysis and computations of the frequency of occurrence of selected bioactive fragments in proteins (parameter A), frequency/relative frequency of the release of biopeptides (parameters AE, W) and the theoretical degree of hydrolysis (DHt), by means of the resources and programs available in the BIOPEP-UWM database. The immunomodulating (ImmD)/immunostimulating (ImmS) peptides deposited in the database were characterized as well (ProtParam tool). Among the analyzed proteins of cereals and legumes, the best precursors of ImmD immunopeptides (YG, YGG, GLF, TPRK) turned out to be rice and garden pea proteins, whereas the best precursors of ImmS peptides appeared to be buckwheat (GVM, GFL, EAE) and broad bean (LLY, EAE) proteins. The highest number of YG sequences was released by stem bromelain upon the simulated hydrolysis of rice proteins (AE = 0.0010-0.0820, W = 0.1994-1.0000, DHt = 45-82%). However, antibacterial peptides (IAK) were released by ficin only from rice, oat, and garden pea proteins (DHt = 41-46%). Biopeptides (YG, IAK) identified in protein hydrolysates are potential immunomodulators, nutraceuticals, and components of functional food that may modulate the activity of the human immune system. Stem bromelain and ficin are also active components that are primed to release peptide immunomodulators from plant-derived food proteins.
Collapse
Affiliation(s)
- Iwona Szerszunowicz
- Department of Food Biochemistry, University of Warmia and Mazury in Olsztyn, Plac Cieszyński 1, 10-726 Olsztyn-Kortowo, Poland
| | | |
Collapse
|
14
|
Zhu F, Cao J, Song Y, Yu P, Su E. Plant Protein-Derived Active Peptides: A Comprehensive Review. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:20479-20499. [PMID: 38109192 DOI: 10.1021/acs.jafc.3c06882] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2023]
Abstract
Active peptides are a class of physiologically active protein fragments, which can be prepared from different sources. In the past few decades, the production of peptides with various effects from different plant proteins continues to receive academic attention. With advances in extraction, purification, and characterization techniques, plant protein-derived active peptides continue to be discovered. They have been proven to have various functional activities such as antioxidant, antihypertensive, immunomodulatory, antimicrobial, anti-inflammatory, antidiabetic, antithrombotic, and so on. In this review, we searched Web of Science and China National Knowledge Infrastructure for relevant articles published in recent years. There are 184 articles included in this manuscript. The current status of plant protein-derived active peptides is systematically introduced, including their sources, preparation, purification and identification methods, physiological activities, and applications in the food industry. Special emphasis has been placed on the problems of active peptide exploration and the future trend. Based on these, it is expected to provide theoretical reference for the further exploitation of plant protein-derived active peptides, and promote the healthy and rapid development of active peptide industry.
Collapse
Affiliation(s)
- Feng Zhu
- Co-innovation Center for the Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing 210037, P. R. China
- Department of Food Science and Technology, College of Light Industry and Food Engineering, Nanjing Forestry University, Nanjing 210037, P. R. China
| | - Jiarui Cao
- Co-innovation Center for the Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing 210037, P. R. China
- Department of Food Science and Technology, College of Light Industry and Food Engineering, Nanjing Forestry University, Nanjing 210037, P. R. China
| | - Yiting Song
- Co-innovation Center for the Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing 210037, P. R. China
- Department of Food Science and Technology, College of Light Industry and Food Engineering, Nanjing Forestry University, Nanjing 210037, P. R. China
| | - Pengfei Yu
- Suining County Runqi Investment Company, Limited, Xuzhou 221225, P. R. China
| | - Erzheng Su
- Co-innovation Center for the Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing 210037, P. R. China
- Department of Food Science and Technology, College of Light Industry and Food Engineering, Nanjing Forestry University, Nanjing 210037, P. R. China
- Co-Innovation Center for Efficient Processing and Utilization of Forest Products, Nanjing Forestry University, Nanjing 210037, P. R. China
- Bai Ma Future Food Research Institute, Nanjing 211225, P. R. China
| |
Collapse
|
15
|
Zhang Y, Liu L, Zhang M, Li S, Wu J, Sun Q, Ma S, Cai W. The Research Progress of Bioactive Peptides Derived from Traditional Natural Products in China. Molecules 2023; 28:6421. [PMID: 37687249 PMCID: PMC10489889 DOI: 10.3390/molecules28176421] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2023] [Revised: 08/20/2023] [Accepted: 08/30/2023] [Indexed: 09/10/2023] Open
Abstract
Traditional natural products in China have a long history and a vast pharmacological repertoire that has garnered significant attention due to their safety and efficacy in disease prevention and treatment. Among the bioactive components of traditional natural products in China, bioactive peptides (BPs) are specific protein fragments that have beneficial effects on human health. Despite many of the traditional natural products in China ingredients being rich in protein, BPs have not received sufficient attention as a critical factor influencing overall therapeutic efficacy. Therefore, the purpose of this review is to provide a comprehensive summary of the current methodologies for the preparation, isolation, and identification of BPs from traditional natural products in China and to classify the functions of discovered BPs. Insights from this review are expected to facilitate the development of targeted drugs and functional foods derived from traditional natural products in China in the future.
Collapse
Affiliation(s)
- Yanyan Zhang
- College of Food Science and Pharmacy, Xinjiang Agricultural University, Urumqi 830052, China; (Y.Z.); (Q.S.)
| | - Lianghong Liu
- School of Pharmaceutical Sciences, Hunan University of Medicine, Huaihua 418000, China; (L.L.); (M.Z.); (S.L.); (J.W.)
| | - Min Zhang
- School of Pharmaceutical Sciences, Hunan University of Medicine, Huaihua 418000, China; (L.L.); (M.Z.); (S.L.); (J.W.)
| | - Shani Li
- School of Pharmaceutical Sciences, Hunan University of Medicine, Huaihua 418000, China; (L.L.); (M.Z.); (S.L.); (J.W.)
| | - Jini Wu
- School of Pharmaceutical Sciences, Hunan University of Medicine, Huaihua 418000, China; (L.L.); (M.Z.); (S.L.); (J.W.)
| | - Qiuju Sun
- College of Food Science and Pharmacy, Xinjiang Agricultural University, Urumqi 830052, China; (Y.Z.); (Q.S.)
| | - Shengjun Ma
- College of Food Science and Pharmacy, Xinjiang Agricultural University, Urumqi 830052, China; (Y.Z.); (Q.S.)
| | - Wei Cai
- School of Pharmaceutical Sciences, Hunan University of Medicine, Huaihua 418000, China; (L.L.); (M.Z.); (S.L.); (J.W.)
| |
Collapse
|
16
|
Youssef SM, Shaaban A, Abdelkhalik A, Abd El Tawwab AR, Abd Al Halim LR, Rabee LA, Alwutayd KM, Ahmed RMM, Alwutayd R, Hemida KA. Compost and Phosphorus/Potassium-Solubilizing Fungus Effectively Boosted Quinoa's Physio-Biochemical Traits, Nutrient Acquisition, Soil Microbial Community, and Yield and Quality in Normal and Calcareous Soils. PLANTS (BASEL, SWITZERLAND) 2023; 12:3071. [PMID: 37687318 PMCID: PMC10489913 DOI: 10.3390/plants12173071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 08/12/2023] [Accepted: 08/23/2023] [Indexed: 09/01/2023]
Abstract
Calcareous soil had sufficient phosphorus and potassium (PK) in different forms due to the high contents of PK-bearing minerals; however, the available PK state was reduced due to its PK-fixation capacity. Compost, coupled with high PK solubilization capacity microbes, is a sustainable solution for bioorganic fertilization of plants grown in calcareous soil. A 2-year field experiment was conducted to investigate the effect of compost (20 t ha-1) with Aspergillus niger through soil drenching (C-AN) along with partial substitution of PK fertilization on quinoa performance in normal and calcareous soils. Treatments included PK100% (72 kg P2O5 ha-1 + 60 kg K2O ha-1 as conventional rate), PK100%+C-AN, PK75%+C-AN, PK50%+C-AN, PK25%+C-AN, and only C-AN in normal and calcareous soils. Results showed that C-AN and reduced PK fertilization (up to 75 or 50%) increased photosynthetic pigments and promoted nutrient acquisition in quinoa grown in calcareous soil. Reduced PK fertilization to 75 or 50% plus C-AN in calcareous soil increased osmoprotectants, nonenzymatic antioxidants, and DPPH scavenging activity of quinoa's leaves compared to the PK0%+C-AN treatment. The integrative application of high PK levels and C-AN enhanced the quinoa's seed nutritional quality (i.e., lipids, carbohydrates, mineral contents, total phenolics, total flavonoids, half maximal inhibitory concentration, and antiradical power) in calcareous soil. At reduced PK fertilization (up to 75 or 50%), application of compost with Aspergillus niger through soil drenching increased plant dry weight by 38.7 or 53.2%, hectoliter weight by 3.0 or 2.4%, seed yield by 49.1 or 39.5%, and biological yield by 43.4 or 33.6%, respectively, compared to PK0%+C-AN in calcareous soil. The highest P-solubilizing microorganism's population was found at PK0%+C-AN in calcareous soil, while the highest Azotobacter sp. population was observed under high PK levels + C-AN in normal soil. Our study recommends that compost with Aspergillus niger as a bioorganic fertilization treatment can partially substitute PK fertilization and boost quinoa's tolerance to salt calcareous-affected soil.
Collapse
Affiliation(s)
- Samah M. Youssef
- Horticulture Department, Faculty of Agriculture, Fayoum University, Fayoum 63514, Egypt; (S.M.Y.); (A.A.)
| | - Ahmed Shaaban
- Agronomy Department, Faculty of Agriculture, Fayoum University, Fayoum 63514, Egypt
| | - Abdelsattar Abdelkhalik
- Horticulture Department, Faculty of Agriculture, Fayoum University, Fayoum 63514, Egypt; (S.M.Y.); (A.A.)
| | - Ahmed R. Abd El Tawwab
- Soil and Water Department, Faculty of Agriculture, Fayoum University, Fayoum 63514, Egypt; (A.R.A.E.T.); (R.M.M.A.)
| | - Laila R. Abd Al Halim
- Agricultural Microbiology Department, Faculty of Agriculture, Fayoum University, Fayoum 63514, Egypt;
| | - Laila A. Rabee
- Department of Food Science and Technology, Faculty of Agriculture, Fayoum University, Fayoum 63514, Egypt;
| | - Khairiah Mubarak Alwutayd
- Department of Biology, College of Science, Princess Nourah bint Abdulrahman University, Riyadh 11671, Saudi Arabia;
| | - Reda M. M. Ahmed
- Soil and Water Department, Faculty of Agriculture, Fayoum University, Fayoum 63514, Egypt; (A.R.A.E.T.); (R.M.M.A.)
| | - Rahaf Alwutayd
- Department of Information Technology, College of Computer and Information Science, Princess Nourah bint Abdulrahman University, Riyadh 11671, Saudi Arabia;
| | - Khaulood A. Hemida
- Botany Department, Faculty of Science, Fayoum University, Fayoum 63514, Egypt;
| |
Collapse
|
17
|
Mao J, Li S, Yun L, Zhang M. Structural Identification and Antioxidant Activity of Loach Protein Enzymatic Hydrolysates. Molecules 2023; 28:molecules28114391. [PMID: 37298867 DOI: 10.3390/molecules28114391] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Revised: 05/25/2023] [Accepted: 05/25/2023] [Indexed: 06/12/2023] Open
Abstract
Loach, rich in nutrients, such as proteins, amino acids, and mineral elements, is being gradually favored by consumers. Therefore, in this study, the antioxidant activity and structural characteristics of loach peptides were comprehensively analyzed. The loach protein (LAP) with a molecular weight between 150 and 3000 Da was graded by ultrafiltration and nanofiltration processes, which exhibited excellent scavenging activity against DPPH radical (IC50 2.91 ± 0.02 mg/mL), hydroxyl radical (IC50 9.95 ± 0.03 mg/mL), and superoxide anion radical (IC50 13.67 ± 0.33 mg/mL). Additionally, LAP was purified by gel filtration chromatography, and two principal components (named as LAP-I and LAP-II) were isolated. A total of 582 and 672 peptides were identified in LAP-I and LAP-II, respectively, through structural analysis. The XRD results revealed that LAP-I and LAP-II had an irregular amorphous structure. The 2D-NMR spectroscopy results suggested that LAP-I had a compact stretch conformation in the D2O solution, while LAP-II had a folded conformation. Overall, the study results suggested that loach peptide could be a potential antioxidant agent and might provide valuable information for chain conformation and antioxidant mechanism research further.
Collapse
Affiliation(s)
- Jinrong Mao
- China-Russia Agricultural Processing Joint Laboratory, Tianjin Agricultural University, Tianjin 300384, China
| | - Shunqin Li
- State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Liyuan Yun
- China-Russia Agricultural Processing Joint Laboratory, Tianjin Agricultural University, Tianjin 300384, China
| | - Min Zhang
- China-Russia Agricultural Processing Joint Laboratory, Tianjin Agricultural University, Tianjin 300384, China
- State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science and Technology, Tianjin 300457, China
| |
Collapse
|
18
|
Li X, Li Y, Gao J, Mi S, Mao K, Zhang T, Wang X, Sang Y. Chemical composition of naturally-fermented mixed fruit product and in vitro bioactivities. Lebensm Wiss Technol 2023; 181:114771. [DOI: 10.1016/j.lwt.2023.114771] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
19
|
Duan X, Dong Y, Zhang M, Li Z, Bu G, Chen F. Identification and molecular interactions of novel ACE inhibitory peptides from rapeseed protein. Food Chem 2023; 422:136085. [PMID: 37141758 DOI: 10.1016/j.foodchem.2023.136085] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Revised: 03/20/2023] [Accepted: 03/29/2023] [Indexed: 05/06/2023]
Abstract
Plant-derived bioactive peptides have drawn much attention because of their physiological functions. This study aimed to evaluate bioactive peptides in rapeseed protein and identify novel angiotensin Ⅰ-converting enzyme (ACE) inhibitory peptides using bioinformatics methods. A total of 24 kinds of bioactive peptides were encrypted in the 12 selected rapeseed proteins by analysis in BIOPEP-UWM, with higher occurrence frequency of dipeptidyl peptidase Ⅳ (DPP-Ⅳ) inhibitory peptides (0.5727-0.7487) and ACE inhibitory peptides (0.3500-0.5364). Novel ACE inhibitory peptides FQW, FRW and CPF were identified by in silico proteolysis, and they had strong inhibitory effects on ACE in vitro, showing IC50 values of 44.84 ± 1.48 μM, 46.30 ± 1.39 μM and 131.35 ± 3.87 μM, respectively. Molecular docking results displayed that these three peptides were able to interact with ACE active site via hydrogen bonds and hydrophobic interactions, and coordinate with Zn2+. It suggested that rapeseed protein could be a good source for the production of ACE inhibitory peptides.
Collapse
Affiliation(s)
- Xiaojie Duan
- College of Food Science and Technology, Henan University of Technology, Zhengzhou 450001, China.
| | - Yifan Dong
- College of Food Science and Technology, Henan University of Technology, Zhengzhou 450001, China.
| | - Min Zhang
- College of Food Science and Technology, Henan University of Technology, Zhengzhou 450001, China.
| | - Zihui Li
- College of Food Science and Technology, Henan University of Technology, Zhengzhou 450001, China.
| | - Guanhao Bu
- College of Food Science and Technology, Henan University of Technology, Zhengzhou 450001, China.
| | - Fusheng Chen
- College of Food Science and Technology, Henan University of Technology, Zhengzhou 450001, China.
| |
Collapse
|
20
|
Dini I, Mancusi A. Food Peptides for the Nutricosmetic Industry. Antioxidants (Basel) 2023; 12:antiox12040788. [PMID: 37107162 PMCID: PMC10135249 DOI: 10.3390/antiox12040788] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 03/18/2023] [Accepted: 03/21/2023] [Indexed: 04/29/2023] Open
Abstract
In recent years, numerous reports have described bioactive peptides (biopeptides)/hydrolysates produced from various food sources. Biopeptides are considered interesting for industrial application since they show numerous functional properties (e.g., anti-aging, antioxidant, anti-inflammatory, and antimicrobial properties) and technological properties (e.g., solubility, emulsifying, and foaming). Moreover, they have fewer side effects than synthetic drugs. Nevertheless, some challenges must be overcome before their administration via the oral route. The gastric, pancreatic, and small intestinal enzymes and acidic stomach conditions can affect their bioavailability and the levels that can reach the site of action. Some delivery systems have been studied to avoid these problems (e.g., microemulsions, liposomes, solid lipid particles). This paper summarizes the results of studies conducted on biopeptides isolated from plants, marine organisms, animals, and biowaste by-products, discusses their potential application in the nutricosmetic industry, and considers potential delivery systems that could maintain their bioactivity. Our results show that food peptides are environmentally sustainable products that can be used as antioxidant, antimicrobial, anti-aging, and anti-inflammatory agents in nutricosmetic formulations. Biopeptide production from biowaste requires expertise in analytical procedures and good manufacturing practice. It is hoped that new analytical procedures can be developed to simplify large-scale production and that the authorities adopt and regulate use of appropriate testing standards to guarantee the population's safety.
Collapse
Affiliation(s)
- Irene Dini
- Department of Pharmacy, University of Naples Federico II, Via Domenico Montesano 49, 80131 Napoli, Italy
| | - Andrea Mancusi
- Department of Food Microbiology, Istituto Zooprofilattico Sperimentale del Mezzogiorno, Via Salute 2, 80055 Portici, Italy
| |
Collapse
|
21
|
Corrêa JAF, de Melo Nazareth T, Rocha GFD, Luciano FB. Bioactive Antimicrobial Peptides from Food Proteins: Perspectives and Challenges for Controlling Foodborne Pathogens. Pathogens 2023; 12:pathogens12030477. [PMID: 36986399 PMCID: PMC10052163 DOI: 10.3390/pathogens12030477] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2023] [Revised: 02/26/2023] [Accepted: 03/16/2023] [Indexed: 03/30/2023] Open
Abstract
Bioactive peptides (BAPs) derived from food proteins have been extensively studied for their health benefits, majorly exploring their potential use as nutraceuticals and functional food components. These peptides possess a range of beneficial properties, including antihypertensive, antioxidant, immunomodulatory, and antibacterial activities, and are naturally present within dietary protein sequences. To release food-grade antimicrobial peptides (AMPs), enzymatic protein hydrolysis or microbial fermentation, such as with lactic acid bacteria (LAB), can be employed. The activity of AMPs is influenced by various structural characteristics, including the amino acid composition, three-dimensional conformation, liquid charge, putative domains, and resulting hydrophobicity. This review discusses the synthesis of BAPs and AMPs, their potential for controlling foodborne pathogens, their mechanisms of action, and the challenges and prospects faced by the food industry. BAPs can regulate gut microbiota by promoting the growth of beneficial bacteria or by directly inhibiting pathogenic microorganisms. LAB-promoted hydrolysis of dietary proteins occurs naturally in both the matrix and the gastrointestinal tract. However, several obstacles must be overcome before BAPs can replace antimicrobials in food production. These include the high manufacturing costs of current technologies, limited in vivo and matrix data, and the difficulties associated with standardization and commercial-scale production.
Collapse
Affiliation(s)
- Jessica Audrey Feijó Corrêa
- Laboratory of Agri-Food Research and Innovation, School of Medicine and Life Sciences, Pontifícia Universidade Católica do Paraná, R. Imaculada Conceição 1155, Curitiba 80215-901, Brazil
| | - Tiago de Melo Nazareth
- Laboratory of Agri-Food Research and Innovation, School of Medicine and Life Sciences, Pontifícia Universidade Católica do Paraná, R. Imaculada Conceição 1155, Curitiba 80215-901, Brazil
- Laboratory of Food Chemistry and Toxicology, Faculty of Pharmacy, University of Valencia, Av. Vicent Andrés Estellés s/n, 46100 Burjassot, Spain
| | - Giovanna Fernandes da Rocha
- Laboratory of Agri-Food Research and Innovation, School of Medicine and Life Sciences, Pontifícia Universidade Católica do Paraná, R. Imaculada Conceição 1155, Curitiba 80215-901, Brazil
| | - Fernando Bittencourt Luciano
- Laboratory of Agri-Food Research and Innovation, School of Medicine and Life Sciences, Pontifícia Universidade Católica do Paraná, R. Imaculada Conceição 1155, Curitiba 80215-901, Brazil
| |
Collapse
|
22
|
Hu K, Huang H, Li H, Wei Y, Yao C. Legume-Derived Bioactive Peptides in Type 2 Diabetes: Opportunities and Challenges. Nutrients 2023; 15:nu15051096. [PMID: 36904097 PMCID: PMC10005352 DOI: 10.3390/nu15051096] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 02/17/2023] [Accepted: 02/20/2023] [Indexed: 02/25/2023] Open
Abstract
Diabetes mellitus is a complex disorder characterized by insufficient insulin production or insulin resistance, which results in a lifelong dependence on glucose-lowering drugs for almost all patients. During the fight with diabetes, researchers are always thinking about what characteristics the ideal hypoglycemic drugs should have. From the point of view of the drugs, they should maintain effective control of blood sugar, have a very low risk of hypoglycemia, not increase or decrease body weight, improve β-cell function, and delay disease progression. Recently, the advent of oral peptide drugs, such as semaglutide, brings exciting hope to patients with chronic diabetes. Legumes, as an excellent source of protein, peptides, and phytochemicals, have played significant roles in human health throughout human history. Some legume-derived peptides with encouraging anti-diabetic potential have been gradually reported over the last two decades. Their hypoglycemic mechanisms have also been clarified at some classic diabetes treatment targets, such as the insulin receptor signaling pathway or other related pathways involved in the progress of diabetes, and key enzymes including α-amylase, α-glucosidase, and dipeptidyl peptidase-IV (DPP-4). This review summarizes the anti-diabetic activities and mechanisms of peptides from legumes and discusses the prospects of these peptide-based drugs in type 2 diabetes (T2D) management.
Collapse
|
23
|
Yu Y, Guan S, Li X, Sun B, Lin S, Gao F. Physicochemical and functional properties of egg white peptide powders under different storage conditions. JOURNAL OF FOOD SCIENCE AND TECHNOLOGY 2023; 60:732-741. [PMID: 36712210 PMCID: PMC9873857 DOI: 10.1007/s13197-022-05659-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Revised: 10/06/2022] [Accepted: 12/19/2022] [Indexed: 01/11/2023]
Abstract
This study aims to evaluate the effects of different storage conditions (temperature and relative humidity) on the physicochemical and functional properties of egg white peptide powders (EWPPs). The samples (EWPPs) were stored for 28 d under four conditions (4 °C, 50% RH; 4 °C, 75% RH; 25 °C, 50% RH; 25 °C, 75% RH). Results showed that storage temperature and relative humidity had a significant effect on the physicochemical and functional properties of EWPPs. The contents of antioxidant amino acids such as histidine, tyrosine, tryptophan, and lysine were reduced significantly under different storage conditions, which resulted in the decrease of the antioxidant activity of EWPPs. Circular dichroism spectroscopy analysis indicated that the secondary structure of EWPPs changed from the regular structure to the irregular coiled structure during the storage. Additionally, the hydrophobic groups of the EWPPs originally embedded inside the molecules were exposed to the surface of the molecules during the storage, which led to an aggregation of EWPPs molecule and a decrease in solubility of EWPPs. The aggregation of EWPPs molecules resulted in a decrease in emulsification, emulsification stability, foaming ability and foaming stability of the EWPPs. Therefore, different storage conditions do have an impact on the physicochemical and functional properties of EWPPs. Lower temperature and humidity storing conditions were beneficial to retain the functional property of the EWPPs.
Collapse
Affiliation(s)
- Yali Yu
- College of Food Science and Engineering, Jilin University, NO. 5333 Xi’an Road, Changchun, 130062 People’s Republic of China
| | - Shiyao Guan
- College of Food Science and Engineering, Jilin University, NO. 5333 Xi’an Road, Changchun, 130062 People’s Republic of China
| | - Xingfang Li
- College of Food Science and Engineering, Jilin University, NO. 5333 Xi’an Road, Changchun, 130062 People’s Republic of China
| | - Bingyu Sun
- College of Food Science and Engineering, Harbin Commercial University, Harbin, 130062 People’s Republic of China
| | - Songyi Lin
- College of Food Science and Engineering, Jilin University, NO. 5333 Xi’an Road, Changchun, 130062 People’s Republic of China
- School of Food Science and Technology, Engineering Research Center of Seafood of Ministry of Education, Dalian Polytechnic University, Dalian, 116034 People’s Republic of China
| | - Feng Gao
- College of Food Science and Engineering, Jilin University, NO. 5333 Xi’an Road, Changchun, 130062 People’s Republic of China
| |
Collapse
|
24
|
Peptidomics Profile, Bioactive Peptides Identification and Biological Activities of Six Different Cheese Varieties. BIOLOGY 2023; 12:biology12010078. [PMID: 36671770 PMCID: PMC9855406 DOI: 10.3390/biology12010078] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 12/29/2022] [Accepted: 12/30/2022] [Indexed: 01/03/2023]
Abstract
Several recent published studies reported that cheese consumption may protect against the onset of cardiovascular diseases and type-2 diabetes due to the presence of bioactive peptides. In the present work, six cheese varieties (the Egyptian traditional cheeses Karish, Domiati and Ras as well as Feta-type, Gouda and Edam cheeses) were characterized for their peptidomics profiles with high-resolution mass spectrometry, biological activities and content in bioactive peptides. The highest ACE-inhibitory and DPP-IV-inhibitory activities were found in Gouda cheese, which also displayed the highest antioxidant activity. A total of 809 peptides originating from the major milk proteins were identified, and 82 of them were bioactive. Most of them showed ACE-inhibitory, antioxidant and DPP-IV-inhibitory activities. The highest amount of the in vivo anti-hypertensive tripeptides VPP and IPP was found in Gouda cheese (39.19 ± 1.26 and 17.72 ± 0.89 mg/100 g of cheese, respectively), whereas the highest amount of APFPE was detected in Edam cheese (509.13 ± 20.44 mg/100 g of cheese). These results suggest that the intake of Edam, Domiati and, especially, Gouda cheeses may result in a possible anti-hypertensive effect in hypertensive subjects.
Collapse
|
25
|
Yaji ELA, Wahab SA, Len KYT, Sabri MZ, Razali N, Dos Mohamed AM, Wong FWF, Talib NA, Hashim NH, Pa’ee KF. Alternative biomanufacturing of bioactive peptides derived from halal food sources. INNOVATION OF FOOD PRODUCTS IN HALAL SUPPLY CHAIN WORLDWIDE 2023:99-113. [DOI: 10.1016/b978-0-323-91662-2.00007-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/01/2023]
|
26
|
KHAN UM, AADIL RM, SHABBIR MA, SHAHID M, DECKER EA. Interpreting the production, characterization and antioxidant potential of plant proteases. FOOD SCIENCE AND TECHNOLOGY 2023. [DOI: 10.1590/fst.84922] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
|
27
|
ŞEN ARSLAN H, SARIÇOBAN C. Effect of ultrasound and microwave pretreatments on some bioactive properties of beef protein hydrolysates. JOURNAL OF FOOD MEASUREMENT AND CHARACTERIZATION 2022. [DOI: 10.1007/s11694-022-01787-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
28
|
Wang L, Wang Z, Reziwangul S, Chen S. Study on antioxidant activity of chicken plasma protein hydrolysates. ACTA ALIMENTARIA 2022. [DOI: 10.1556/066.2022.00087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Abstract
This study optimised the hydrolysis process of chicken plasma protein and explored the in vivo antioxidant activity of its hydrolysates. The results showed that alkaline protease provided the highest degree of hydrolysis (19.30%), the best antioxidant effect in vitro. The optimal hydrolysis process of alkaline protease was: temperature 50 °C, time 8 h, [E]/[S] 7000 U g−1, pH 7.5. Antioxidant studies in vivo showed that the low, medium, and high dose groups significantly reduced the serum MDA and protein carbonyl content (P < 0.05) and significantly increased the serum SOD and GSH contents (P < 0.05). The results of HE staining of the liver showed that the liver cells in the model group were severely damaged, but the chicken plasma protein hydrolysates could alleviate this pathological damage. Chicken plasma protein hydrolysis products had certain antioxidant activity.
Collapse
Affiliation(s)
- L.P. Wang
- School of Life Sciences and Engineering, Northwest University of Nationalities, Lanzhou, 730124, China
- Biomedical Research Center, China-Malaysia National Joint Laboratory, Northwest University of Nationalities, Lanzhou, 730124, China
| | - Z.F. Wang
- School of Life Sciences and Engineering, Northwest University of Nationalities, Lanzhou, 730124, China
- Biomedical Research Center, China-Malaysia National Joint Laboratory, Northwest University of Nationalities, Lanzhou, 730124, China
| | - S. Reziwangul
- School of Life Sciences and Engineering, Northwest University of Nationalities, Lanzhou, 730124, China
| | - S.E. Chen
- School of Life Sciences and Engineering, Northwest University of Nationalities, Lanzhou, 730124, China
- Biomedical Research Center, China-Malaysia National Joint Laboratory, Northwest University of Nationalities, Lanzhou, 730124, China
| |
Collapse
|
29
|
Sharma P, Kaur J, Sharma G, Kashyap P. Plant derived antimicrobial peptides: Mechanism of target, isolation techniques, sources and pharmaceutical applications. J Food Biochem 2022; 46:e14348. [PMID: 35945701 DOI: 10.1111/jfbc.14348] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Revised: 07/07/2022] [Accepted: 07/11/2022] [Indexed: 12/29/2022]
Abstract
Antimicrobial resistance is a global health and development threat which is caused by the excess and prolonged usage of antimicrobial compounds in agriculture and pharmaceutical industries. Resistance of pathogenic microorganisms to the already existing drugs represent a serious risk to public health. Plant sources such as cereals, legumes, fruits and vegetables are potential substrates for the isolation of antimicrobial peptides (AMP) with broad spectrum antimicrobial activity against bacteria, fungi and viruses with novel immunomodulatory activities. Thus, in the quest of new antimicrobial agents, AMPs have recently gained interest. Therefore, AMP can be used in agriculture, pharmaceutical and food industries. This review focuses on various explored and unexplored plant based food sources of AMPs, their isolation techniques and antimicrobial mechanism of peptides. Therefore, the literature discussed in this review paper will prove beneficial the research purposes for agriculture, pharmaceutical and food industries. PRACTICAL APPLICATIONS: Isolation of antimicrobial peptides (AMPs) can be done on industrial scale. AMP isolated from food sources can be used in pharmaceutical and agriculture industries. AMP from natural sources mitigate the problem of antimicrobial resistance. AMP isolated from food products can be used as nutraceutical.
Collapse
Affiliation(s)
- Poorva Sharma
- Department of Food Technology and Nutrition, School of Agriculture, Lovely Professional University, Phagwara, India
| | - Jasleen Kaur
- Department of Food Technology and Nutrition, School of Agriculture, Lovely Professional University, Phagwara, India
| | - Geetika Sharma
- Department of Food Technology and Nutrition, School of Agriculture, Lovely Professional University, Phagwara, India
| | - Piyush Kashyap
- Department of Food Technology and Nutrition, School of Agriculture, Lovely Professional University, Phagwara, India
| |
Collapse
|
30
|
Sari TP, Sirohi R, Krishania M, Bhoj S, Samtiya M, Duggal M, Kumar D, Badgujar PC. Critical overview of biorefinery approaches for valorization of protein rich tree nut oil industry by-product. BIORESOURCE TECHNOLOGY 2022; 362:127775. [PMID: 35964919 DOI: 10.1016/j.biortech.2022.127775] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 08/06/2022] [Accepted: 08/08/2022] [Indexed: 06/15/2023]
Abstract
This review explores reutilization opportunities of protein-rich bio-waste derived from the major tree nuts (almonds, walnuts, and cashew nuts) oil processing industries through biorefinery strategies. The mechanically pressed out oil cakes of these nuts have high protein (45-55%), carbohydrate (30-35%), and fiber that could be utilized to produce bioactive peptides, biofuels, and dietary fiber, respectively; all of which can fetch substantially greater value than its current utilization as a cattle feed. Specific attention has been given to the production, characterization, and application of nut-based de-oiled cake hydrolysates for therapeutic benefits including antioxidant, antihypertensive and neuroprotective properties. The often-neglected safety/toxicological evaluation of the hydrolysates/peptide sequences has also been described. Based on the available data, it is concluded that enzymatic hydrolysis is a preferred method than microbial fermentation for the value addition of de-oiled tree nut cakes. Further, critical insights on the existing literature as well as potential research ideas have also been proposed.
Collapse
Affiliation(s)
- T P Sari
- Department of Food Science and Technology, National Institute of Food Technology Entrepreneurship and Management, Kundli, Sonipat 131 028, Haryana, India
| | - Ranjna Sirohi
- Department of Food Technology, School of Health Sciences and Technology, University of Petroleum and Energy Studies, Dehradun 248 007, Uttarakhand, India
| | - Meena Krishania
- Center of Innovative and Applied Bioprocessing (CIAB), Sector-81, Mohali 140 306, India
| | - Suvarna Bhoj
- Livestock Production and Management Section, ICAR-Indian Veterinary Research Institute, Izatnagar, Bareilly 243 122, Uttar Pradesh, India
| | - Mrinal Samtiya
- Department of Food Science and Technology, National Institute of Food Technology Entrepreneurship and Management, Kundli, Sonipat 131 028, Haryana, India
| | - Muskaan Duggal
- Center of Innovative and Applied Bioprocessing (CIAB), Sector-81, Mohali 140 306, India
| | - Deepak Kumar
- Department of Food Science and Technology, National Institute of Food Technology Entrepreneurship and Management, Kundli, Sonipat 131 028, Haryana, India; Division of Food Science and Technology, Department of Nutrition and Dietetics, Manav Rachna International Institute of Research and Studies, Faridabad 121 004, Haryana, India
| | - Prarabdh C Badgujar
- Department of Food Science and Technology, National Institute of Food Technology Entrepreneurship and Management, Kundli, Sonipat 131 028, Haryana, India.
| |
Collapse
|
31
|
Anti-Inflammatory Function of Plant-Derived Bioactive Peptides: A Review. Foods 2022; 11:foods11152361. [PMID: 35954128 PMCID: PMC9368234 DOI: 10.3390/foods11152361] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Revised: 08/03/2022] [Accepted: 08/04/2022] [Indexed: 12/14/2022] Open
Abstract
Inflammation is considered to be a crucial factor in the development of chronic diseases, eight of which were listed among the top ten causes of death worldwide in the World Health Organization’s World Health Statistics 2019. Moreover, traditional drugs for inflammation are often linked to undesirable side effects. As gentler alternatives to traditional anti-inflammatory drugs, plant-derived bioactive peptides have been shown to be effective interventions against various chronic diseases, including Alzheimer’s disease, cardiovascular disease and cancer. However, an adequate and systematic review of the structures and anti-inflammatory activities of plant-derived bioactive peptides has been lacking. This paper reviews the latest research on plant-derived anti-inflammatory peptides (PAPs), mainly including the specific regulatory mechanisms of PAPs; the structure–activity relationships of PAPs; and their enzymatic processing based on the structure–activity relationships. Moreover, current research problems for PAPs are discussed, such as the shallow exploration of mechanisms, enzymatic solution determination difficulty, low yield and unknown in vivo absorption and metabolism and proposed future research directions. This work aims to provide a reference for functional activity research, nutritional food development and the clinical applications of PAPs.
Collapse
|
32
|
Abd-Talib N, Yaji ELA, Wahab NSA, Razali N, Len KYT, Roslan J, Saari N, Pa’ee KF. Bioactive Peptides and Its Alternative Processes: A Review. BIOTECHNOL BIOPROC E 2022. [DOI: 10.1007/s12257-021-0160-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
33
|
Lath A, Santal AR, Kaur N, Kumari P, Singh NP. Anti-cancer peptides: their current trends in the development of peptide-based therapy and anti-tumor drugs. Biotechnol Genet Eng Rev 2022; 39:45-84. [PMID: 35699384 DOI: 10.1080/02648725.2022.2082157] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Human cancer remains a cause of high mortality throughout the world. The conventional methods and therapies currently employed for treatment are followed by moderate-to-severe side effects. They have not generated curative results due to the ineffectiveness of treatments. Besides, the associated high costs, technical requirements, and cytotoxicity further characterize their limitations. Due to relatively higher presidencies, bioactive peptides with anti-cancer attributes have recently become treatment choices within the therapeutic arsenal. The peptides act as potential anti-cancer agents explicitly targeting tumor cells while being less toxic to normal cells. The anti-cancer peptides are isolated from various natural sources, exhibit high selectivity and high penetration efficiency, and could be quickly restructured. The therapeutic benefits of compatible anti-cancer peptides have contributed to the significant expansion of cancer treatment; albeit, the mechanisms by which bioactive peptides inhibit the proliferation of tumor cells remain unclear. This review will provide a framework for assessing anti-cancer peptides' structural and functional aspects. It shall provide appropriate information on their mode of action to support and strengthen efforts to improve cancer prevention. The article will mention the therapeutic health benefits of anti-cancer peptides. Their importance in clinical studies is elaborated for reducing cancer incidences and developing sustainable treatment models.
Collapse
Affiliation(s)
- Amit Lath
- Centre for Biotechnology, Maharshi Dayanand University, Rohtak, India
| | - Anita Rani Santal
- Department of Microbiology, Maharshi Dayanand University, Rohtak, India
| | - Nameet Kaur
- Amity Institute of Biotechnology, Amity University, Noida, India
| | - Poonam Kumari
- Sophisticated Analytical Instrumentation Facility, CIL and UCIM, Punjab University, Chandigarh, Inida
| | - Nater Pal Singh
- Centre for Biotechnology, Maharshi Dayanand University, Rohtak, India
| |
Collapse
|
34
|
Karami Z, Akbari‐adergani B, Duangmal K. Recent development on recovering bioactive peptides and phenolic compounds from under‐utilised by‐products during production of certain edible oil plants: current situation and future perspectives. Int J Food Sci Technol 2022. [DOI: 10.1111/ijfs.15838] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Zohreh Karami
- Department of Food Technology, Faculty of Science Chulalongkorn University Bangkok 10330 Thailand
| | - Behrouz Akbari‐adergani
- Food and Drug Laboratory Research Center, Food and Drug Organization Ministry of Health and Medical Education Tehran 11136‐15911 Iran
| | - Kiattisak Duangmal
- Department of Food Technology, Faculty of Science Chulalongkorn University Bangkok 10330 Thailand
- Emerging Processes for Food Functionality Design Research Unit Chulalongkorn University Bangkok 10330 Thailand
| |
Collapse
|
35
|
Singh BP, Bangar SP, Alblooshi M, Ajayi FF, Mudgil P, Maqsood S. Plant-derived proteins as a sustainable source of bioactive peptides: recent research updates on emerging production methods, bioactivities, and potential application. Crit Rev Food Sci Nutr 2022; 63:9539-9560. [PMID: 35521961 DOI: 10.1080/10408398.2022.2067120] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
The development of novel protein sources to compensate for the expected future shortage of traditional animal proteins due to their high carbon footprint is a major contemporary challenge in the agri-food industry currently. Therefore, both industry and consumers are placing a greater emphasis on plant proteins as a sustainable source of protein to meet the growing nutritional demand of ever increasing population. In addition to being key alternatives, many plant-based foods have biological properties that make them potentially functional or health-promoting foods, particularly physiologically active peptides and proteins accounting for most of these properties. This review discusses the importance of plant-based protein as a viable and sustainable alternative to animal proteins. The current advances in plant protein isolation and production and characterization of bioactive hydrolysates and peptides from plant proteins are described comprehensively. Furthermore, the recent research on bioactivities and bioavailability of plant protein-derived bioactive peptides is reviewed briefly. The limitations of using bioactive peptides, regulatory criteria, and the possible future applications of plant protein-derived bioactive peptides are highlighted. This review may help understand plant proteins and their bioactive peptides and provide valuable suggestions for future research and applications in the food industry.
Collapse
Affiliation(s)
- Brij Pal Singh
- Department of Food Science, College of Agriculture and Veterinary Medicine, United Arab Emirates University, Al-Ain, United Arab Emirates
| | - Sneh Punia Bangar
- Department of Food, Nutrition, and Packaging Sciences, Clemson University, Clemson, South Carolina, USA
| | - Munira Alblooshi
- Department of Food Science, College of Agriculture and Veterinary Medicine, United Arab Emirates University, Al-Ain, United Arab Emirates
| | - Feyisola Fisayo Ajayi
- Department of Food Science, College of Agriculture and Veterinary Medicine, United Arab Emirates University, Al-Ain, United Arab Emirates
| | - Priti Mudgil
- Department of Food Science, College of Agriculture and Veterinary Medicine, United Arab Emirates University, Al-Ain, United Arab Emirates
| | - Sajid Maqsood
- Department of Food Science, College of Agriculture and Veterinary Medicine, United Arab Emirates University, Al-Ain, United Arab Emirates
| |
Collapse
|
36
|
Ewert J, Eisele T, Stressler T. Enzymatic production and analysis of antioxidative protein hydrolysates. Eur Food Res Technol 2022. [DOI: 10.1007/s00217-022-04022-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
37
|
Harper AR, Dobson RCJ, Morris VK, Moggré GJ. Fermentation of plant-based dairy alternatives by lactic acid bacteria. Microb Biotechnol 2022; 15:1404-1421. [PMID: 35393728 PMCID: PMC9049613 DOI: 10.1111/1751-7915.14008] [Citation(s) in RCA: 47] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Revised: 01/12/2022] [Accepted: 01/14/2022] [Indexed: 12/19/2022] Open
Abstract
Ethical, environmental and health concerns around dairy products are driving a fast‐growing industry for plant‐based dairy alternatives, but undesirable flavours and textures in available products are limiting their uptake into the mainstream. The molecular processes initiated during fermentation by lactic acid bacteria in dairy products is well understood, such as proteolysis of caseins into peptides and amino acids, and the utilisation of carbohydrates to form lactic acid and exopolysaccharides. These processes are fundamental to developing the flavour and texture of fermented dairy products like cheese and yoghurt, yet how these processes work in plant‐based alternatives is poorly understood. With this knowledge, bespoke fermentative processes could be engineered for specific food qualities in plant‐based foods. This review will provide an overview of recent research that reveals how fermentation occurs in plant‐based milk, with a focus on how differences in plant proteins and carbohydrate structure affect how they undergo the fermentation process. The practical aspects of how this knowledge has been used to develop plant‐based cheeses and yoghurts is also discussed.
Collapse
Affiliation(s)
- Aimee R Harper
- Biomolecular Interaction Centre, Food Transitions 2050 Joint Postgraduate School, and School of Biological Sciences, University of Canterbury, PO Box 4800, Christchurch, 8140, New Zealand.,The New Zealand Institute for Plant and Food Research Limited, 74 Gerald St, Lincoln, 7608, New Zealand.,The Riddet Institute, MacDiarmid Institute for Advanced Materials and Nanotechnology, University of Canterbury, PO Box 4800, Christchurch, 8140, New Zealand
| | - Renwick C J Dobson
- Biomolecular Interaction Centre, Food Transitions 2050 Joint Postgraduate School, and School of Biological Sciences, University of Canterbury, PO Box 4800, Christchurch, 8140, New Zealand.,The Riddet Institute, MacDiarmid Institute for Advanced Materials and Nanotechnology, University of Canterbury, PO Box 4800, Christchurch, 8140, New Zealand.,Bio21 Molecular Science and Biotechnology Institute, Department of Biochemistry and Molecular Biology, University of Melbourne, Parkville, Vic., 3010, Australia
| | - Vanessa K Morris
- Biomolecular Interaction Centre, Food Transitions 2050 Joint Postgraduate School, and School of Biological Sciences, University of Canterbury, PO Box 4800, Christchurch, 8140, New Zealand
| | - Gert-Jan Moggré
- The New Zealand Institute for Plant and Food Research Limited, 74 Gerald St, Lincoln, 7608, New Zealand
| |
Collapse
|
38
|
Wei G, Zhao Q, Wang D, Fan Y, Shi Y, Huang A. Novel ACE inhibitory, antioxidant and α-glucosidase inhibitory peptides identified from fermented rubing cheese through peptidomic and molecular docking. Lebensm Wiss Technol 2022. [DOI: 10.1016/j.lwt.2022.113196] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
39
|
Cao J, Xiong N, Zhang Y, Dai Y, Wang Y, Lu L, Jiang L. Using RSM for Optimum of Optimum Production of Peptides from Edible Bird’s Nest By-Product and Characterization of Its Antioxidant’s Properties. Foods 2022; 11:foods11060859. [PMID: 35327281 PMCID: PMC8956092 DOI: 10.3390/foods11060859] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Revised: 03/07/2022] [Accepted: 03/11/2022] [Indexed: 12/14/2022] Open
Abstract
In this research, the neutrase hydrolysis conditions of edible bird’s nest (EBN) by-products were optimized by response surface methodology (RSM). Antioxidant peptides were then isolated from the EBN by-products by ultrafiltration and chromatography taking the DPPH radical scavenging ability as an indicator. The antioxidant activity of the purified peptides was estimated by radical scavenging ability and sodium nitroprusside (SNP)-induced damage model in PC12 cells. When the enzyme concentration was10 kU/g-hydrolysis temperature was 45 °C, and hydrolysis time was 10.30 h, the degree of hydrolysis (DH) of EBN by-product hydrolysate (EBNH) was the highest. The purified peptide exerted strong scavenging ability with EC50 values of 0.51, 1.31, and 0.65 mg/mL for DDPH, ABTS, and O2− radicals, respectively. In addition, the purified peptides could significantly reduce the SNP-induced oxidative damage of PC12 cells, and twelve peptides that were rich in leucine (Leu), valine (Val), and lysine (Lys) were identified by LC-MS/MS. These results suggested that EBN by-products have potential as new materials for natural antioxidant peptides.
Collapse
Affiliation(s)
- Jie Cao
- School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou 510006, China; (J.C.); (Y.Z.); (Y.D.); (Y.W.); (L.L.)
| | - Ning Xiong
- School of Public Health, Southern Medical University, Guangzhou 510515, China;
| | - Yu Zhang
- School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou 510006, China; (J.C.); (Y.Z.); (Y.D.); (Y.W.); (L.L.)
| | - Yuwei Dai
- School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou 510006, China; (J.C.); (Y.Z.); (Y.D.); (Y.W.); (L.L.)
| | - Yuye Wang
- School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou 510006, China; (J.C.); (Y.Z.); (Y.D.); (Y.W.); (L.L.)
| | - Lingyu Lu
- School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou 510006, China; (J.C.); (Y.Z.); (Y.D.); (Y.W.); (L.L.)
| | - Lin Jiang
- School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou 510006, China; (J.C.); (Y.Z.); (Y.D.); (Y.W.); (L.L.)
- Correspondence:
| |
Collapse
|
40
|
Chen H, Zhang T, Tian Y, You L, Huang Y, Wang S. Novel self-assembling peptide hydrogel with pH-tunable assembly microstructure, gel mechanics and the entrapment of curcumin. Food Hydrocoll 2022. [DOI: 10.1016/j.foodhyd.2021.107338] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
|
41
|
del Rosario Moguel Concha D, Martínez JEB, Velázquez TGG, Martínez CJ, Ruiz JCR. Impact of germination time on protein solubility and anti-inflammatory properties of Pisum sativum L grains. Food Chem X 2022; 13:100219. [PMID: 35499010 PMCID: PMC9039925 DOI: 10.1016/j.fochx.2022.100219] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2021] [Revised: 01/07/2022] [Accepted: 01/14/2022] [Indexed: 11/26/2022] Open
Abstract
Germination has an evident impact on the amount of soluble protein in sprouts. The amount of soluble protein can be correlated with the presence of biopeptides. In vitro assays indicate that sprouts soluble protein act as anti-inflammatory agents. Pisum sativum sprouts may constitute a minimally processed functional food. Proteins and peptides isolated from sprouts could be used as nutraceutical ingredients.
During germination processes take place that modify the major components of the grain, such is the case of proteins that are hydrolyzed to generate peptides that can lead to the generation of bioactivity. The objective of the present work was to germinate grains of Pisum sativum to evaluate the effect on the soluble protein content and the anti-inflammatory activity. The grains were subjected to 10 days of germination at 24 °C and relative humidity of 75%. Sprouts were lyophilized, milled, and phenolic compounds were extracted to avoid interferences. Soluble protein content varied significantly during the 10 days of germination. In vitro assays indicate that sprouts protein inhibits thermal denaturation of proteins, protease activity, and stabilize cell membranes. The IC50 values indicate that after germination the bioactivity increased between 1.4 and 3.5 times, with respect to the ungerminated grains. Results indicated that Pisum sativum sprouts may constitute promising health-promoting foods.
Collapse
|
42
|
PV S. Protein hydrolysate from duck egg white by Flavourzyme® digestion: Process optimisation by model design approach and evaluation of antioxidant capacity and characteristic properties. Lebensm Wiss Technol 2022. [DOI: 10.1016/j.lwt.2021.113018] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
43
|
TEHSEEN A, AHMAD N, NISA MU, SAEED F. Optimization of bioactive peptides production in multigrain flakes and their antioxidative and inflammatory activity. FOOD SCIENCE AND TECHNOLOGY 2022. [DOI: 10.1590/fst.40722] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Affiliation(s)
| | - Nazir AHMAD
- Government College University Faisalabad, Pakistan
| | - Mahr Un NISA
- Government College University Faisalabad, Pakistan
| | - Farhan SAEED
- Government College University Faisalabad, Pakistan
| |
Collapse
|
44
|
de Matos FM, de Lacerda JTJG, Zanetti G, de Castro RJS. Production of black cricket protein hydrolysates with α-amylase, α-glucosidase and angiotensin I-converting enzyme inhibitory activities using a mixture of proteases. BIOCATALYSIS AND AGRICULTURAL BIOTECHNOLOGY 2022. [DOI: 10.1016/j.bcab.2022.102276] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
45
|
Cruz-Casas DE, Aguilar CN, Ascacio-Valdés JA, Rodríguez-Herrera R, Chávez-González ML, Flores-Gallegos AC. Enzymatic hydrolysis and microbial fermentation: The most favorable biotechnological methods for the release of bioactive peptides. FOOD CHEMISTRY. MOLECULAR SCIENCES 2021; 3:100047. [PMID: 35415659 PMCID: PMC8991988 DOI: 10.1016/j.fochms.2021.100047] [Citation(s) in RCA: 62] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Revised: 10/14/2021] [Accepted: 10/19/2021] [Indexed: 11/24/2022]
Abstract
Peptide release methods influence its bioactivity by generating different sequences. The absorption, toxicity and taste of peptides is influenced by the production method. The most used methods are enzymatic hydrolysis and microbial fermentation. The most used methods are biotechnological and differ in their process.
Bioactive peptides are biomolecules derived from proteins. They contain anywhere from 2 to 20 amino acids and have different bioactivities. For example, they have antihypertensive activity, antioxidant activity, antimicrobial activity, etc. However, bioactive peptides are encrypted and inactive in the parental protein, so it is necessary to release them to show their bioactivity. For this, there are different methods, where biotechnological methods are highly favorable, highlighting enzymatic hydrolysis and microbial fermentation. The choice of the method to be used depends on different factors, which is why it is essential to know about the process, its principle, and its advantages and disadvantages. The process of peptide release is critical to generate various peptide sequences, which will produce different biological effects in the hydrolysate. This review focuses on providing extensive information on the enzymatic method and microbial fermentation to facilitate selecting the method that provides the most benefits.
Collapse
Affiliation(s)
- Dora Elisa Cruz-Casas
- Bioprocesses and Bioproducts Research Group, Food Research Department, School of Chemistry, Universidad Autónoma de Coahuila, Boulevard Venustiano Carranza e Ing, José Cárdenas Valdés s/n Col, República, 25280 Saltillo, Coahuila, Mexico
| | - Cristóbal N Aguilar
- Bioprocesses and Bioproducts Research Group, Food Research Department, School of Chemistry, Universidad Autónoma de Coahuila, Boulevard Venustiano Carranza e Ing, José Cárdenas Valdés s/n Col, República, 25280 Saltillo, Coahuila, Mexico
| | - Juan A Ascacio-Valdés
- Bioprocesses and Bioproducts Research Group, Food Research Department, School of Chemistry, Universidad Autónoma de Coahuila, Boulevard Venustiano Carranza e Ing, José Cárdenas Valdés s/n Col, República, 25280 Saltillo, Coahuila, Mexico
| | - Raúl Rodríguez-Herrera
- Bioprocesses and Bioproducts Research Group, Food Research Department, School of Chemistry, Universidad Autónoma de Coahuila, Boulevard Venustiano Carranza e Ing, José Cárdenas Valdés s/n Col, República, 25280 Saltillo, Coahuila, Mexico
| | - Mónica L Chávez-González
- Bioprocesses and Bioproducts Research Group, Food Research Department, School of Chemistry, Universidad Autónoma de Coahuila, Boulevard Venustiano Carranza e Ing, José Cárdenas Valdés s/n Col, República, 25280 Saltillo, Coahuila, Mexico
| | - Adriana C Flores-Gallegos
- Bioprocesses and Bioproducts Research Group, Food Research Department, School of Chemistry, Universidad Autónoma de Coahuila, Boulevard Venustiano Carranza e Ing, José Cárdenas Valdés s/n Col, República, 25280 Saltillo, Coahuila, Mexico
| |
Collapse
|
46
|
Application of a Combined Peptidomics and In Silico Approach for the Identification of Novel Dipeptidyl Peptidase-IV-Inhibitory Peptides in In Vitro Digested Pinto Bean Protein Extract. Curr Issues Mol Biol 2021; 44:139-151. [PMID: 35723390 PMCID: PMC8929122 DOI: 10.3390/cimb44010011] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Revised: 12/23/2021] [Accepted: 12/26/2021] [Indexed: 11/17/2022] Open
Abstract
The conventional approach in bioactive peptides discovery, which includes extensive bioassay-guided fractionation and purification processes, is tedious, time-consuming and not always successful. The recently developed bioinformatics-driven in silico approach is rapid and cost-effective; however, it lacks an actual physiological significance. In this study a new integrated peptidomics and in silico method, which combines the advantages of the conventional and in silico approaches by using the pool of peptides identified in a food hydrolysate as the starting point for subsequent application of selected bioinformatics tools, has been developed. Pinto bean protein extract was in vitro digested and peptides were identified by peptidomics. The pool of obtained peptides was screened by in silico analysis and structure–activity relationship modelling. Three peptides (SIPR, SAPI and FVPH) were selected as potential inhibitors of the dipeptidyl-peptidase-IV (DPP-IV) enzyme by this integrated approach. In vitro bioactivity assay showed that all three peptides were able to inhibit DPP-IV with the tetra-peptide SAPI showing the highest activity (IC50 = 57.7 μmol/L). Indeed, a new possible characteristic of peptides (i.e., the presence of an S residue at the N-terminus) able to inhibit DPP-IV was proposed.
Collapse
|
47
|
Verni M, Dingeo C, Rizzello CG, Pontonio E. Lactic Acid Bacteria Fermentation and Endopeptidase Treatment Improve the Functional and Nutritional Features of Arthrospira platensis. Front Microbiol 2021; 12:744437. [PMID: 34956114 PMCID: PMC8692253 DOI: 10.3389/fmicb.2021.744437] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Accepted: 11/08/2021] [Indexed: 11/17/2022] Open
Abstract
This study aimed at investigating the effect of fermentation and enzymatic treatment on the degree of proteolysis of wet (WB), dried at low temperature (DB), and freeze-dried Spirulina (LB) proteins that affect the nutritional (e.g., amino acid content and profiles, and protein digestibility) and functional (e.g., antioxidant and antimicrobial activities) properties. The desiccation treatments influenced the unprocessed Spirulina characteristics because, compared with that in WB, peptides and free amino acids content was 73% lower in DB and 34% higher in LB. An integrated approach, including chromatographic and electrophoresis analyses, was used to evaluate the effect of the different bioprocessing options on protein profiles, release of peptides and amino acids, and the overall protein digestibility. Compared with the application of fermentation with the selected Lactiplantibacillus plantarum T0A10, the treatment with the endopeptidase Alcalase®, alone or combined, determined the most intense proteolysis. Moreover, the treatment with Alcalase® of LB allowed the release of potentially bioactive compounds that are able to inhibit Penicillium roqueforti growth, whereas the combination of fermentation with L. plantarum T0A10 and Alcalase® treatment increased Spirulina antioxidant properties, as determined by the scavenging activity toward ABTS radical (up to 60%) and antimicrobial activity against food pathogen Escherichia coli.
Collapse
Affiliation(s)
- Michela Verni
- Department of Soil, Plant and Food Science, University of Bari Aldo Moro, Bari, Italy
| | - Cinzia Dingeo
- Department of Soil, Plant and Food Science, University of Bari Aldo Moro, Bari, Italy
| | | | - Erica Pontonio
- Department of Soil, Plant and Food Science, University of Bari Aldo Moro, Bari, Italy
| |
Collapse
|
48
|
Cordero-Clavijo LM, Serna-Saldívar SO, Lazo-Vélez MA, González JFA, Panata-Saquicilí D, Briones-Garcia M. Characterization, functional and biological value of protein-enriched defatted meals from sacha inchi (Plukenetia volubilis) and chocho (Lupinus mutabilis). JOURNAL OF FOOD MEASUREMENT AND CHARACTERIZATION 2021. [DOI: 10.1007/s11694-021-01084-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
49
|
Hagawa H, Imai K, Gao Z, Taniguchi M, Shimizu K, Honda H. Selective concentration of antimicrobial peptides to heat-treated porous silica gel using adsorption/desorption. J Biosci Bioeng 2021; 133:161-167. [PMID: 34848124 DOI: 10.1016/j.jbiosc.2021.11.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Revised: 10/19/2021] [Accepted: 11/05/2021] [Indexed: 11/16/2022]
Abstract
Heat-treated porous silica gel (HT silica gel) previously developed by our group has selectively adsorbed cationic peptides at a pH of 7. Therefore, we focused on the use of antimicrobial peptides (AMPs) as bioactive peptides (BPs). First, 32 AMPs and 32 randomly designed peptides were generated using Fmoc solid synthesis, and their adsorption ratio to HT-silica gel was investigated. Thirty two AMPs showed a relatively higher adsorption ratio of 58.8% compared to that of randomly designed peptides, which was 35.3%. Desorption conditions were investigated using Amyl-1-18 antimicrobial peptides. Next, pepsin hydrolysate from rice endosperm protein (REP) powder was prepared by ourselves. The REP hydrolysate containing dry matter (7.5 mg) was applied to the adsorption/desorption (AD) procedure using HT silica gel to obtain 1.6 mg of AD hydrolysate. When the two hydrolysates were subjected to mass spectrometry, 305 concentrated peptides were obtained. In total, 26 peptides with high content and high enrichment ratios were listed and synthesized. When the antimicrobial activity of these 26 peptides was evaluated using Cutibacterium acnes, five peptides consisting of 12-27 amino acids were identified as novel AMPs. Two of these peptides, which were derived from rice glutelin, showed antimicrobial activity against all four microbes, including Porphyromonas gingivalis, Escherichia coli, and Streptococcus mutans. In the present study, we showed that AMPs could be easily enriched from protein hydrolysate using HT silica gel. The adsorption/desorption procedure using HT silica gel was confirmed to be a useful tool for convenient BP separation.
Collapse
Affiliation(s)
- Hitomi Hagawa
- Department of Biomolecular Engineering, Graduate School of Engineering, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8603, Japan
| | - Kento Imai
- Department of Biomolecular Engineering, Graduate School of Engineering, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8603, Japan
| | - Ziwei Gao
- Department of Biomolecular Engineering, Graduate School of Engineering, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8603, Japan
| | - Masayuki Taniguchi
- Department of Liberal Studies, Niigata Seiryo University Junior College, 1-5939 Suido-cho, Chuo-ku, Niigata 951-8121, Japan
| | - Kazunori Shimizu
- Department of Biomolecular Engineering, Graduate School of Engineering, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8603, Japan
| | - Hiroyuki Honda
- Department of Biomolecular Engineering, Graduate School of Engineering, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8603, Japan.
| |
Collapse
|
50
|
Ying X, Agyei D, Udenigwe C, Adhikari B, Wang B. Manufacturing of Plant-Based Bioactive Peptides Using Enzymatic Methods to Meet Health and Sustainability Targets of the Sustainable Development Goals. FRONTIERS IN SUSTAINABLE FOOD SYSTEMS 2021. [DOI: 10.3389/fsufs.2021.769028] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Due to the rapid growth in the global population, the consumption of animal-based food products/food compounds has been associated with negative implications for food sustainability/security. As a result, there is an increasing demand for the development of plant-based food and compounds as alternatives. Meanwhile, a growing number of studies report the health benefits of food protein-based peptides prepared via enzymatic hydrolysis and exhibiting biological properties such as antioxidant, antihypertensive, anti-thrombotic, and antidiabetic activities. However, the inherent bitterness of some peptides hinders their application in food products as ingredients. This article aims to provide the latest findings on plant-based bioactive peptides, particularly their health benefits, manufacturing methods, detection and qualification of their bitterness properties, as well as debittering methods to reduce or eliminate this negative sensory characteristic. However, there is still a paucity of research on the biological property of debittered peptides. Therefore, the role of plant protein-derived bioactive peptides to meet the health targets of the Sustainable Development Goals can only be realised if advances are made in the industrial-scale bioprocessing and debittering of these peptides.
Collapse
|