1
|
Aldana-Mejía JA, Ribeiro VP, Meepagala KM, Bastos JK, Ross SA. Bioactive metabolites of Brazilian Red Propolis: Cytotoxic, antimalarial, and antimicrobial properties. Fitoterapia 2025; 181:106351. [PMID: 39706349 DOI: 10.1016/j.fitote.2024.106351] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Revised: 12/11/2024] [Accepted: 12/14/2024] [Indexed: 12/23/2024]
Abstract
Brazilian Red Propolis (BRP) is a natural product known for its rich chemical composition and therapeutic potential. This study investigates the phytochemical profile and evaluates the cytotoxic, antiplasmodial, and antimicrobial properties of red propolis extract and its isolated compounds vestitol (1), neovestitol (2), medicarpin (3), 7-O-methylvestitol (4), and oblongifolin B (5). The extract showed selective cytotoxicity against cancer cell lines (IC50: 16-39 μg/mL). Compound 3 exhibited a promising cytotoxicity against SK-OV-3 with and IC50 of 6.65 μM. BRP had moderate antimicrobial effects; however, 3 was effective against Cryptococcus neoformans (IC50: 19.29 μM), while 5 was active against Pseudomonas aeruginosa (IC50: 15.77 μM). BRP exhibited antiplasmodial activity against Plasmodium falciparum strains D6 and W2 (IC50: 13.8 μg/mL and 5.7 μg/mL); also, 4 and 5 had IC50 concentrations ranging from: 2.99-6.96 μM). Molecular docking for P. falciparum lactate dehydrogenase (PfLDH), suggest that compound 4 has significant interactions with critical residues in the PfLDH active site, such as TYR85, THR97, and ASP53, and falls within optimal ranges for oral bioavailability. These findings highlight the significant bioactive potential of BRP and its compounds, suggesting their potential as therapeutic agents in vitro and in-silico. Further studies are recommended to explore their mechanisms of action and therapeutic applications.
Collapse
Affiliation(s)
- Jennyfer Andrea Aldana-Mejía
- National Center for Natural Products Research, School of Pharmacy, University of Mississippi, University, MS 38655, USA.
| | - Victor Pena Ribeiro
- Agricultural Research Service, U.S. Department of Agriculture, Natural Products Utilization Research Unit, University, MS 38677, USA.
| | - Kumudini M Meepagala
- Agricultural Research Service, U.S. Department of Agriculture, Natural Products Utilization Research Unit, University, MS 38677, USA.
| | - Jairo Kenupp Bastos
- School of Pharmaceutical Sciences of Ribeirão Preto - University of São Paulo, Av. do Café, Ribeirão Preto 14040-930, Brazil.
| | - Samir A Ross
- National Center for Natural Products Research, School of Pharmacy, University of Mississippi, University, MS 38655, USA; Department of Biomolecular Sciences, Division of Pharmacognosy, School of Pharmacy, University of Mississippi, Oxford, MS 38677, USA.
| |
Collapse
|
2
|
Jagua-Gualdrón A, García-Reyes NA, Fernández-Bernal RE. Apitherapy for diabetes mellitus: mechanisms and clinical implications. JOURNAL OF COMPLEMENTARY & INTEGRATIVE MEDICINE 2025:jcim-2024-0367. [PMID: 39743810 DOI: 10.1515/jcim-2024-0367] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2024] [Accepted: 12/09/2024] [Indexed: 01/04/2025]
Abstract
INTRODUCTION Diabetes mellitus is a complex disease in terms of its causes and pathophysiological processes, it produces a significant impact on health and leads to complications that are difficult to manage. CONTENT This review summarizes and analyzes recent advances in the understanding of the mechanisms of diabetes mellitus and how apitherapy affects them. Also present the available clinical evidence on its application. SUMMARY Apitherapy (complementary-integral use of beehive products) is a potentially useful therapeutic system with a significant level of evidence. This review shows and analyzes the preclinical and clinical evidence on the use of apitherapy in diabetes mellitus. OUTLOOK Apitherapy shows significant effects on epigenetics, chronic inflammation, oxidative stress, metabolic control, dysbiosis, premature cell death and tissue remodeling. Clinical evidence shows an impact on these mechanisms. Apitherapy is a very useful complementary medicine in the treatment of diabetes mellitus.
Collapse
Affiliation(s)
- Andrés Jagua-Gualdrón
- National University of Colombia, Bogota, Colombia
- International Institute for Complementary and Alternative Medicine-IIMAN, Bogota, Colombia
- International College of Apitherapy, Bogota, Colombia
| | - Nicolai Andrés García-Reyes
- National University of Colombia, Bogota, Colombia
- International Institute for Complementary and Alternative Medicine-IIMAN, Bogota, Colombia
- International College of Apitherapy, Bogota, Colombia
| | - Roger Edwin Fernández-Bernal
- International College of Apitherapy, Bogota, Colombia
- Provada Del Valle University, Cochabamba, Bolivia
- KIMED, Cochabamba, Bolivia
| |
Collapse
|
3
|
Macedo TT, Malavazi LM, Vargas GQ, Gonçalves FJDS, Gomes APDAP, Bueno MR, Aguiar da Silva LD, Figueiredo LC, Bueno-Silva B. Combination of Neovestitol and Vestitol Modifies the Profile of Periodontitis-Related Subgingival Multispecies Biofilm. Biomedicines 2024; 12:1189. [PMID: 38927396 PMCID: PMC11200960 DOI: 10.3390/biomedicines12061189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Revised: 05/18/2024] [Accepted: 05/20/2024] [Indexed: 06/28/2024] Open
Abstract
The aim of this study was to evaluate the effect of the combination of neovestitol-vestitol (CNV) compounds obtained from Brazilian red propolis on the microbiological profile of a mature multispecies subgingival biofilm. The biofilm with 32 bacterial species associated with periodontitis was formed for seven days using a Calgary device. Treatment with CNV (1600, 800, 400, and 200 μg/mL), amoxicillin (54 μg/mL), and vehicle control was performed for 24 h on the last day of biofilm formation. Biofilm metabolic activity and DNA-DNA hybridization (checkerboard) assays were performed. The groups treated with CNV 1600 and amoxicillin reduced 25 and 13 species, respectively, compared to the control vehicle treatment (p ≤ 0.05); both reduced P. gingivalis, while only CNV reduced T. forsythia. When the data from the two treatments (CNV and AMOXI) were compared, a statistically significant difference was observed in 13 species, particularly members of Socransky's orange complex. Our results showed that CNV at 1600 μg/mL showed the best results regarding the metabolic activity of mature biofilms and obtained a reduction in species associated with the disease, such as T. forsythia, showing a better reduction than amoxicillin. Therefore, CNV seems to be a promising alternative to eradicate biofilms and reduce their pathogenicity.
Collapse
Affiliation(s)
- Tatiane Tiemi Macedo
- Dental Research Division, Guarulhos University, Guarulhos 07023-070, SP, Brazil; (T.T.M.); (F.J.d.S.G.); (L.D.A.d.S.); (L.C.F.)
| | - Larissa Matias Malavazi
- Departamento de Biociências, Faculdade de Odontologia de Piracicaba, Universidade de Campinas (UNICAMP), Piracicaba 13414-903, SP, Brazil; (L.M.M.); (G.Q.V.)
| | - Gustavo Quilles Vargas
- Departamento de Biociências, Faculdade de Odontologia de Piracicaba, Universidade de Campinas (UNICAMP), Piracicaba 13414-903, SP, Brazil; (L.M.M.); (G.Q.V.)
| | | | - Aline Paim de Abreu Paulo Gomes
- Dental Research Division, Guarulhos University, Guarulhos 07023-070, SP, Brazil; (T.T.M.); (F.J.d.S.G.); (L.D.A.d.S.); (L.C.F.)
| | | | - Lucas Daylor Aguiar da Silva
- Dental Research Division, Guarulhos University, Guarulhos 07023-070, SP, Brazil; (T.T.M.); (F.J.d.S.G.); (L.D.A.d.S.); (L.C.F.)
| | - Luciene Cristina Figueiredo
- Dental Research Division, Guarulhos University, Guarulhos 07023-070, SP, Brazil; (T.T.M.); (F.J.d.S.G.); (L.D.A.d.S.); (L.C.F.)
| | - Bruno Bueno-Silva
- Dental Research Division, Guarulhos University, Guarulhos 07023-070, SP, Brazil; (T.T.M.); (F.J.d.S.G.); (L.D.A.d.S.); (L.C.F.)
- Departamento de Biociências, Faculdade de Odontologia de Piracicaba, Universidade de Campinas (UNICAMP), Piracicaba 13414-903, SP, Brazil; (L.M.M.); (G.Q.V.)
| |
Collapse
|
4
|
Boutoub O, El-Guendouz S, Matos I, El Ghadraoui L, Costa MC, Carlier JD, Faleiro ML, Figueiredo AC, Estevinho LM, Miguel MG. Chemical Characterization and Biological Properties Assessment of Euphorbia resinifera and Euphorbia officinarum Moroccan Propolis. Antibiotics (Basel) 2024; 13:230. [PMID: 38534665 DOI: 10.3390/antibiotics13030230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 02/20/2024] [Accepted: 02/27/2024] [Indexed: 03/28/2024] Open
Abstract
Although the plants of the genus Euphorbia are largely exploited by therapists in Morocco, the composition and antibacterial activities of propolis from these plants are still unknown. To address this gap, this study aimed to characterize the pollen type, the volatile compounds, and the phenolic and mineral profiles of three Euphorbia propolis samples collected in Morocco and evaluate their antimicrobial activities. The minimum inhibitory concentration of the propolis samples was determined by the microdilution method, and the anti-adherence activity was evaluated by the crystal violet assay. The examination of anti-quorum-sensing proprieties was performed using the biosensor Chromobacterium violaceum CV026. Pollen analysis revealed that Euphorbia resinifera pollen dominated in the P1 sample (58%), while E. officinarum pollen dominated in the P2 and P3 samples (44%). The volatile compounds were primarily composed of monoterpene hydrocarbons, constituting 35% in P1 and 31% in P2, with α-pinene being the major component in both cases, at 16% in P1 and 15% in P2. Calcium (Ca) was the predominant mineral element in both E. resinifera (P1) and E. officinarum (P2 and P3) propolis samples. Higher levels of phenols, flavonoids and dihydroflavonoids were detected in the E. officinarum P2 sample. The minimum inhibitory concentration (MIC) value ranged from 50 to 450 µL/mL against Gram-positive and Gram-negative bacteria. Euphorbia propolis displayed the ability to inhibit quorum sensing in the biosensor C. violaceum CV026 and disrupted bacterial biofilm formation, including that of resistant bacterial pathogens. In summary, the current study evidences the potential use of E. officinarum propolis (P2 and P3) to combat important features of resistant pathogenic bacteria, such as quorum sensing and biofilm formation.
Collapse
Affiliation(s)
- Oumaima Boutoub
- Faculdade de Ciências e Tecnologia, Universidade do Algarve, Campus de Gambelas, 8005-139 Faro, Portugal
- Laboratory of Functional Ecology and Environmental Engineering, Faculty of Science and Technology, Sidi Mohamed Ben Abdellah University, P.O. Box 2202, Fez 30050, Morocco
| | - Soukaina El-Guendouz
- Laboratory of Functional Ecology and Environmental Engineering, Faculty of Science and Technology, Sidi Mohamed Ben Abdellah University, P.O. Box 2202, Fez 30050, Morocco
| | - Isabel Matos
- Faculdade de Ciências e Tecnologia, Universidade do Algarve, Campus de Gambelas, 8005-139 Faro, Portugal
- Algarve Biomedical Center-Research Institute, 8005-139 Faro, Portugal
| | - Lahsen El Ghadraoui
- Laboratory of Functional Ecology and Environmental Engineering, Faculty of Science and Technology, Sidi Mohamed Ben Abdellah University, P.O. Box 2202, Fez 30050, Morocco
| | - Maria Clara Costa
- Faculdade de Ciências e Tecnologia, Universidade do Algarve, Campus de Gambelas, 8005-139 Faro, Portugal
- Centro de Ciências do Mar (CCMAR), Faculdade de Ciências e Tecnologia, Universidade do Algarve, Campus de Gambelas, 8005-139 Faro, Portugal
| | - Jorge Dias Carlier
- Faculdade de Ciências e Tecnologia, Universidade do Algarve, Campus de Gambelas, 8005-139 Faro, Portugal
- Centro de Ciências do Mar (CCMAR), Faculdade de Ciências e Tecnologia, Universidade do Algarve, Campus de Gambelas, 8005-139 Faro, Portugal
| | - Maria Leonor Faleiro
- Faculdade de Ciências e Tecnologia, Universidade do Algarve, Campus de Gambelas, 8005-139 Faro, Portugal
- Algarve Biomedical Center-Research Institute, 8005-139 Faro, Portugal
- Champalimaud Researh Program, Chaupalimaud Centre for the Unknown, 1400-038 Lisbon, Portugal
| | - Ana Cristina Figueiredo
- Centro de Estudos do Ambiente e do Mar (CESAM Ciências), Faculdade de Ciências da Universidade de Lisboa (FCUL), Biotecnologia Vegetal, DBV, C2, Campo Grande, 1749-016 Lisboa, Portugal
| | - Letícia M Estevinho
- Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal
- Laboratório Associado para a Sustentabilidade e Tecnologia em Regiões de Montanha (SusTEC), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal
| | - Maria Graça Miguel
- Faculdade de Ciências e Tecnologia, Universidade do Algarve, Campus de Gambelas, 8005-139 Faro, Portugal
- Instituto Mediterrâneo para a Agricultura, Ambiente e Desenvolvimento (MED), Faculdade de Ciências e Tecnologia, Universidade do Algarve, 8005-139 Faro, Portugal
| |
Collapse
|
5
|
Kurek-Górecka A, Kłósek M, Pietsz G, Balwierz R, Olczyk P, Czuba ZP. Ethanolic Extract of Propolis and CAPE as Cardioprotective Agents against LPS and IFN-α Stressed Cardiovascular Injury. Nutrients 2024; 16:627. [PMID: 38474755 DOI: 10.3390/nu16050627] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 02/16/2024] [Accepted: 02/21/2024] [Indexed: 03/14/2024] Open
Abstract
The inflammatory process is triggered by several factors such as toxins, pathogens, and damaged cells, promoting inflammation in various systems, including the cardiovascular system, leading to heart failure. The link between periodontitis as a chronic inflammatory disease and cardiovascular disease is confirmed. Propolis and its major component, caffeic acid phenethyl ester (CAPE), exhibit protective mechanisms and anti-inflammatory effects on the cardiovascular system. The objective of the conducted study was to assess the anti-inflammatory effects of the Polish ethanolic extract of propolis (EEP) and its major component-CAPE-in interferon-alpha (IFN-α), lipopolysaccharide (LPS), LPS + IFN-α-induced human gingival fibroblasts (HGF-1). EEP and CAPE were used at 10-100 µg/mL. A multiplex assay was used for interleukin and adhesive molecule detection. Our results demonstrate that EEP, at a concentration of 25 µg/mL, decreases pro-inflammatory cytokine IL-6 in LPS-induced HGF-1. At the same concentration, EEP increases the level of anti-inflammatory cytokine IL-10 in LPS + IFN-α-induced HGF-1. In the case of CAPE, IL-6 in LPS and LPS + IFN-α induced HGF-1 was decreased in all concentrations. However, in the case of IL-10, CAPE causes the highest increase at 50 µg/mL in IFN-α induced HGF-1. Regarding the impact of EEP on adhesion molecules, there was a noticeable reduction of E-selectin by EEP at 25, 50, and100 µg/mL in IFN-α -induced HGF-1. In a range of 10-100 µg/mL, EEP decreased endothelin-1 (ET-1) during all stimulations. CAPE statistically significantly decreases the level of ET-1 at 25-100 µg/mL in IFN-α and LPS + IFN-α. In the case of intercellular adhesion molecule-1 (ICAM-1), EEP and CAPE downregulated its expression in a non-statistically significant manner. Based on the obtained results, EEP and CAPE may generate beneficial cardiovascular effects by influencing selected factors. EEP and CAPE exert an impact on cytokines in a dose-dependent manner.
Collapse
Affiliation(s)
- Anna Kurek-Górecka
- Department of Community Pharmacy, Faculty of Pharmaceutical Sciences in Sosnowiec, Medical University of Silesia in Katowice, Kasztanowa 3, 41-200 Sosnowiec, Poland
| | - Małgorzata Kłósek
- Department of Microbiology and Immunology, Faculty of Medical Sciences in Zabrze, Medical University of Silesia in Katowice, Jordana 19, 41-808 Zabrze, Poland
| | - Grażyna Pietsz
- Department of Microbiology and Immunology, Faculty of Medical Sciences in Zabrze, Medical University of Silesia in Katowice, Jordana 19, 41-808 Zabrze, Poland
| | - Radosław Balwierz
- Institute of Chemistry, University of Opole, Oleska 48, 45-052 Opole, Poland
| | - Paweł Olczyk
- Department of Community Pharmacy, Faculty of Pharmaceutical Sciences in Sosnowiec, Medical University of Silesia in Katowice, Kasztanowa 3, 41-200 Sosnowiec, Poland
| | - Zenon P Czuba
- Department of Microbiology and Immunology, Faculty of Medical Sciences in Zabrze, Medical University of Silesia in Katowice, Jordana 19, 41-808 Zabrze, Poland
| |
Collapse
|
6
|
Bueno-Silva B, Kiausinus KR, Gonçalves FJDS, Moreira MVC, de Oliveira EG, Brugnera Junior A, Feres M, Figueiredo LC. Antimicrobial activity of Desplac® oral gel in the subgingival multispecies biofilm formation. Front Microbiol 2023; 14:1122051. [PMID: 37260680 PMCID: PMC10227524 DOI: 10.3389/fmicb.2023.1122051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Accepted: 04/04/2023] [Indexed: 06/02/2023] Open
Abstract
Natural products are well-known due to their antimicrobial properties. This study aimed to evaluate the antimicrobial effect of Desplac® product (composed of Aloe Vera, Propolis Extract, Green Tea, Cranberry, and Calendula) on the subgingival biofilm. Two different protocols were used to treat the 33-species biofilms: (A) 2×/day (12/12 h) for 1 min with Desplac® or Noplak Toothpaste (Chlorhexidine + Cetylpyridinium Chloride) or Oral B ProGengiva (stannous Fluoride) or a placebo gel; (B) a 12-h use of the Desplac® product or 0.12% chlorhexidine gel or a placebo gel. After 7 days of biofilm formation, the metabolic activity (MA) and biofilm profile were determined by 2,3,5-triphenyltetrazolium chloride and Checker-board DNA-DNA hybridization, respectively. Statistical analysis used the Kruskal-Wallis test followed by Dunn's post-hoc. In protocol A, all treatments presented reduced MA compared to the placebo (p ≤ 0.05). The Desplac®-treated biofilm showed a similar microbial profile to other antimicrobials, although with higher bacterial total counts. In protocol B, MA of Desplac®-treated biofilms was lower than the placebo's MA but higher than chlorhexidine-treated biofilms (p ≤ 0.05). Pathogen levels in Desplac®-treated biofilms were lower than in placebo-treated biofilms and elevated compared to the chlorhexidine-treated biofilms (p ≤ 0.05). Desplac® inhibited the biofilm development and disrupted the mature subgingival biofilm, highlighting its effect on Tannerella forsythia counts.
Collapse
Affiliation(s)
| | | | | | | | | | - Aldo Brugnera Junior
- Education College of the European Master in Oral Laser Application (EMDOLA), University of Liège, Liège, Belgium
- Research Collaborator at the IFSC-University of São Paulo (USP), São Paulo, Brazil
| | - Magda Feres
- Dental Research Division, Guarulhos University, Guarulhos, Brazil
| | | |
Collapse
|
7
|
Chavda VP, Chaudhari AZ, Teli D, Balar P, Vora L. Propolis and Their Active Constituents for Chronic Diseases. Biomedicines 2023; 11:biomedicines11020259. [PMID: 36830794 PMCID: PMC9953602 DOI: 10.3390/biomedicines11020259] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2022] [Revised: 01/11/2023] [Accepted: 01/16/2023] [Indexed: 01/20/2023] Open
Abstract
Propolis is a mass of chemically diverse phytoconstituents with gummy textures that are naturally produced by honeybees upon collection of plant resins for utilization in various life processes in beehives. Since ancient times, propolis has been a unique traditional remedy globally utilized for several purposes, and it has secured value in pharmaceutical and nutraceutical areas in recent years. The chemical composition of propolis comprises diverse constituents and deviations in the precise composition of the honeybee species, plant source used for propolis production by bees, climate conditions and harvesting season. Over 300 molecular structures have been discovered from propolis, and important classes include phenolic acids, flavonoids, terpenoids, benzofurans, benzopyrene and chalcones. Propolis has also been reported to have diverse pharmacological activities, such as antidiabetic, anti-inflammatory, antioxidant, anticancer, immunomodulatory, antibacterial, antiviral, antifungal, and anticaries. As chronic diseases have risen as a global health threat, abundant research has been conducted to track propolis and its constituents as alternative therapies for chronic diseases. Several clinical trials have also revealed the potency of propolis and its constituents for preventing and curing some chronic diseases. This review explores the beneficial effect of propolis and its active constituents with credible mechanisms and computational studies on chronic diseases.
Collapse
Affiliation(s)
- Vivek P. Chavda
- Department of Pharmaceutics and Pharmaceutical Technology, L. M. College of Pharmacy, Ahmedabad 380008, India
- Correspondence: (V.P.C.); (L.V.)
| | - Amit Z. Chaudhari
- Department of Pharmaceutical Chemistry, L. M. College of Pharmacy, Ahmedabad 380009, India
| | - Divya Teli
- Department of Pharmaceutical Chemistry, L. M. College of Pharmacy, Ahmedabad 380009, India
| | - Pankti Balar
- Pharmacy Section, L. M. College of Pharmacy, Navrangpura, Ahmedabad 380009, India
| | - Lalitkumar Vora
- School of Pharmacy, Queen’s University Belfast, 97 Lisburn Road, Belfast BT9 7BL, UK
- Correspondence: (V.P.C.); (L.V.)
| |
Collapse
|
8
|
Zulhendri F, Lesmana R, Tandean S, Christoper A, Chandrasekaran K, Irsyam I, Suwantika AA, Abdulah R, Wathoni N. Recent Update on the Anti-Inflammatory Activities of Propolis. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27238473. [PMID: 36500579 PMCID: PMC9740431 DOI: 10.3390/molecules27238473] [Citation(s) in RCA: 49] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Revised: 10/31/2022] [Accepted: 11/02/2022] [Indexed: 12/09/2022]
Abstract
In recent years, research has demonstrated the efficacy propolis as a potential raw material for pharmaceuticals and nutraceuticals. There is limited report detailing the mechanisms of action of propolis and its bioactive compounds in relation to their anti-inflammatory properties. Thus, the aim of the present review is to examine the latest experimental evidence (2017-2022) regarding the anti-inflammatory properties of propolis. A systematic scoping review methodology was implemented. After applying the exclusion criteria, a total of 166 research publications were identified and retrieved from Scopus, Web of Science, and Pubmed. Several key themes related to the anti-inflammatory properties of propolis were subsequently identified, namely in relation to cancers, oral health, metabolic syndrome, organ toxicity and inflammation, immune system, wound healing, and pathogenic infections. Based on the latest experimental evidence, propolis is demonstrated to possess various mechanisms of action in modulating inflammation towards the regulatory balance and anti-inflammatory environment. In general, we summarize that propolis acts as an anti-inflammatory substance by inhibiting and downregulating TLR4, MyD88, IRAK4, TRIF, NLRP inflammasomes, NF-κB, and their associated pro-inflammatory cytokines such as IL-1β, IL-6, IFN-γ, and TNF-α. Propolis also reduces the migration of immune cells such as macrophages and neutrophils, possibly by downregulating the chemokines CXCL9 and CXCL10.
Collapse
Affiliation(s)
- Felix Zulhendri
- Center of Excellence in Higher Education for Pharmaceutical Care Innovation, Universitas Padjadjaran, Bandung 45363, Indonesia
- Kebun Efi, Kabanjahe 22171, Indonesia
| | - Ronny Lesmana
- Center of Excellence in Higher Education for Pharmaceutical Care Innovation, Universitas Padjadjaran, Bandung 45363, Indonesia
- Physiology Division, Department of Biomedical Sciences, Faculty of Medicine, Universitas Padjadjaran, Bandung 45363, Indonesia
- Biological Activity Division, Central Laboratory, Universitas Padjadjaran, Bandung 45363, Indonesia
- Correspondence: (R.L.); (S.T.)
| | - Steven Tandean
- Department of Neurosurgery, Faculty of Medicine, Universitas Sumatera Utara, Medan 20222, Indonesia
- Correspondence: (R.L.); (S.T.)
| | - Andreas Christoper
- Postgraduate Program of Medical Science, Faculty of Medicine, Universitas Padjadjaran, Bandung 45363, Indonesia
| | | | - Ilham Irsyam
- Department of Orthopaedics and Traumatology, Faculty of Medicine, Universitas Sumatera Utara, Medan 20222, Indonesia
| | - Auliya A. Suwantika
- Center of Excellence in Higher Education for Pharmaceutical Care Innovation, Universitas Padjadjaran, Bandung 45363, Indonesia
- Department of Pharmacology and Clinical Pharmacy, Faculty of Pharmacy, Universitas Padjadjaran, Bandung 45363, Indonesia
| | - Rizky Abdulah
- Center of Excellence in Higher Education for Pharmaceutical Care Innovation, Universitas Padjadjaran, Bandung 45363, Indonesia
- Department of Pharmacology and Clinical Pharmacy, Faculty of Pharmacy, Universitas Padjadjaran, Bandung 45363, Indonesia
| | - Nasrul Wathoni
- Department of Pharmaceutics and Pharmaceutical Technology, Faculty of Pharmacy, Universitas Padjadjaran, Sumedang 45363, Indonesia
- Research Center of Biopolymers for Drug and Cosmetic Delivery, Bandung 45363, Indonesia
| |
Collapse
|
9
|
Hossain R, Quispe C, Khan RA, Saikat ASM, Ray P, Ongalbek D, Yeskaliyeva B, Jain D, Smeriglio A, Trombetta D, Kiani R, Kobarfard F, Mojgani N, Saffarian P, Ayatollahi SA, Sarkar C, Islam MT, Keriman D, Uçar A, Martorell M, Sureda A, Pintus G, Butnariu M, Sharifi-Rad J, Cho WC. Propolis: An update on its chemistry and pharmacological applications. Chin Med 2022; 17:100. [PMID: 36028892 PMCID: PMC9412804 DOI: 10.1186/s13020-022-00651-2] [Citation(s) in RCA: 57] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Accepted: 08/02/2022] [Indexed: 12/23/2022] Open
Abstract
Propolis, a resinous substance produced by honeybees from various plant sources, has been used for thousands of years in traditional medicine for several purposes all over the world. The precise composition of propolis varies according to plant source, seasons harvesting, geography, type of bee flora, climate changes, and honeybee species at the site of collection. This apiary product has broad clinical applications such as antioxidant, anti-inflammatory, antimicrobial, anticancer, analgesic, antidepressant, and anxiolytic as well asimmunomodulatory effects. It is also well known from traditional uses in treating purulent disorders, improving the wound healing, and alleviating many of the related discomforts. Even if its use was already widespread since ancient times, after the First and Second World War, it has grown even more as well as the studies to identify its chemical and pharmacological features, allowing to discriminate the qualities of propolis in terms of the chemical profile and relative biological activity based on the geographic place of origin. Recently, several in vitro and in vivo studies have been carried out and new insights into the pharmaceutical prospects of this bee product in the management of different disorders, have been highlighted. Specifically, the available literature confirms the efficacy of propolis and its bioactive compounds in the reduction of cancer progression, inhibition of bacterial and viral infections as well as mitigation of parasitic-related symptoms, paving the way to the use of propolis as an alternative approach to improve the human health. However, a more conscious use of propolis in terms of standardized extracts as well as new clinical studies are needed to substantiate these health claims.
Collapse
Affiliation(s)
- Rajib Hossain
- Department of Pharmacy, Life Science Faculty, Bangabandhu Sheikh Mujibur Rahman Science and Technology University, Gopalganj, Dhaka 8100 Bangladesh
| | - Cristina Quispe
- Facultad de Ciencias de La Salud, Universidad Arturo Prat, Avda. Arturo Prat 2120, 1110939 Iquique, Chile
| | - Rasel Ahmed Khan
- Pharmacy Discipline, Life Science School, Khulna University, Khulna, 9280 Bangladesh
| | - Abu Saim Mohammad Saikat
- Department of Biochemistry and Molecular Biology, Bangabandhu Sheikh Mujibur Rahman Science and Technology University, Gopalganj, 8100 Bangladesh
| | - Pranta Ray
- Department of Biomedical Engineering, Huazhong University of Science and Technology, Wuhan, China
| | - Damira Ongalbek
- Faculty of Chemistry and Chemical Technology, Al-Farabi Kazakh National University, 050040 Almaty, Kazakhstan
| | - Balakyz Yeskaliyeva
- Faculty of Chemistry and Chemical Technology, Al-Farabi Kazakh National University, 050040 Almaty, Kazakhstan
| | - Divya Jain
- Department of Bioscience and Biotechnology, Banasthali Vidyapith, Rajasthan 304022 India
| | - Antonella Smeriglio
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences (ChiBioFarAm), University of Messina, Viale Ferdinando Stagno d’Alcontres 31, 98166 Messina, Italy
| | - Domenico Trombetta
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences (ChiBioFarAm), University of Messina, Viale Ferdinando Stagno d’Alcontres 31, 98166 Messina, Italy
| | - Roghayeh Kiani
- Department of Biology, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Farzad Kobarfard
- Phytochemistry Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Department of Medicinal Chemistry, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Naheed Mojgani
- Department of Biotechnology, Razi Vaccine and Serum Research Institute, Agricultural Research, Education and Extension Organization (AREEO), Karaj, Iran
| | - Parvaneh Saffarian
- Department of Biology, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Seyed Abdulmajid Ayatollahi
- Phytochemistry Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Department of Pharmacognosy and Biotechnology, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Chandan Sarkar
- Department of Pharmacy, Life Science Faculty, Bangabandhu Sheikh Mujibur Rahman Science and Technology University, Gopalganj, Dhaka 8100 Bangladesh
| | - Mohammad Torequl Islam
- Department of Pharmacy, Life Science Faculty, Bangabandhu Sheikh Mujibur Rahman Science and Technology University, Gopalganj, Dhaka 8100 Bangladesh
| | - Dılhun Keriman
- Food Processing Department, Vocational School of Technical Sciences, Bingöl University, Bingöl, Turkey
| | - Arserim Uçar
- Food Processing Department, Vocational School of Technical Sciences, Bingöl University, Bingöl, Turkey
| | - Miquel Martorell
- Department of Nutrition and Dietetics, Faculty of Pharmacy, and Centre for Healthy Living, University of Concepción, Concepción, Chile
- Universidad de Concepción, Unidad de Desarrollo Tecnológico, UDT, 4070386 Concepción, Chile
| | - Antoni Sureda
- Research Group on Community Nutrition and Oxidative Stress, Laboratory of Physical Activity Sciences, and CIBEROBN - Physiopathology of Obesity and Nutrition, CB12/03/30038, University of Balearic Islands, Palma, Spain
| | - Gianfranco Pintus
- Department of Medical Laboratory Sciences, College of Health Sciences and Sharjah Institute for Medical Research, University of Sharjah, 22272 Sharjah, United Arab Emirates
- Department of Biomedical Sciences, University of Sassari, 07100 Sassari, Italy
| | - Monica Butnariu
- Chemistry & Biochemistry Discipline, University of Life Sciences King Mihai I from Timisoara, Calea Aradului 119, 300645 Timis, Romania
| | - Javad Sharifi-Rad
- Phytochemistry Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - William C. Cho
- Department of Clinical Oncology, Queen Elizabeth Hospital, Kowloon, Hong Kong
| |
Collapse
|
10
|
Bueno-Silva B, Bueno MR, Kawamoto D, Casarin RC, Pingueiro JMS, Alencar SM, Rosalen PL, Mayer MPA. Anti-Inflammatory Effects of (3S)-Vestitol on Peritoneal Macrophages. Pharmaceuticals (Basel) 2022; 15:ph15050553. [PMID: 35631379 PMCID: PMC9145271 DOI: 10.3390/ph15050553] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Revised: 04/25/2022] [Accepted: 04/28/2022] [Indexed: 11/16/2022] Open
Abstract
The isoflavone (3S)-vestitol, obtained from red propolis, has exhibited anti-inflammatory, antimicrobial, and anti-caries activity; however, few manuscripts deal with its anti-inflammatory mechanisms in macrophages. The objective is to elucidate the anti-inflammatory mechanisms of (3S)-vestitol on those cells. Peritoneal macrophages of C57BL6 mice, stimulated with lipopolysaccharide, were treated with 0.37 to 0.59 µM of (3S)-vestitol for 48 h. Then, nitric oxide (NO) quantities, macrophages viability, the release of 20 cytokines and the transcription of several genes related to cytokine production and inflammatory response were evaluated. The Tukey–Kramer variance analysis test statistically analyzed the data. (3S)-vestitol 0.55 µM (V55) lowered NO release by 60% without altering cell viability and diminished IL-1β, IL-1α, G-CSF, IL-10 and GM-CSF levels. V55 reduced expression of Icam-1, Wnt5a and Mmp7 (associated to inflammation and tissue destruction in periodontitis) and Scd1, Scd2, Egf1 (correlated to atherosclerosis). V55 increased expression of Socs3 and Dab2 genes (inhibitors of cytokine signaling and NF-κB pathway), Apoe (associated to atherosclerosis control), Igf1 (encoder a protein with analogous effects to insulin) and Fgf10 (fibroblasts growth factor). (3S)-vestitol anti-inflammatory mechanisms involve cytokines and NF-κB pathway inhibition. Moreover, (3S)-vestitol may be a candidate for future in vivo investigations about the treatment/prevention of persistent inflammatory diseases such as atherosclerosis and periodontitis.
Collapse
Affiliation(s)
- Bruno Bueno-Silva
- Department of Microbiology, Institute of Biomedical Sciences, University of São Paulo, São Paulo 05508-900, SP, Brazil; (M.R.B.); (D.K.); (M.P.A.M.)
- Dental Research Division, Guarulhos University, Guarulhos 07023-070, SP, Brazil;
- Correspondence:
| | - Manuela Rocha Bueno
- Department of Microbiology, Institute of Biomedical Sciences, University of São Paulo, São Paulo 05508-900, SP, Brazil; (M.R.B.); (D.K.); (M.P.A.M.)
| | - Dione Kawamoto
- Department of Microbiology, Institute of Biomedical Sciences, University of São Paulo, São Paulo 05508-900, SP, Brazil; (M.R.B.); (D.K.); (M.P.A.M.)
| | - Renato C. Casarin
- Piracicaba Dental School, University of Campinas-UNICAMP, Piracicaba 13414-903, SP, Brazil; (R.C.C.); (P.L.R.)
| | | | - Severino Matias Alencar
- College of Agriculture “Luiz de Queiroz” (ESALQ/USP), University of São Paulo, Piracicaba 13418-900, SP, Brazil;
| | - Pedro Luiz Rosalen
- Piracicaba Dental School, University of Campinas-UNICAMP, Piracicaba 13414-903, SP, Brazil; (R.C.C.); (P.L.R.)
| | - Marcia Pinto Alves Mayer
- Department of Microbiology, Institute of Biomedical Sciences, University of São Paulo, São Paulo 05508-900, SP, Brazil; (M.R.B.); (D.K.); (M.P.A.M.)
| |
Collapse
|
11
|
Hossain S, Yousaf M, Liu Y, Chang D, Zhou X. An Overview of the Evidence and Mechanism of Drug-Herb Interactions Between Propolis and Pharmaceutical Drugs. Front Pharmacol 2022; 13:876183. [PMID: 35444531 PMCID: PMC9015648 DOI: 10.3389/fphar.2022.876183] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Accepted: 02/28/2022] [Indexed: 12/18/2022] Open
Abstract
With the growing interest in the medicinal use of propolis, numerous studies have reported significant interactions between propolis extract and pharmaceutical drugs which may result in great clinical benefits or risks. The present study aims to review the drug-herb interactions of the full-spectrum propolis extract and main pharmaceutical drugs from the pharmacodynamic and pharmacokinetic aspects and elucidate the underlying pharmacological mechanisms. A literature search was conducted between June 2021 and February 2022 in Google Scholar, PubMed, MEDLINE, and EMBASE databases to include English studies from years 2000 to 2022 that evaluated the interaction of full-spectrum propolis extract and standard pharmaceutical drugs/cytochromes P450s. Studies that looked into geopropolis, propolis fractions, and isolated compounds, or interaction of propolis with foods, bioactive molecules, or receptors other than standard pharmaceutical drugs were excluded. From a pharmacodynamic perspective, propolis extract exhibited positive or synergistic interaction with several chemotherapeutic drugs by enhancing antitumor activity, sensitizing the chemoresistance cell lines, and attenuating multi-organ toxicity. The molecular mechanisms were associated with upregulating the apoptotic signal and immunomodulatory activity and attenuating oxidative damage. Propolis extract also enhanced the anti-bacterial and antifungal activities of many antimicrobial drugs against sensitive and resistant organisms, with an effect against the gram-positive bacteria stronger than that of the gram-negative bacteria. The synergistic action was related to strengthened action on interfering cell wall integrity and protein synthesis. The strong antioxidant activity of propolis also strengthened the therapeutic effect of metformin in attenuating hyperglycemia and pancreatic damage, as well as mitigating oxidative stress in the liver, kidney, and testis. In addition, propolis showed a potential capacity to enhance short-term and long-term memory function together with donepezil and improve motor function with levodopa and parasite killing activity with praziquantel. Pharmacokinetic studies showed inhibitory activities of propolis extracts on several CYP450 enzymes in vitro and in vivo. However, the effects on those CYP450 were deemed insignificant in humans, which may be attributed to the low bioavailability of the contributing bioactive compounds when administered in the body. The enhanced bioactivities of propolis and main pharmaceutical drugs support using propolis in integrative medicine in anti-cancer, anti-microbial, antidiabetic, and neurological disorders, with a low risk of altered pharmacokinetic activities.
Collapse
Affiliation(s)
- Sanowar Hossain
- Department of Pharmacy, Pabna University of Science and Technology, Pabna, Bangladesh
| | - Muhammad Yousaf
- Department of Bioinformatics and Biotechnology, Government College University, Faisalabad, Pakistan
| | - Yang Liu
- NICM Health Research Institute, Western Sydney University, Penrith, NSW, Australia
| | - Dennis Chang
- NICM Health Research Institute, Western Sydney University, Penrith, NSW, Australia
| | - Xian Zhou
- NICM Health Research Institute, Western Sydney University, Penrith, NSW, Australia
| |
Collapse
|
12
|
Nattagh‐Eshtivani E, Pahlavani N, Ranjbar G, Gholizadeh Navashenaq J, Salehi‐Sahlabadi A, Mahmudiono T, Nader Shalaby M, Jokar M, Nematy M, Barghchi H, Havakhah S, Maddahi M, Rashidmayvan M, Khosravi M. Does propolis have any effect on rheumatoid arthritis? A review study. Food Sci Nutr 2022; 10:1003-1020. [PMID: 35432965 PMCID: PMC9007309 DOI: 10.1002/fsn3.2684] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Revised: 11/03/2021] [Accepted: 11/07/2021] [Indexed: 02/05/2023] Open
Abstract
Rheumatoid arthritis (RA) is a chronic autoimmune disease in which inflammation and oxidative stress play a key role in its pathophysiology. Complementary therapies along with medications may be effective in the control of RA. Propolis is a natural substance extracted from beehives, which have confirmed anti-inflammatory and antioxidant effects. The present study aimed to review the possible effects of propolis on inflammation, oxidative stress, and lipid profile in patients with RA. English articles in online databases such as PubMed‑Medline, AMED, Google Scholar, EMBASE, Scopus, and Web of Science databases were searched. Pieces of evidence show that supplementation with propolis may have therapeutic effects on RA patients. Due to increased inflammation and oxidative stress in the affected joints of RA patients, propolis could inhibit the inflammatory cascades by inhibiting the nuclear factor kappa B pathway and reducing reactive oxygen species, malondialdehyde, and interleukin-17 by increasing some antioxidants. Therefore, inflammation and pain reduce, helping improve and control RA in patients. Further investigations are required with larger sample sizes and different doses of propolis to demonstrate the definite effects of propolis on various aspects of RA.
Collapse
Affiliation(s)
- Elyas Nattagh‐Eshtivani
- Student Research CommitteeMashhad University of Medical SciencesMashhadIran
- Department of NutritionSchool of MedicineMashhad University of Medical SciencesMashhadIran
| | - Naseh Pahlavani
- Health Sciences Research CenterTorbat Heydariyeh University of Medical SciencesTorbat HeydariyehIran
- Children Growth and Development Research CenterResearch Institute for Prevention of Non‐Communicable DiseaseQazvin University of Medical SciencesQazvinIran
| | - Golnaz Ranjbar
- Department of NutritionSchool of MedicineMashhad University of Medical SciencesMashhadIran
| | | | - Ammar Salehi‐Sahlabadi
- Student Research CommitteeDepartment of Clinical Nutrition and DieteticsSchool of Nutrition and Food TechnologyShahid Beheshti University of Medical SciencesTehranIran
| | - Trias Mahmudiono
- Departmentof NutritionFaculty of Public HealthUniversitas AirlanggaAirlanggaIndonesia
| | - Mohammed Nader Shalaby
- Biological Sciences and Sports Health DepartmentFaculty of Physical EducationSuez Canal UniversityIsmailiaEgypt
| | - Mohammadhassan Jokar
- Rheumatic Diseases Research CenterSchool of MedicineMashhad University of Medical SciencesMashhadIran
| | - Mohsen Nematy
- Metabolic Syndrome Research CenterMashhad University of Medical SciencesMashhadIran
| | - Hanieh Barghchi
- Student Research CommitteeMashhad University of Medical SciencesMashhadIran
- Department of NutritionSchool of MedicineMashhad University of Medical SciencesMashhadIran
| | - Shahrzad Havakhah
- Addiction and Behavioral Sciences Research CenterNorth Khorasan University of Medical SciencesBojnurdIran
| | - Mona Maddahi
- Student Research CommitteeMashhad University of Medical SciencesMashhadIran
| | | | - Maryam Khosravi
- Department of NutritionSchool of MedicineMashhad University of Medical SciencesMashhadIran
| |
Collapse
|
13
|
Nattagh‐Eshtivani E, Pahlavani N, Ranjbar G, Gholizadeh Navashenaq J, Salehi‐Sahlabadi A, Mahmudiono T, Nader Shalaby M, Jokar M, Nematy M, Barghchi H, Havakhah S, Maddahi M, Rashidmayvan M, Khosravi M. Does propolis have any effect on rheumatoid arthritis? A review study. Food Sci Nutr 2022. [DOI: https:/doi.org/10.1002/fsn3.2684] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Affiliation(s)
- Elyas Nattagh‐Eshtivani
- Student Research Committee Mashhad University of Medical Sciences Mashhad Iran
- Department of Nutrition School of Medicine Mashhad University of Medical Sciences Mashhad Iran
| | - Naseh Pahlavani
- Health Sciences Research Center Torbat Heydariyeh University of Medical Sciences Torbat Heydariyeh Iran
- Children Growth and Development Research Center Research Institute for Prevention of Non‐Communicable Disease Qazvin University of Medical Sciences Qazvin Iran
| | - Golnaz Ranjbar
- Department of Nutrition School of Medicine Mashhad University of Medical Sciences Mashhad Iran
| | | | - Ammar Salehi‐Sahlabadi
- Student Research Committee Department of Clinical Nutrition and Dietetics School of Nutrition and Food Technology Shahid Beheshti University of Medical Sciences Tehran Iran
| | - Trias Mahmudiono
- Departmentof Nutrition Faculty of Public Health Universitas Airlangga Airlangga Indonesia
| | - Mohammed Nader Shalaby
- Biological Sciences and Sports Health Department Faculty of Physical Education Suez Canal University Ismailia Egypt
| | - Mohammadhassan Jokar
- Rheumatic Diseases Research Center School of Medicine Mashhad University of Medical Sciences Mashhad Iran
| | - Mohsen Nematy
- Metabolic Syndrome Research Center Mashhad University of Medical Sciences Mashhad Iran
| | - Hanieh Barghchi
- Student Research Committee Mashhad University of Medical Sciences Mashhad Iran
- Department of Nutrition School of Medicine Mashhad University of Medical Sciences Mashhad Iran
| | - Shahrzad Havakhah
- Addiction and Behavioral Sciences Research Center North Khorasan University of Medical Sciences Bojnurd Iran
| | - Mona Maddahi
- Student Research Committee Mashhad University of Medical Sciences Mashhad Iran
| | | | - Maryam Khosravi
- Department of Nutrition School of Medicine Mashhad University of Medical Sciences Mashhad Iran
| |
Collapse
|
14
|
Nattagh‐Eshtivani E, Pahlavani N, Ranjbar G, Gholizadeh Navashenaq J, Salehi‐Sahlabadi A, Mahmudiono T, Nader Shalaby M, Jokar M, Nematy M, Barghchi H, Havakhah S, Maddahi M, Rashidmayvan M, Khosravi M. Does propolis have any effect on rheumatoid arthritis? A review study. Food Sci Nutr 2022. [DOI: https://doi.org/10.1002/fsn3.2684] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Affiliation(s)
- Elyas Nattagh‐Eshtivani
- Student Research Committee Mashhad University of Medical Sciences Mashhad Iran
- Department of Nutrition School of Medicine Mashhad University of Medical Sciences Mashhad Iran
| | - Naseh Pahlavani
- Health Sciences Research Center Torbat Heydariyeh University of Medical Sciences Torbat Heydariyeh Iran
- Children Growth and Development Research Center Research Institute for Prevention of Non‐Communicable Disease Qazvin University of Medical Sciences Qazvin Iran
| | - Golnaz Ranjbar
- Department of Nutrition School of Medicine Mashhad University of Medical Sciences Mashhad Iran
| | | | - Ammar Salehi‐Sahlabadi
- Student Research Committee Department of Clinical Nutrition and Dietetics School of Nutrition and Food Technology Shahid Beheshti University of Medical Sciences Tehran Iran
| | - Trias Mahmudiono
- Departmentof Nutrition Faculty of Public Health Universitas Airlangga Airlangga Indonesia
| | - Mohammed Nader Shalaby
- Biological Sciences and Sports Health Department Faculty of Physical Education Suez Canal University Ismailia Egypt
| | - Mohammadhassan Jokar
- Rheumatic Diseases Research Center School of Medicine Mashhad University of Medical Sciences Mashhad Iran
| | - Mohsen Nematy
- Metabolic Syndrome Research Center Mashhad University of Medical Sciences Mashhad Iran
| | - Hanieh Barghchi
- Student Research Committee Mashhad University of Medical Sciences Mashhad Iran
- Department of Nutrition School of Medicine Mashhad University of Medical Sciences Mashhad Iran
| | - Shahrzad Havakhah
- Addiction and Behavioral Sciences Research Center North Khorasan University of Medical Sciences Bojnurd Iran
| | - Mona Maddahi
- Student Research Committee Mashhad University of Medical Sciences Mashhad Iran
| | | | - Maryam Khosravi
- Department of Nutrition School of Medicine Mashhad University of Medical Sciences Mashhad Iran
| |
Collapse
|
15
|
Magnavacca A, Sangiovanni E, Racagni G, Dell'Agli M. The antiviral and immunomodulatory activities of propolis: An update and future perspectives for respiratory diseases. Med Res Rev 2022; 42:897-945. [PMID: 34725836 PMCID: PMC9298305 DOI: 10.1002/med.21866] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Revised: 07/20/2021] [Accepted: 10/20/2021] [Indexed: 12/11/2022]
Abstract
Propolis is a complex natural product that possesses antioxidant, anti-inflammatory, immunomodulatory, antibacterial, and antiviral properties mainly attributed to the high content in flavonoids, phenolic acids, and their derivatives. The chemical composition of propolis is multifarious, as it depends on the botanical sources from which honeybees collect resins and exudates. Nevertheless, despite this variability propolis may have a general pharmacological value, and this review systematically compiles, for the first time, the existing preclinical and clinical evidence of propolis activities as an antiviral and immunomodulatory agent, focusing on the possible application in respiratory diseases. In vitro and in vivo assays have demonstrated propolis broad-spectrum effects on viral infectivity and replication, as well as the modulatory actions on cytokine production and immune cell activation as part of both innate and adaptive immune responses. Clinical trials confirmed propolis undeniable potential as an effective therapeutic agent; however, the lack of rigorous randomized clinical trials in the context of respiratory diseases is tangible. Since propolis is available as a dietary supplement, possible use for the prevention of respiratory diseases and their deleterious inflammatory drawbacks on the respiratory tract in humans is considered and discussed. This review opens up new perspectives on the clinical investigation of neglected propolis biological properties which, now more than ever, are particularly relevant with respect to the recent outbreaks of pandemic respiratory infections.
Collapse
Affiliation(s)
- Andrea Magnavacca
- Department of Pharmacological and Biomolecular SciencesUniversity of MilanMilanItaly
| | - Enrico Sangiovanni
- Department of Pharmacological and Biomolecular SciencesUniversity of MilanMilanItaly
| | - Giorgio Racagni
- Department of Pharmacological and Biomolecular SciencesUniversity of MilanMilanItaly
| | - Mario Dell'Agli
- Department of Pharmacological and Biomolecular SciencesUniversity of MilanMilanItaly
| |
Collapse
|
16
|
Wieczorek PP, Hudz N, Yezerska O, Horčinová-Sedláčková V, Shanaida M, Korytniuk O, Jasicka-Misiak I. Chemical Variability and Pharmacological Potential of Propolis as a Source for the Development of New Pharmaceutical Products. Molecules 2022; 27:1600. [PMID: 35268700 PMCID: PMC8911684 DOI: 10.3390/molecules27051600] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Revised: 02/24/2022] [Accepted: 02/24/2022] [Indexed: 11/23/2022] Open
Abstract
This review aims to analyze propolis as a potential raw material for the development and manufacture of new health-promoting products. Many scientific publications were retrieved from the Scopus, PubMed, and Google Scholar databases via searching the word "propolis". The different extraction procedures, key biologically active compounds, biological properties, and therapeutic potential of propolis were analyzed. It was concluded that propolis possesses a variety of biological properties because of a very complex chemical composition that mainly depends on the plant species visited by bees and species of bees. Numerous studies found versatile pharmacological activities of propolis: antimicrobial, antifungal, antiviral, antioxidant, anticancer, anti-inflammatory, immunomodulatory, etc. In this review, the composition and biological activities of propolis are presented from a point of view of the origin and standardization of propolis for the purpose of the development of new pharmaceutical products on its base. It was revealed that some types of propolis, especially European propolis, contain flavonoids and phenolic acids, which could be markers for the standardization and quality evaluation of propolis and its preparations. One more focus of this paper was the overview of microorganisms' sensitivity to propolis for further development of antimicrobial and antioxidant products for the treatment of various infectious diseases with an emphasis on the illnesses of the oral cavity. It was established that the antimicrobial activity of different types of propolis is quite significant, especially to Gram-negative bacteria and lipophilic viruses. The present study could be also of interest to the pharmaceutical industry as a review for the appropriate design of standardized propolis preparations such as mouthwashes, toothpastes, oral drops, sprays, creams, ointments, suppositories, tablets, and capsules, etc. Moreover, propolis could be regarded as a source for the isolation of biologically active substances. Furthermore, this review can facilitate partially overcoming the problem of the standardization of propolis preparations, which is a principal obstacle to the broader use of propolis in the pharmaceutical industry. Finally, this study could be of interest in the area of the food industry for the development of nutritionally well-balanced products. The results of this review indicate that propolis deserves to be better studied for its promising therapeutic effects from the point of view of the connection of its chemical composition with the locality of its collection, vegetation, appropriate extraction methods, and standardization.
Collapse
Affiliation(s)
| | - Nataliia Hudz
- Department of Drug Technology and Biopharmacy, Danylo Halytsky Lviv National Medical University, 79010 Lviv, Ukraine; (N.H.); (O.Y.)
- Department of Pharmacy and Ecological Chemistry, University of Opole, 45-052 Opole, Poland;
| | - Oksana Yezerska
- Department of Drug Technology and Biopharmacy, Danylo Halytsky Lviv National Medical University, 79010 Lviv, Ukraine; (N.H.); (O.Y.)
| | | | - Mariia Shanaida
- Department of Pharmacognosy and Medical Botany, I. Horbachevsky Ternopil National Medical University, 46001 Ternopil, Ukraine;
| | - Oleksii Korytniuk
- Department of Occupational and Facial Surgery and Dentistry, Ukrainian Military Medical Academy, 01015 Kyiv, Ukraine;
| | - Iza Jasicka-Misiak
- Department of Pharmacy and Ecological Chemistry, University of Opole, 45-052 Opole, Poland;
| |
Collapse
|
17
|
Ruiz-Hurtado PA, Garduño-Siciliano L, Domínguez-Verano P, Balderas-Cordero D, Gorgua-Jiménez G, Canales-Álvarez O, Canales-Martínez MM, Rodríguez-Monroy MA. Propolis and Its Gastroprotective Effects on NSAID-Induced Gastric Ulcer Disease: A Systematic Review. Nutrients 2021; 13:nu13093169. [PMID: 34579045 PMCID: PMC8466107 DOI: 10.3390/nu13093169] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Revised: 09/07/2021] [Accepted: 09/09/2021] [Indexed: 02/07/2023] Open
Abstract
Gastric ulcer disease induced by the consumption of NSAIDs is a major public health problem. The therapy used for its treatment causes adverse effects in the patient. Propolis is a natural product that has been used for the treatments of different diseases around the world. Nevertheless, there is little information about the activity of propolis in gastric ulcers caused by treatment with NSAIDs. Therefore, this review evaluates and compares the gastroprotective potential of propolis and its function against NSAID-induced gastric ulcers, for which a systematic search was carried out in the PubMed and ScienceDirect databases. The main criteria were articles that report the gastroprotective activity of propolis against the damage produced by NSAIDs in the gastric mucosa. Gastroprotection was related to the antioxidant, antisecretory, and cytoprotective effects, as well as the phenolic compounds present in the chemical composition of propolis. However, most of the studies used different doses of NSAIDs and propolis and evaluated different parameters. Propolis has proven to be a good alternative for the treatment of gastric ulcer disease. However, future studies should be carried out to identify the compounds responsible for these effects and to determine their potential use in people.
Collapse
Affiliation(s)
- Porfirio Alonso Ruiz-Hurtado
- Laboratorio de Toxicología de Productos Naturales, Departamento de Farmacia, Instituto Politécnico Nacional, Escuela Nacional de Ciencias Biológicas, Av. Wilfrido Massieu, Gustavo A. Madero, Ciudad de México 07738, Mexico; (P.A.R.-H.); (L.G.-S.)
- Laboratorio de Investigación Biomédica en Productos Naturales, Carrera de Medicina, UNAM, FES-Iztacala, Avenida de los Barrios Número 1, Colonia Los Reyes Iztacala, Estado de México 54090, Mexico; (P.D.-V.); (D.B.-C.); (G.G.-J.); (O.C.-Á.)
| | - Leticia Garduño-Siciliano
- Laboratorio de Toxicología de Productos Naturales, Departamento de Farmacia, Instituto Politécnico Nacional, Escuela Nacional de Ciencias Biológicas, Av. Wilfrido Massieu, Gustavo A. Madero, Ciudad de México 07738, Mexico; (P.A.R.-H.); (L.G.-S.)
| | - Pilar Domínguez-Verano
- Laboratorio de Investigación Biomédica en Productos Naturales, Carrera de Medicina, UNAM, FES-Iztacala, Avenida de los Barrios Número 1, Colonia Los Reyes Iztacala, Estado de México 54090, Mexico; (P.D.-V.); (D.B.-C.); (G.G.-J.); (O.C.-Á.)
| | - Daniela Balderas-Cordero
- Laboratorio de Investigación Biomédica en Productos Naturales, Carrera de Medicina, UNAM, FES-Iztacala, Avenida de los Barrios Número 1, Colonia Los Reyes Iztacala, Estado de México 54090, Mexico; (P.D.-V.); (D.B.-C.); (G.G.-J.); (O.C.-Á.)
| | - Gustavo Gorgua-Jiménez
- Laboratorio de Investigación Biomédica en Productos Naturales, Carrera de Medicina, UNAM, FES-Iztacala, Avenida de los Barrios Número 1, Colonia Los Reyes Iztacala, Estado de México 54090, Mexico; (P.D.-V.); (D.B.-C.); (G.G.-J.); (O.C.-Á.)
- Laboratorio de Genética, Departamento de Farmacia, Instituto Politécnico Nacional, Escuela Nacional de Ciencias Biológicas, Av. Wilfrido Massieu, Gustavo A. Madero, Ciudad de México 07738, Mexico
| | - Octavio Canales-Álvarez
- Laboratorio de Investigación Biomédica en Productos Naturales, Carrera de Medicina, UNAM, FES-Iztacala, Avenida de los Barrios Número 1, Colonia Los Reyes Iztacala, Estado de México 54090, Mexico; (P.D.-V.); (D.B.-C.); (G.G.-J.); (O.C.-Á.)
- Laboratorio de Genética, Departamento de Farmacia, Instituto Politécnico Nacional, Escuela Nacional de Ciencias Biológicas, Av. Wilfrido Massieu, Gustavo A. Madero, Ciudad de México 07738, Mexico
| | - María Margarita Canales-Martínez
- Laboratorio de Farmacognosia, UBIPRO, UNAM, FES-Iztacala, Avenida de los Barrios Número 1, Colonia Los Reyes Iztacala, Estado de México 54090, Mexico;
| | - Marco Aurelio Rodríguez-Monroy
- Laboratorio de Investigación Biomédica en Productos Naturales, Carrera de Medicina, UNAM, FES-Iztacala, Avenida de los Barrios Número 1, Colonia Los Reyes Iztacala, Estado de México 54090, Mexico; (P.D.-V.); (D.B.-C.); (G.G.-J.); (O.C.-Á.)
- Correspondence: ; Tel.: +52-5545-205-185
| |
Collapse
|
18
|
Silva MP, Silva TM, Mengarda AC, Salvadori MC, Teixeira FS, Alencar SM, Luz Filho GC, Bueno-Silva B, de Moraes J. Brazilian red propolis exhibits antiparasitic properties in vitro and reduces worm burden and egg production in an mouse model harboring either early or chronic Schistosoma mansoni infection. JOURNAL OF ETHNOPHARMACOLOGY 2021; 264:113387. [PMID: 32918996 DOI: 10.1016/j.jep.2020.113387] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2020] [Revised: 08/25/2020] [Accepted: 09/04/2020] [Indexed: 06/11/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Propolis has been used in folk medicine for thousands of years and, in the past few decades, it has attracted renewed interest. Although propolis has been traditionally used in many communities worldwide against parasitic diseases, its effect against Schistosoma mansoni infection remains unclear. AIM OF THE STUDY To demonstrate the effects of Brazilian red propolis on Schistosoma mansoni ex vivo and in an animal model of schistosomiasis. MATERIALS AND METHODS In vitro, we monitored phenotypic and tegumental changes as well as the effects of the crude extract of propolis on pairing and egg production. In a mouse infected with either immature (early infection) or adult (chronic infection) worms, propolis was administered by oral gavage and we studied the influence of this natural product on worm burden and egg production. RESULTS Propolis 25 μg/mL reduced motility and caused 100% mortality of adult parasites ex vivo. Further analysis revealed a pronounced reduction in oviposition after exposure to propolis at sub-lethal concentrations. In addition, scanning electron microscopy showed morphological alterations in the tegument of schistosomes. In the animal model, propolis markedly reduced worm burden and egg production in both early and chronic S. mansoni infection when compared to untreated control animals. CONCLUSIONS The efficacy of Brazilian red propolis in both in vitro and in vivo studies suggests its potential anthelmintic properties against S. mansoni infection.
Collapse
Affiliation(s)
- Marcos P Silva
- Núcleo de Pesquisa Em Doenças Negligenciadas, Universidade Guarulhos, Guarulhos, SP, Brazil.
| | - Thiago M Silva
- Núcleo de Pesquisa Em Doenças Negligenciadas, Universidade Guarulhos, Guarulhos, SP, Brazil.
| | - Ana C Mengarda
- Núcleo de Pesquisa Em Doenças Negligenciadas, Universidade Guarulhos, Guarulhos, SP, Brazil.
| | - Maria C Salvadori
- Instituto de Física, Universidade de São Paulo, São Paulo, SP, Brazil.
| | | | - Severino M Alencar
- Escola Superior de Agricultura "Luiz de Queiroz", Universidade de São Paulo, São Paulo, SP, Brazil.
| | | | - Bruno Bueno-Silva
- Departamento de Odontologia, Universidade Guarulhos, Guarulhos, SP, Brazil.
| | - Josué de Moraes
- Núcleo de Pesquisa Em Doenças Negligenciadas, Universidade Guarulhos, Guarulhos, SP, Brazil.
| |
Collapse
|
19
|
The Chemical Composition of Brazilian Green Propolis and Its Protective Effects on Mouse Aortic Endothelial Cells against Inflammatory Injury. Molecules 2020; 25:molecules25204612. [PMID: 33050458 PMCID: PMC7587206 DOI: 10.3390/molecules25204612] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2020] [Revised: 09/28/2020] [Accepted: 10/03/2020] [Indexed: 11/16/2022] Open
Abstract
Propolis has a very complex composition, with antibacterial, anti-inflammatory and other properties. To determine the composition of ethanol extracts of Brazilian green propolis (EEP-B) and their protective effect on mouse aortic endothelial cells (MAECs), the chemical composition of EEP-B was analysed by UPLC/Q-TOF-MS/MS, and the protective effect of EEP-B on the proliferation of lipopolysaccharide (LPS)-induced MAECs was determined by Cell Counting Kit-8 (CCK-8) assays. The protein levels of inflammatory cytokines tumour necrosis factor-α (TNF-α) and interleukin- 6 (IL-6) were measured by enzyme-linked immunosorbent assay (ELISA), and ICAM-1, VCAM-1 and MCP-1 expressions were analysed by western blotting. The results showed that a total of 24 compounds belonging to cinnamic acids and flavonoids, including 3,5-diisopentenyl-4-hydroxycinnamic acid (artepillin C), kaempferide, 3-isoprenyl p-coumaric acid, pinocembrin and 4′-methoxy pinobanksin, were identified in EEP-B. Among them, a new component, suggested to be 5-isoprenyl caffeic acid p-coumaric acid ester, was reported for the first time. The LPS-induced levels of TNF-α, IL-6, ICAM-1, VCAM-1 and MCP-1 were downregulated in response to 5, 10 and 20 μg/mL EEP-B. This study revealed that EEP-B could reduce LPS-induced inflammatory reactions, improve cell survival, and protect MAECs by regulating ICAM-1, VCAM-1 and MCP-1 expression. These findings could provide a theoretical basis for MAEC treatment using EEP-B.
Collapse
|
20
|
de Figueiredo KA, da Silva HDP, Miranda SLF, Gonçalves FJDS, de Sousa AP, de Figueiredo LC, Feres M, Bueno-Silva B. Brazilian Red Propolis Is as Effective as Amoxicillin in Controlling Red-Complex of Multispecies Subgingival Mature Biofilm In Vitro. Antibiotics (Basel) 2020; 9:antibiotics9080432. [PMID: 32707856 PMCID: PMC7459511 DOI: 10.3390/antibiotics9080432] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Revised: 07/15/2020] [Accepted: 07/19/2020] [Indexed: 12/30/2022] Open
Abstract
This study investigated the effects of Brazilian Red Propolis (BRP) extract on seven-day-old multispecies subgingival biofilms. Mixed biofilm cultures containing 31 species associated with periodontal health or disease were grown for six days on a Calgary device. Then, mature biofilms were treated for 24 h with BRP extract at different concentrations (200-1600 µg/mL), amoxicillin (AMOXI) at 54 µg/mL (positive control) or vehicle (negative control). Biofilm metabolic activity was determined by colorimetry, and bacterial counts/proportions were determined by DNA-DNA hybridization. Data were analyzed by Kruskal-Wallis and Dunn's tests. Treatment with BRP at 1600, 800 and 400 μg/mL reduced biofilm metabolic activity by 56%, 56% and 57%, respectively, as compared to 65% reduction obtained with AMOXI. Mean total cell counts were significantly reduced in all test groups (~50-55%). Lower proportions of red, green and yellow complex species were observed upon treatment with BRP (400 µg/mL) and AMOXI, but only AMOXI reduced the proportions of Actinomyces species. In conclusion, BRP extract was as effective as AMOXI in killing seven-day-old multispecies biofilm pathogens and did not affect the levels of the host-compatible Actinomyces species. These data suggest that BRP may be an alternative to AMOXI as an adjunct in periodontal therapy. In vivo studies are needed to validate these results.
Collapse
|
21
|
Wezgowiec J, Wieczynska A, Wieckiewicz W, Kulbacka J, Saczko J, Pachura N, Wieckiewicz M, Gancarz R, Wilk KA. Polish Propolis-Chemical Composition and Biological Effects in Tongue Cancer Cells and Macrophages. Molecules 2020; 25:molecules25102426. [PMID: 32455950 PMCID: PMC7287845 DOI: 10.3390/molecules25102426] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Revised: 05/19/2020] [Accepted: 05/20/2020] [Indexed: 12/23/2022] Open
Abstract
The purpose of this study was to compare the chemical composition and biological properties of Polish propolis. Ethanol, ethanol-hexane, hexane and hexane-ethanol extracts of propolis from three different regions of Poland were prepared. On the basis of the evaluation of their chemical composition as well as the extraction yield and free radical scavenging activity, the ethanol and hexane-ethanol extractions were proposed as the most effective methods. Subsequently, the biological properties of the extracts were evaluated to investigate the selectivity of an anticancer effect on tongue cancer cells in comparison to normal gingival fibroblasts. The obtained products demonstrated anticancer activity against tongue cancer cells. Additionally, when the lowest extract concentration (100 µg/mL) was applied, they were not cytotoxic to gingival fibroblasts. Finally, a possible anti-inflammatory potential of the prepared products was revealed, as reduced mitochondrial activity and proliferation of macrophages exposed to the extracts were observed. The results obtained indicate a potential of Polish propolis as a natural product with cancer-selective toxicity and anti-inflammatory effect. However, further studies are still needed to thoroughly explain the molecular mechanisms of its action and to obtain the promising health benefits of this versatile natural product.
Collapse
Affiliation(s)
- Joanna Wezgowiec
- Department of Experimental Dentistry, Wroclaw Medical University, 50-425 Wroclaw, Poland;
- Correspondence: (J.W.); (W.W.)
| | - Anna Wieczynska
- Department of Engineering and Technology of Chemical Processes, Wroclaw University of Science and Technology, 50-370 Wroclaw, Poland; (A.W.); (R.G.); (K.A.W.)
- Institute of Genetics and Microbiology, University of Wroclaw, 51-148 Wroclaw, Poland
| | - Wlodzimierz Wieckiewicz
- Department of Prosthetic Dentistry, Wroclaw Medical University, 50-425 Wroclaw, Poland
- Correspondence: (J.W.); (W.W.)
| | - Julita Kulbacka
- Department of Molecular and Cellular Biology, Wroclaw Medical University, 50-556 Wroclaw, Poland; (J.K.); (J.S.)
| | - Jolanta Saczko
- Department of Molecular and Cellular Biology, Wroclaw Medical University, 50-556 Wroclaw, Poland; (J.K.); (J.S.)
| | - Natalia Pachura
- Department of Chemistry, Wroclaw University of Environmental and Life Sciences, 50-375 Wroclaw, Poland;
| | - Mieszko Wieckiewicz
- Department of Experimental Dentistry, Wroclaw Medical University, 50-425 Wroclaw, Poland;
| | - Roman Gancarz
- Department of Engineering and Technology of Chemical Processes, Wroclaw University of Science and Technology, 50-370 Wroclaw, Poland; (A.W.); (R.G.); (K.A.W.)
| | - Kazimiera A. Wilk
- Department of Engineering and Technology of Chemical Processes, Wroclaw University of Science and Technology, 50-370 Wroclaw, Poland; (A.W.); (R.G.); (K.A.W.)
| |
Collapse
|
22
|
Bueno-Silva B, Rosalen PL, Alencar SM, Mayer MPA. Vestitol drives LPS-activated macrophages into M2 phenotype through modulation of NF-κB pathway. Int Immunopharmacol 2020; 82:106329. [PMID: 32114412 DOI: 10.1016/j.intimp.2020.106329] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2019] [Revised: 02/15/2020] [Accepted: 02/15/2020] [Indexed: 12/12/2022]
Abstract
Previously, we demonstrated the anti-inflammatory properties of vestitol in a neutrophil model. Here, we show the effects of vestitol on macrophage activation and function. Vestitol was obtained from Brazilian red propolis after bioguided fractionation and tested at different concentrations in LPS-activated RAW 264.7 murine macrophages for nitric oxide (NO) production and cell viability. The levels of TNF-α, IL1-β, TGF-β, IL-4, IL-6, IL-10, IL-12, GM-CSF, IFN-ɣ and gene expression related to cytokines, NO, PI3K-AKT and signal transduction pathways were assayed by ELISA and RT-qPCR, respectively. Differences were determined by one-way ANOVA followed by Tukey-Kramer. Vestitol inhibited NO production by 83% at 0.55 μM without affecting cell viability when compared to the vehicle control (P < 0.05). Treatment with vestitol reduced GM-CSF, IL-6, TNF-α, IL-4 and TGF-β levels and increased IL-10 release (P < 0.05). Vestitol affected the expression of genes related to NF-κB pathway, NO synthase, and inhibition of leukocyte transmigration, namely: Ccs, Ccng1, Calm1, Tnfsf15, Il11, Gata3, Gadd45b, Cdkn1b, Csf1, Ccl5, Birc3 (negatively regulated), and Igf1 (positively regulated). Vestitol diminished the activation of NF-κB and Erk 1/2 pathways and induced macrophages into M2-like polarization. The modulatory effects of vestitol are due to inhibition of NF-κB and Erk 1/2 signaling pathways, which are associated with the production of pro-inflammatory factors.
Collapse
Affiliation(s)
- Bruno Bueno-Silva
- Department of Microbiology, Institute of Biomedical Sciences, University of São Paulo, 05508-900 São Paulo, SP, Brazil.
| | - Pedro L Rosalen
- Piracicaba Dental School, University of Campinas - UNICAMP, Department of Physiological Sciences, P.O. Box 52, 13414-903, Piracicaba, SP, Brazil
| | - Severino M Alencar
- Luiz de Queiroz College of Agriculture (ESALQ), University of São Paulo, P.O. Box 9, 13418-900, Piracicaba, SP, Brazil
| | - Marcia P A Mayer
- Department of Microbiology, Institute of Biomedical Sciences, University of São Paulo, 05508-900 São Paulo, SP, Brazil
| |
Collapse
|
23
|
In Vitro Evaluation of the Potential Use of Propolis as a Multitarget Therapeutic Product: Physicochemical Properties, Chemical Composition, and Immunomodulatory, Antibacterial, and Anticancer Properties. BIOMED RESEARCH INTERNATIONAL 2019; 2019:4836378. [PMID: 31915694 PMCID: PMC6930758 DOI: 10.1155/2019/4836378] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/19/2019] [Accepted: 11/25/2019] [Indexed: 12/13/2022]
Abstract
Propolis is a resin that honeybees produce by mixing saliva and beeswax with exudate gathered from botanical sources. The present in vitro study investigated the potential use of propolis as a multitarget therapeutic product and the physicochemical properties, chemical composition, and immunomodulatory, antioxidant, antibacterial, and anticancer properties of a propolis extract from the northern Morocco region (PNM). Pinocembrin, chrysin, and quercetin were the main phenolic compounds of PNM as measured in HPLC. The PNM showed significant inhibitory effects against all tested Gram-positive and Gram-negative strains and showed high antioxidant activities by scavenging free radicals with IC50 (DPPH = 0.02, ABTS = 0.04, and FRAP = 0.04 mg/ml). In addition, PNM induced a dose-dependent cytostatic effect in MCF-7, HCT, and THP-1 cell lines at noncytotoxic concentrations with IC50 values of 479.22, 108.88, and 50.54 μg/ml, respectively. The production of tumor necrosis factor-α (TNF-α) and interleukin-6 (IL-6) was decreased in a dose-dependent manner in LPS-stimulated human peripheral blood mononuclear cells (PBMNCs), whereas the production of the anti-inflammatory interleukin-10 (IL-10) was increased in a dose-dependent manner reaching 15-fold compared to the levels measured in untreated PBMNCs. Overall, the results showed that the traditionally known multitarget therapeutic properties of the PNM seem to be mediated, at least in part, through cytostatic, antibacterial, and immunomodulatory effects.
Collapse
|
24
|
Alqarni AM, Niwasabutra K, Sahlan M, Fearnley H, Fearnley J, Ferro VA, Watson DG. Propolis Exerts an Anti-Inflammatory Effect on PMA-Differentiated THP-1 Cells via Inhibition of Purine Nucleoside Phosphorylase. Metabolites 2019; 9:metabo9040075. [PMID: 30995826 PMCID: PMC6523283 DOI: 10.3390/metabo9040075] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2019] [Revised: 04/09/2019] [Accepted: 04/15/2019] [Indexed: 12/13/2022] Open
Abstract
Previous research has shown that propolis has immunomodulatory activity. Propolis extracts from different geographic origins were assessed for their anti-inflammatory activities by investigating their ability to alter the production of tumour necrosis factor-α (TNF-α) and the cytokines interleukin-1β (IL-1β), IL-6 and IL-10 in THP-1-derived macrophage cells co-stimulated with lipopolysaccharide (LPS). All the propolis extracts suppressed the TNF-α and IL-6 LPS-stimulated levels. Similar suppression effects were detected for IL-1β, but the release of this cytokine was synergised by propolis samples from Ghana and Indonesia when compared with LPS. Overall, the Cameroonian propolis extract (P-C) was the most active and this was evaluated for its effects on the metabolic profile of unstimulated macrophages or macrophages activated by LPS. The levels of 81 polar metabolites were identified by liquid chromatography (LC) coupled with mass spectrometry (MS) on a ZIC-pHILIC column. LPS altered the energy, amino acid and nucleotide metabolism in THP-1 cells, and interpretation of the metabolic pathways showed that P-C reversed some of the effects of LPS. Overall, the results showed that propolis extracts exert an anti-inflammatory effect by inhibition of pro-inflammatory cytokines and by metabolic reprogramming of LPS activity in macrophage cells, suggesting an immunomodulatory effect.
Collapse
Affiliation(s)
- Abdulmalik M Alqarni
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, 161 Cathedral Street, Glasgow G4 0RE, UK.
- Department of Pharmaceutical Chemistry, College of Clinical Pharmacy, Imam Abdulrahman Bin Faisal University (University of Dammam), Dammam 31441, Saudi Arabia.
| | - Kanidta Niwasabutra
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, 161 Cathedral Street, Glasgow G4 0RE, UK.
| | - Muhamad Sahlan
- Faculty of Engineering, Universitas Indonesia Campus UI, Depok 16424, Indonesia.
| | - Hugo Fearnley
- Apiceutical Research Centre, 6 Hunter Street, Whitby, North Yorkshire YO21 3DA, UK.
| | - James Fearnley
- Apiceutical Research Centre, 6 Hunter Street, Whitby, North Yorkshire YO21 3DA, UK.
| | - Valerie A Ferro
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, 161 Cathedral Street, Glasgow G4 0RE, UK.
| | - David G Watson
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, 161 Cathedral Street, Glasgow G4 0RE, UK.
| |
Collapse
|
25
|
Miranda SLF, Damasceno JT, Faveri M, Figueiredo L, da Silva HD, Alencar SMDA, Rosalen PL, Feres M, Bueno-Silva B. Brazilian red propolis reduces orange-complex periodontopathogens growing in multispecies biofilms. BIOFOULING 2019; 35:308-319. [PMID: 31014106 DOI: 10.1080/08927014.2019.1598976] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/27/2018] [Revised: 03/11/2019] [Accepted: 03/15/2019] [Indexed: 06/09/2023]
Abstract
This study investigated the antimicrobial effects of the ethanolic extract of Brazilian red propolis (BRP) on multispecies biofilms. A seven-day-old subgingival biofilm with 32 species was grown in a Calgary device. Biofilms were treated with BRP (1,600, 800, 400 and 200 μg ml-1) twice a day for 1 min, starting from day 3. Chlorhexidine (0.12%) and dilution-vehicle were used as positive and negative controls, respectively. On day 7, metabolic activity and the microbial composition of the biofilms by DNA-DNA hybridization were determined. The viability data were analyzed by one-way ANOVA followed by Tukey's post hoc, whereas the microbial composition data were transformed via BOX-COX and analyzed using Dunnett's post hoc. BRP (1,600 μg ml-1) decreased biofilm metabolic activity by 45%, with no significant difference from chlorhexidine-treated samples. BRP (1,600 μg ml-1) and chlorhexidine significantly reduced levels of 14 bacterial species compared to the vehicle control. Taken together, BRP showed promising antimicrobial properties which may be useful in periodontal disease control.
Collapse
Affiliation(s)
| | | | - Marcelo Faveri
- a Dental Research Division , Guarulhos University , Guarulhos , SP , Brazil
| | - Luciene Figueiredo
- a Dental Research Division , Guarulhos University , Guarulhos , SP , Brazil
| | | | | | - Pedro Luiz Rosalen
- c Department of Physiological Sciences , Piracicaba Dental School, University of Campinas (UNICAMP) , Piracicaba , SP , Brazil
| | - Magda Feres
- a Dental Research Division , Guarulhos University , Guarulhos , SP , Brazil
| | - Bruno Bueno-Silva
- a Dental Research Division , Guarulhos University , Guarulhos , SP , Brazil
- c Department of Physiological Sciences , Piracicaba Dental School, University of Campinas (UNICAMP) , Piracicaba , SP , Brazil
| |
Collapse
|
26
|
Ye Y, Mo S, Feng W, Ye X, Shu X, Long Y, Guan Y, Huang J, Wang J. The ethanol extract of Involcucrum castaneae ameliorated ovalbumin-induced airway inflammation and smooth muscle thickening in guinea pigs. JOURNAL OF ETHNOPHARMACOLOGY 2019; 230:9-19. [PMID: 30359762 DOI: 10.1016/j.jep.2018.10.027] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2018] [Revised: 10/11/2018] [Accepted: 10/21/2018] [Indexed: 06/08/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Involucrum castaneae(IC)is used in Chinese folk medicine to treat various lung diseases, as well as for its reducing phlegm and anti-inflammatory properties. AIM OF THE STUDY The purpose of this experiment is to verify the effect of IC on airway inflammation, responsiveness in ovalbumin (OVA)-induced asthmatic guinea pigs. The main chemical components of IC were also analyzed. MATERIALS AND METHODS The potential of the ethanol extract of Involucrum castaneae (EEIC) to protect against OVA-induced allergic airway response in guinea pigs was investigated. The latency of asthma in guinea pigs were recorded after the allergic asthma induced. Enzyme-linked immunosorbent assay (ELISA) was used to measure the levels of immunoglobulin E (IgE), interleukin-5 (IL-5), nerve growth factor (NGF) and interferon-γ (IFN-γ) in asthma allergy. Reverse transcription-PCR (RT-PCR) was used to detect the expression of IL-5 mRNA in asthmatic guinea pig lungs. Paraffin sections of lung tissue were used to analyze pathological changes. The total flavonoid content was determined and the chemical components were analyzed by LC-MS/MS. RESULTS It was found that EEIC was able to reduce the number of eosinophil (EOS) in bronchoalveolar lavage fluid (BALF) and peripheral blood (PB) in the guinea pig model of OVA -induced asthma. Meanwhile, it also significantly reduced the levels of inflammation-related factors IgE and IL-5, decreased the expression of IL-5 mRNA in lung tissue, and increased the level of IFN-γ. Pathological examination of paraffin section of lung tissue showed that EEIC can reduce the thickening of bronchial smooth muscle and reduce the infiltration damage of tissues by various inflammatory cells. The presence of flavonoids, terpenoids and phenolic compounds in EEIC might be responsible for these activities. CONCLUSION IC alleviated airway inflammation and smooth muscle thickening in guinea pigs with OVA-sensitized allergic asthma. The paper explains the traditional efficacy and material basis of IC and lays a foundation for further development.
Collapse
Affiliation(s)
- Yujie Ye
- The Department of Pharmacy, College of Medicine, Wuhan University of Science and Technology, Wuhan 430065, PR China
| | - Shuyuan Mo
- College of Pharmacy, Huazhong University of Science and Technology, 13# Hangkong Road, Wuhan 430030, PR China
| | - Wenya Feng
- College of Pharmacy, Huazhong University of Science and Technology, 13# Hangkong Road, Wuhan 430030, PR China
| | - Xiaochun Ye
- Department of Pharmacy, the First Hospital of Wuhan, Wuhan 430022, PR China
| | - Xiang Shu
- Department of Pharmacy, the First Hospital of Wuhan, Wuhan 430022, PR China
| | - Yuxi Long
- College of Pharmacy, Huazhong University of Science and Technology, 13# Hangkong Road, Wuhan 430030, PR China
| | - Yeli Guan
- College of Pharmacy, Huazhong University of Science and Technology, 13# Hangkong Road, Wuhan 430030, PR China
| | - Jiangeng Huang
- College of Pharmacy, Huazhong University of Science and Technology, 13# Hangkong Road, Wuhan 430030, PR China
| | - Jianping Wang
- College of Pharmacy, Huazhong University of Science and Technology, 13# Hangkong Road, Wuhan 430030, PR China.
| |
Collapse
|
27
|
Zhang H, Fu Y, Xu Y, Niu F, Li Z, Ba C, Jin B, Chen G, Li X. One-step assembly of zein/caseinate/alginate nanoparticles for encapsulation and improved bioaccessibility of propolis. Food Funct 2019; 10:635-645. [DOI: 10.1039/c8fo01614c] [Citation(s) in RCA: 54] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Propolis loaded zein/caseinate/alginate nanoparticles were fabricated using a facile one-step procedure without using organic solvents and sophisticated equipment.
Collapse
Affiliation(s)
- Hao Zhang
- School of Food Science and Biotechnology
- Zhejiang Gongshang University
- Hangzhou
- China
| | - Yuying Fu
- School of Food Science and Biotechnology
- Zhejiang Gongshang University
- Hangzhou
- China
- Hangzhou College of Commerce
| | - Yujuan Xu
- College of Food Science and Technology
- Nanjing Agricultural University
- Nanjing 210095
- China
| | - Fuge Niu
- School of Food Science and Biotechnology
- Zhejiang Gongshang University
- Hangzhou
- China
| | - Zeya Li
- School of Food Science and Biotechnology
- Zhejiang Gongshang University
- Hangzhou
- China
| | - Chujie Ba
- School of Food Science and Biotechnology
- Zhejiang Gongshang University
- Hangzhou
- China
| | - Bing Jin
- School of Food Science and Biotechnology
- Zhejiang Gongshang University
- Hangzhou
- China
| | - Guowen Chen
- School of Food Science and Biotechnology
- Zhejiang Gongshang University
- Hangzhou
- China
| | - Xiaomeng Li
- School of Food Science and Biotechnology
- Zhejiang Gongshang University
- Hangzhou
- China
| |
Collapse
|
28
|
Malaysian propolis, metformin and their combination, exert hepatoprotective effect in streptozotocin-induced diabetic rats. Life Sci 2018; 211:40-50. [PMID: 30205096 DOI: 10.1016/j.lfs.2018.09.018] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2018] [Revised: 08/18/2018] [Accepted: 09/07/2018] [Indexed: 11/23/2022]
Abstract
AIMS Hepatic oxidative stress and weak antioxidant defence system resulting in hepatic lesion, has been reported in diabetic rats. The present study investigated the possible hepatoprotective effects of Malaysian propolis (MP) in diabetic rats, on the background that MP has been reported to have anti-hyperglycemic, antioxidant and anti-inflammatory effects. MATERIALS AND METHODS Sprague-Dawley rats were randomly divided into 5 groups, namely: normal control (NC), diabetic control (DC), diabetic on 300 mg/kg b.w. MP, diabetic on 300 mg/kg b.w. metformin, and diabetic on MP and metformin combined therapy. Treatment was done orally for 4 weeks, and NC and DC groups received distilled water as vehicle. KEY FINDINGS Results showed increased fasting blood glucose and serum markers of hepatic lesion (aspartate aminotransferase, alkaline phosphatase, alanine aminotransferase and gamma-glutamyl transferase), increased hepatic lactate dehydrogenase activity, decreased hepatic superoxide dismutase, catalase, glutathione peroxidase, glutathione-S-transferase and glutathione reductase activities, increased immunoexpressions of nuclear factor kappa B, tumor necrosis factor-α, interleukin(IL)-1β and caspase-3, and decreased immunoexpressions of IL-10 and proliferating cell nuclear antigen in the liver of DC group. Histopathology of the liver revealed numerous hepatocytes with pyknotic nuclei and inflammatory infiltration, while periodic acid-schiff staining decreased in the liver of DC group. Treatment with MP attenuated these negative effects and was comparable to metformin. Furthermore, these effects were better attenuated in the combined therapy-treated diabetic rats. SIGNIFICANCE Malaysian propolis attenuates hepatic lesion in DM and exerts a synergistic protective effect with the anti-hyperglycemic medication, metformin.
Collapse
|
29
|
Nna VU, Abu Bakar AB, Md Lazin MRML, Mohamed M. Antioxidant, anti-inflammatory and synergistic anti-hyperglycemic effects of Malaysian propolis and metformin in streptozotocin-induced diabetic rats. Food Chem Toxicol 2018; 120:305-320. [PMID: 30026088 DOI: 10.1016/j.fct.2018.07.028] [Citation(s) in RCA: 56] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2018] [Revised: 06/23/2018] [Accepted: 07/15/2018] [Indexed: 01/21/2023]
Abstract
Diabetes mellitus is characterized by hyperglycemia which causes oxidative stress. Propolis has been reported to have antihyperglycemic and antioxidant potentials. The present study therefore examined the anti-hyperglycemic, antioxidant and anti-inflammatory activities of Malaysian propolis (MP) using streptozotocin-induced diabetic rats. Ethanol extract of MP showed in vitro antioxidant (DPPH, FRAP and H2O2 radical scavenging) and α-glucosidase inhibition activities. Male Sprague Dawley rats were either treated with distilled water (normal control and diabetic control), MP (300 mg/kg b. w.), metformin (Met) (300 mg/kg b. w.) or both. After four weeks, fasting blood glucose decreased, while body weight change and serum insulin level increased significantly in MP, Met and MP + Met treated diabetic groups compared to diabetic control (DC) group. Furthermore, pancreatic antioxidant enzymes, total antioxidant capacity, interleukin (IL)-10 and proliferating cell nuclear antigen increased, while malondialdehyde, nuclear factor-kappa B (p65), tumor necrosis factor alpha, IL-1β and cleaved caspase-3 decreased significantly in the treated diabetic groups compared to DC group. Histopathology of the pancreas showed increased islet area and number of beta cells in the treated groups, compared to DC group, with D + MP + Met group comparable to normal control. We conclude that MP has anti-hyperglycemic, antioxidant, anti-inflammatory and antiapoptotic potentials, and exhibits synergistic effect with metformin.
Collapse
Affiliation(s)
- Victor Udo Nna
- Department of Physiology, School of Medical Sciences, Universiti Sains Malaysia, 16150, Kelantan, Malaysia; Department of Physiology, Faculty of Basic Medical Sciences, College of Medical Sciences, University of Calabar, P.M.B. 1115, Calabar, Cross River State, Nigeria
| | - Ainul Bahiyah Abu Bakar
- Department of Physiology, School of Medical Sciences, Universiti Sains Malaysia, 16150, Kelantan, Malaysia
| | | | - Mahaneem Mohamed
- Department of Physiology, School of Medical Sciences, Universiti Sains Malaysia, 16150, Kelantan, Malaysia; Unit of Integrative Medicine, School of Medical Sciences, Universiti Sains Malaysia, 16150, Kelantan, Malaysia.
| |
Collapse
|