1
|
Terrazas-Avila P, Palma-Rodríguez HM, Navarro-Cortez RO, Hernández-Uribe JP, Piloni-Martini J, Vargas-Torres A. The effects of fermentation time on sourdough bread: An analysis of texture profile, starch digestion rate, and protein hydrolysis rate. J Texture Stud 2024; 55:e12831. [PMID: 38613314 DOI: 10.1111/jtxs.12831] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 03/12/2024] [Accepted: 03/15/2024] [Indexed: 04/14/2024]
Abstract
To ensure the best quality bread, it is important to consider the speed of digestion of starch and proteins, as well as how time fermentation and storage time influence the rate of starch digestion and the texture of the bread. This study compared the effect of fermentation time and days of storage on the texture, physicochemical, protein and starch digestibility of sourdough bread. Texture profile analysis showed that the fermentation time in recently baked sourdough bread affects hardness, chewiness, and springiness. The electrophoretic profile showed a decrease in band thickness with increase in fermentation time, consistent with a higher percentage of protein digestion. While fermentation time did not significantly affect rapidly digestible starch (RDS) and slowly digestible starch (SDS), storage time resulted in a decrease in RDS and an increase in SDS. Sourdough breads had higher levels of resistant starch (RS). The digestibility characteristics of protein and starch, as well as texture properties, are significantly influenced by fermentation and storage time. The evidence suggests that sourdough bread has the potential to improve the digestion of protein and to effectively regulate the glycemic response, which is due to its higher levels of SDS and RS.
Collapse
Affiliation(s)
- Paulina Terrazas-Avila
- Centro de Investigación en Ciencia y Tecnología de Alimentos, Instituto de Ciencias Agropecuarias, Universidad Autónoma del Estado de Hidalgo, Tulancingo, Hidalgo, Mexico
| | - Heidi M Palma-Rodríguez
- Centro de Investigación en Ciencia y Tecnología de Alimentos, Instituto de Ciencias Agropecuarias, Universidad Autónoma del Estado de Hidalgo, Tulancingo, Hidalgo, Mexico
| | - Ricardo O Navarro-Cortez
- Centro de Investigación en Ciencia y Tecnología de Alimentos, Instituto de Ciencias Agropecuarias, Universidad Autónoma del Estado de Hidalgo, Tulancingo, Hidalgo, Mexico
| | - Juan P Hernández-Uribe
- Centro de Investigación en Ciencia y Tecnología de Alimentos, Instituto de Ciencias Agropecuarias, Universidad Autónoma del Estado de Hidalgo, Tulancingo, Hidalgo, Mexico
| | - Javier Piloni-Martini
- Centro de Investigación en Ciencia y Tecnología de Alimentos, Instituto de Ciencias Agropecuarias, Universidad Autónoma del Estado de Hidalgo, Tulancingo, Hidalgo, Mexico
| | - Apolonio Vargas-Torres
- Centro de Investigación en Ciencia y Tecnología de Alimentos, Instituto de Ciencias Agropecuarias, Universidad Autónoma del Estado de Hidalgo, Tulancingo, Hidalgo, Mexico
| |
Collapse
|
2
|
Arjmand S, Mollakhalili‐Meybodi N, Akrami Mohajeri F, Madadizadeh F, Khalili Sadrabad E. Quinoa dough fermentation by Saccharomyces cerevisiae and lactic acid bacteria: Changes in saponin, phytic acid content, and antioxidant capacity. Food Sci Nutr 2023; 11:7594-7604. [PMID: 38107108 PMCID: PMC10724584 DOI: 10.1002/fsn3.3679] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 08/26/2023] [Accepted: 08/28/2023] [Indexed: 12/19/2023] Open
Abstract
The effects of two fermentation processes (common fermentation with Saccharomyces cerevisiae and fermentation by Lacticaseibacillus casei subsp. casei PTCC 1608 and Lactiplantibacillus plantarum subsp. plantarum PTCC 1745) on pH, titratable acidity, total phenolic and flavonoid contents, antioxidant capacity, saponin content, as well as phytic acid content of quinoa dough were investigated during the 24-h fermentation (4-h interval). According to the results, the highest titratable acidity was observed in the samples fermented by L. casei subsp. casei. Moreover, the highest antioxidant capacity was observed after 12 h of fermentation by L. plantarum subsp. plantarum (31.22% for DPPH, 104.67% for FRAP) due to a higher concentration of phenolic compounds produced (170.5% for total phenolic content). Also, all samples have been able to reduce saponin by 67% on average. Furthermore, the samples fermented by L. plantarum subsp. plantarum showed the most significant decrease in phytic acid content (64.64%) during 24-h fermentation. By considering the reduction of the antinutritional compounds and improvement in the antioxidant properties of quinoa flour, the Lactiplantibacillus plantarum strain was recommended.
Collapse
Affiliation(s)
- Sanaz Arjmand
- Research Center for Food Hygiene and SafetyDepartment of Food Hygiene and Safety, School of Public HealthShahid Sadoughi University of Medical SciencesYazdIran
| | - Neda Mollakhalili‐Meybodi
- Research Center for Food Hygiene and SafetyDepartment of Food Science and Technology, School of Public HealthShahid Sadoughi University of Medical SciencesYazdIran
| | - Fateme Akrami Mohajeri
- Research Center for Food Hygiene and SafetyDepartment of Food Hygiene and Safety, School of Public HealthShahid Sadoughi University of Medical SciencesYazdIran
- Infectious Diseases Research CenterShahid Sadoughi HospitalShahid Sadoughi University of Medical SciencesYazdIran
| | - Farzan Madadizadeh
- Center for Healthcare Data modelingDepartments of Biostatistics and Epidemiology, School of public healthShahid Sadoughi University of Medical SciencesYazdIran
| | - Elham Khalili Sadrabad
- Research Center for Food Hygiene and SafetyDepartment of Food Hygiene and Safety, School of Public HealthShahid Sadoughi University of Medical SciencesYazdIran
- Infectious Diseases Research CenterShahid Sadoughi HospitalShahid Sadoughi University of Medical SciencesYazdIran
| |
Collapse
|
3
|
Ribet L, Dessalles R, Lesens C, Brusselaers N, Durand-Dubief M. Nutritional benefits of sourdoughs: A systematic review. Adv Nutr 2023; 14:22-29. [PMID: 36811591 PMCID: PMC10103004 DOI: 10.1016/j.advnut.2022.10.003] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Revised: 09/14/2022] [Accepted: 10/05/2022] [Indexed: 12/23/2022] Open
Abstract
Food fermentation using sourdough-i.e., consortia of lactic bacteria and yeasts-is increasingly considered among the public as a natural transformation yielding nutritional benefits; however, it is unclear whether its alleged properties are validated by science. The aim of this study was to systematically review the clinical evidence related to the effect of sourdough bread on health. Bibliographic searches were performed in 2 different databases (The Lens and PubMed) up to February 2022. Eligible studies were randomized controlled trials involving adults, healthy or not, given any type of sourdough bread compared with those given any type of yeast bread. A total of 573 articles were retrieved and investigated, of which 25 clinical trials met the inclusion criteria. The 25 clinical trials included a total of 542 individuals. The main outcomes investigated in the retrieved studies were glucose response (N = 15), appetite (N = 3), gastrointestinal markers (N = 5), and cardiovascular markers (N = 2). Overall, it is currently difficult to establish a clear consensus with regards to the beneficial effects of sourdough per se on health when compared with other types of bread because a variety of factors, such as the microbial composition of sourdough, fermentation parameters, cereals, and flour types potentially influence the nutritional properties of bread. Nonetheless, in studies using specific strains and fermentation conditions, significant improvements were observed in parameters related to glycemic response, satiety, or gastrointestinal comfort after bread ingestion. The reviewed data suggest that sourdough has great potential to produce a variety of functional foods; however, its complex and dynamic ecosystem requires further standardization to conclude its clinical health benefits.
Collapse
Affiliation(s)
- Léa Ribet
- Baking Science, Lesaffre Institute of Science & Technology, Lesaffre, Marcq-en-Barœul, France
| | | | - Corinne Lesens
- Baking Science, Lesaffre Institute of Science & Technology, Lesaffre, Marcq-en-Barœul, France
| | - Nele Brusselaers
- Global Health Institute, Antwerp University, Antwerp, Belgium; Centre for Translational Microbiome Research (CTMR), Department of Microbiology, Tumor and Cell Biology, Karolinska Institute, Karolinska Hospital, Stockholm, Sweden; Department of Head and Skin, Ghent University, Ghent, Belgium
| | - Mickaël Durand-Dubief
- Discovery & Front End Innovation, Lesaffre Institute of Science & Technology, Lesaffre, Marcq-en-Barœul, France.
| |
Collapse
|
4
|
Hu Y, Zhang J, Wang S, Liu Y, Li L, Gao M. Lactic acid bacteria synergistic fermentation affects the flavor and texture of bread. J Food Sci 2022; 87:1823-1836. [PMID: 35257375 DOI: 10.1111/1750-3841.16082] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2021] [Revised: 01/19/2022] [Accepted: 01/22/2022] [Indexed: 12/22/2022]
Abstract
Fermentation strains play a key role in the quality of bread. The combination of yeast and lactic acid bacteria (LAB) may effectively improve the function and nutritional properties of bread. In this study, the dough was fermented to make bread by using single strain (Saccharomyces cerevisiae, mode A), the combination of two strains (S. cerevisiae and Lactiplantibacillus plantarum, mode B; S. cerevisiae and Lactobacillus delbrueckii, mode C), or three strains (S. cerevisiae, L. plantarum, and L. delbrueckii, mode D). The specific volume, texture, and aroma substances of bread were evaluated. The possibility of mixed fermentation of selected yeast and LAB to replace natural fermentation dough was evaluated. The results showed that the specific volume of bread in mode B was 15.2% higher than that of mode A. The structure was softer and the taste was more vigorous in mode B bread. The content of volatile compounds was highest in mode B bread among the four mode bread. The characteristic flavors were ethyl 2-hydroxypropionate and z-3-hexenol. The cofermentation in mode B made the bread aroma richer and gave better aroma characteristics to bread. Therefore, the fermentation of S. cerevisiae and L. plantarum can be recommended to replace naturally fermented dough to improve the quality of bread. PRACTICAL APPLICATION: L. plantarum and L. delbrueckii, separately or together, assisted in yeast fermentation to make bread. The specific volume, texture, and aroma substances of bread were evaluated to replace natural fermented dough with mixed fermentation. L. plantarum-assisted yeast fermentation improved the specific volume, texture, and aroma of bread. The characteristic flavors were ethyl 2-hydroxypropionate and z-3-hexenol in bread. Therefore, the fermentation of S. cerevisiae and L. plantarum could replace naturally fermented dough to improve the quality of bread.
Collapse
Affiliation(s)
- Yuwei Hu
- College of Life Science, Yangtze University, Jingzhou, Hubei, China
| | - Jialan Zhang
- College of Animal Science, Yangtze University, Jingzhou, Hubei, China
| | - Shaojin Wang
- College of Life Science, Yangtze University, Jingzhou, Hubei, China
| | - Yingbao Liu
- College of Life Science, Yangtze University, Jingzhou, Hubei, China
| | - Li Li
- College of Life Science, Yangtze University, Jingzhou, Hubei, China
| | - Mengxiang Gao
- College of Life Science, Yangtze University, Jingzhou, Hubei, China
| |
Collapse
|
5
|
Phytic Acid and Whole Grains for Health Controversy. Nutrients 2021; 14:nu14010025. [PMID: 35010899 PMCID: PMC8746346 DOI: 10.3390/nu14010025] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 12/17/2021] [Accepted: 12/21/2021] [Indexed: 12/20/2022] Open
Abstract
Phytate (PA) serves as a phosphate storage molecule in cereals and other plant foods. In food and in the human body, PA has a high affinity to chelate Zn2+ and Fe2+, Mg2+, Ca2+, K+, Mn2+ and Cu2+. As a consequence, minerals chelated in PA are not bio-available, which is a concern for public health in conditions of poor food availability and low mineral intakes, ultimately leading to an impaired micronutrient status, growth, development and increased mortality. For low-income countries this has resulted in communications on how to reduce the content of PA in food, by appropriate at home food processing. However, claims that a reduction in PA in food by processing per definition leads to a measurable improvement in mineral status and that the consumption of grains rich in PA impairs mineral status requires nuance. Frequently observed decreases of PA and increases in soluble minerals in in vitro food digestion (increased bio-accessibility) are used to promote food benefits. However, these do not necessarily translate into an increased bioavailability and mineral status in vivo. In vitro essays have limitations, such as the absence of blood flow, hormonal responses, neural regulation, gut epithelium associated factors and the presence of microbiota, which mutually influence the in vivo effects and should be considered. In Western countries, increased consumption of whole grain foods is associated with improved health outcomes, which does not justify advice to refrain from grain-based foods because they contain PA. The present commentary aims to clarify these seemingly controversial aspects.
Collapse
|
6
|
Korcari D, Secchiero R, Laureati M, Marti A, Cardone G, Rabitti NS, Ricci G, Fortina MG. Technological properties, shelf life and consumer preference of spelt-based sourdough bread using novel, selected starter cultures. Lebensm Wiss Technol 2021. [DOI: 10.1016/j.lwt.2021.112097] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
7
|
Galli V, Venturi M, Cardone G, Pini N, Marti A, Granchi L. In situ
dextran synthesis by
Weissella confusa
Ck15 and
Leuconostoc pseudomesenteroides
DSM 20193 and their effect on chickpea sourdough bread. Int J Food Sci Technol 2021. [DOI: 10.1111/ijfs.15097] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Viola Galli
- Department of Agriculture, Food, Environment and Forestry (DAGRI) University of Florence Via San Bonaventura, 13 Florence 50145 Italy
| | - Manuel Venturi
- FoodMicroTeam s.r.l Via di Santo Spirito, 14 Florence 50125 Italy
| | - Gaetano Cardone
- Department of Food, Environmental and Nutritional Sciences (DeFENS) Università degli Studi di Milano via Celoria 2 Milan 20133 Italy
| | - Niccolò Pini
- Department of Agriculture, Food, Environment and Forestry (DAGRI) University of Florence Via San Bonaventura, 13 Florence 50145 Italy
| | - Alessandra Marti
- Department of Food, Environmental and Nutritional Sciences (DeFENS) Università degli Studi di Milano via Celoria 2 Milan 20133 Italy
| | - Lisa Granchi
- Department of Agriculture, Food, Environment and Forestry (DAGRI) University of Florence Via San Bonaventura, 13 Florence 50145 Italy
| |
Collapse
|
8
|
Pica V, Stuknytė M, Masotti F, De Noni I, Cattaneo S. Model infant biscuits release the opioid-acting peptides milk β-casomorphins and gluten exorphins after in vitro gastrointestinal digestion. Food Chem 2021; 362:130262. [PMID: 34118509 DOI: 10.1016/j.foodchem.2021.130262] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Revised: 05/28/2021] [Accepted: 05/29/2021] [Indexed: 12/19/2022]
Abstract
Infant biscuits (IBs) are commonly used during the complementary feeding of infants from the 6th month of life. They contain wheat flour and dairy ingredients, which can release the opioid-acting peptides β-casomorphins (BCMs) and gluten exorphins (GEs) after gastrointestinal digestion. In the present study, five model IBs were prepared with or without gluten and different powdered milk derivatives in the formulations. IBs were digested simulating an in vitro static gastrointestinal digestion for infants aged 6-12 months. BCMs and GEs were identified and quantified by UPLC/HR-MS. The amounts of BCM7 and the GE A5 were related to the β-CN and gluten content of the formulations. To date, levels of BCMs and GEs in digests of IBs have not been reported in literature. This work represents an in vitro investigation regarding the release of opioid-acting peptides in IBs. It could add additional knowledge on complementary foods for infant health.
Collapse
Affiliation(s)
- Valentina Pica
- Dipartimento di Scienze per gli Alimenti, la Nutrizione e l'Ambiente, Università degli Studi di Milano, Via G. Celoria 2, 20133 Milan, Italy
| | - Milda Stuknytė
- Unitech COSPECT - University Technological Platforms Office, Università degli Studi di Milano, Via C. Golgi 19, 20133 Milan, Italy
| | - Fabio Masotti
- Dipartimento di Scienze per gli Alimenti, la Nutrizione e l'Ambiente, Università degli Studi di Milano, Via G. Celoria 2, 20133 Milan, Italy
| | - Ivano De Noni
- Dipartimento di Scienze per gli Alimenti, la Nutrizione e l'Ambiente, Università degli Studi di Milano, Via G. Celoria 2, 20133 Milan, Italy.
| | - Stefano Cattaneo
- Dipartimento di Scienze per gli Alimenti, la Nutrizione e l'Ambiente, Università degli Studi di Milano, Via G. Celoria 2, 20133 Milan, Italy
| |
Collapse
|
9
|
Metagenetic Analysis for Microbial Characterization of Focaccia Doughs Obtained by Using Two Different Starters: Traditional Baker's Yeast and a Selected Leuconostoc citreum Strain. Foods 2021; 10:foods10061189. [PMID: 34070312 PMCID: PMC8225195 DOI: 10.3390/foods10061189] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Revised: 05/03/2021] [Accepted: 05/21/2021] [Indexed: 11/28/2022] Open
Abstract
Lactic acid bacteria (LAB) decisively influence the technological, nutritional, organoleptic and preservation properties of bakery products. Therefore, their use has long been considered an excellent strategy to improve the characteristics of those goods. The aim of this study was the evaluation of microbial diversity in different doughs used for the production of a typical Apulian flatbread, named focaccia. Leavening of the analyzed doughs was obtained with baker’s yeast or by applying an innovative “yeast-free” protocol based on a liquid sourdough obtained by using Leuconostoc citreum strain C2.27 as a starter. The microbial populations of the doughs were studied by both a culture-dependent approach and metagenetic analyses. The flours used for dough preparation were also subjected to the same analyses. The metagenetic analyses were performed by sequencing the V5–V6 hypervariable regions of the 16S rRNA gene and the V9 hypervariable region of the 18S rRNA gene. The results indicate that these hypervariable regions were suitable for studying the microbiota of doughs, highlighting a significant difference between the microbial community of focaccia dough with baker’s yeast and that of the dough inoculated with the bacterial starter. In particular, the dough made with baker’s yeast contained a microbiota with a high abundance of Proteobacteria (82% of the bacterial population), known to be negatively correlated with the biochemical properties of the doughs, while the Proteobacteria in dough produced with the L. citreum starter were about 43.5% lower than those in flour and dough prepared using baker’s yeast. Moreover, the results show that the L. citreum C2.27 starter was able to dominate the microbial environment and also reveal the absence of the genus Saccharomyces in the dough used for the production of the “yeast-free” focaccia. This result is particularly important because it highlights the suitability of the starter strain for obtaining an innovative “yeast-free” product.
Collapse
|
10
|
Effect of Different Fermentation Condition on Estimated Glycemic Index, In Vitro Starch Digestibility, and Textural and Sensory Properties of Sourdough Bread. Foods 2021; 10:foods10030514. [PMID: 33804465 PMCID: PMC8000543 DOI: 10.3390/foods10030514] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Revised: 02/21/2021] [Accepted: 02/23/2021] [Indexed: 01/16/2023] Open
Abstract
This study aimed to evaluate the influence of sourdough fermentation on the estimated glycemic index (eGI), in vitro starch digestibility, and textural and sensory properties of eight experimentally prepared sourdough breads. Wheat and whole wheat flour bread samples were produced under different fermentation conditions (25 °C and 30 °C) and fermentation methods (type-1 and type-2). In type-1 fermentation, sourdough was obtained via spontaneous fermentation. Indigenous strains (Lactobacillus brevis ELB99, Lactiplantibacillus plantarum ELB75, and Saccharomyces cerevisiae TGM55) were used for type-2 fermentation. Fermentation type and temperature significantly affected eGI, the hydrolysis index (HI), the starch fraction, and the textural properties of the samples (p < 0.05). The resistant starch (RS) content increased after fermentation, while rapidly digestible starch (RDS), HI, and eGI decreased. RS values were significantly higher in type-2 than in type-1 at the same temperature for both flour types (p < 0.05). At 25 °C, RS values were higher in both fermentation types. In the white flour samples, eGI values were in the range of 60.8–78.94 and 62.10–78.94 for type-1 and type-2, respectively. The effect of fermentation type on eGI was insignificant (p < 0.05). In the whole flour samples, fermentation type and temperature significantly affected eGI (p < 0.05). The greatest eGI decreases were in whole wheat sourdough bread at 30 °C using type-2 (29.74%). The 30 °C and type-2 samples showed lower hardness and higher specific volume. This study suggests that fermentation type and temperature could affect the eGI and the textural and sensory properties of sourdough bread, and these factors should be considered during bread production. The findings also support the consumption of wheat and whole wheat breads produced by type-2 fermentation due to higher RS and slowly digestible starch (SDS) and lower RDS and eGI values.
Collapse
|
11
|
Teleky BE, Martău GA, Vodnar DC. Physicochemical Effects of Lactobacillus plantarum and Lactobacillus casei Cocultures on Soy-Wheat Flour Dough Fermentation. Foods 2020; 9:E1894. [PMID: 33353037 PMCID: PMC7766497 DOI: 10.3390/foods9121894] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Revised: 12/10/2020] [Accepted: 12/15/2020] [Indexed: 12/13/2022] Open
Abstract
In contemporary food production, an important role is given to the increase in the nutritional quality of foodstuff. In the bakery industry, one of the main cereals used is wheat flour (WF), which creates bread with proper sensory evaluation but is nutritionally poor. Soy-flour (SF) has increased nutrient content, and its consumption is recommended due to several health benefits. Dough fermentation with lactic acid bacteria (LAB) increases bread shelf life, improves flavor, and its nutritional quality, mostly due to its high organic acid production capability. In the present study, the addition of SF to WF, through fermentation with the cocultures of Lactobacillus plantarum and Lactobacillus casei was analyzed. Three different batches were performed by using WF supplemented with SF, as follows: batch A consisting of 90% WF and 10% SF; batch B-95% WF and 5% SF; batch C-100% WF. The fermentation with these two LABs presented several positive effects, which, together with increased SF content, improved the dough's rheological and physicochemical characteristics. The dynamic rheological analysis exhibited a more stable elastic-like behavior in doughs supplemented with SF (G' 4936.2 ± 12.7, and G″ 2338.4 ± 9.1). Organic acid production changes were the most significant, especially for the lactic, citric, and tartaric content.
Collapse
Affiliation(s)
- Bernadette-Emőke Teleky
- Institute of Life Sciences, University of Agricultural Sciences and Veterinary Medicine, Calea Mănăștur 3-5, 400372 Cluj-Napoca, Romania; (B.-E.T.); (G.A.M.)
| | - Gheorghe Adrian Martău
- Institute of Life Sciences, University of Agricultural Sciences and Veterinary Medicine, Calea Mănăștur 3-5, 400372 Cluj-Napoca, Romania; (B.-E.T.); (G.A.M.)
- Faculty of Food Science and Technology, University of Agricultural Sciences and Veterinary Medicine, Calea Mănăștur 3-5, 400372 Cluj-Napoca, Romania
| | - Dan Cristian Vodnar
- Institute of Life Sciences, University of Agricultural Sciences and Veterinary Medicine, Calea Mănăștur 3-5, 400372 Cluj-Napoca, Romania; (B.-E.T.); (G.A.M.)
- Faculty of Food Science and Technology, University of Agricultural Sciences and Veterinary Medicine, Calea Mănăștur 3-5, 400372 Cluj-Napoca, Romania
| |
Collapse
|
12
|
Çetin-Babaoğlu H, Arslan-Tontul S, Akın N. Effect of immature wheat flour on nutritional and technological quality of sourdough bread. J Cereal Sci 2020. [DOI: 10.1016/j.jcs.2020.103000] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
13
|
Păcularu-Burada B, Georgescu LA, Vasile MA, Rocha JM, Bahrim GE. Selection of Wild Lactic Acid Bacteria Strains as Promoters of Postbiotics in Gluten-Free Sourdoughs. Microorganisms 2020; 8:E643. [PMID: 32354104 PMCID: PMC7284720 DOI: 10.3390/microorganisms8050643] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Revised: 04/24/2020] [Accepted: 04/26/2020] [Indexed: 12/18/2022] Open
Abstract
The occurrence of inflammatory responses in humans is frequently associated with food intolerances and is likely to give rise to irritable bowel disease. The use of conventional or unconventional flours to produce gluten-free baking doughs brings important technological and nutritional challenges, and the use of the sourdough biotechnology has the potential to overcome such limitations. In addition, the typical metabolic transformations carried out by Lactic Acid Bacteria (LAB) can become an important biotechnological process for the nutritional fortification and functionalization of sourdoughs due to the resulting postbiotics. In such a context, this research work aimed at isolating and selecting new LAB strains that resort to a wide range of natural environments and food matrices to be ultimately employed as starter cultures in gluten-free sourdough fermentations. Nineteen LAB strains belonging to the genera of Lactobacillus, Leuconostoc, Pediococcus, and Streptococcus were isolated, and the selection criteria encompassed their acidification capacity in fermentations carried out on chickpea, quinoa, and buckwheat flour extracts; the capacity to produce exopolysaccharides (EPS); and the antimicrobial activity against food spoilage molds and bacteria. Moreover, the stability of the LAB metabolites after the fermentation of the gluten-free flour extracts submitted to thermal and acidic treatments was also assessed.
Collapse
Affiliation(s)
- Bogdan Păcularu-Burada
- Faculty of Food Science and Engineering, Dunărea de Jos University of Galati, Domneasca Street No. 111, 800201 Galati, Romania; (B.P.-B.); (L.A.G.); (M.A.V.)
| | - Luminița Anca Georgescu
- Faculty of Food Science and Engineering, Dunărea de Jos University of Galati, Domneasca Street No. 111, 800201 Galati, Romania; (B.P.-B.); (L.A.G.); (M.A.V.)
| | - Mihaela Aida Vasile
- Faculty of Food Science and Engineering, Dunărea de Jos University of Galati, Domneasca Street No. 111, 800201 Galati, Romania; (B.P.-B.); (L.A.G.); (M.A.V.)
| | - João Miguel Rocha
- REQUIMTE–Rede de Química e Tecnologia, Laboratório de Química Verde (LAQV), Departamento de Química e Bioquímica, Faculdade de Ciências da Universidade do Porto (FCUP), Rua do Campo Alegre, s/n. P-4169-007 Porto, Portugal;
| | - Gabriela-Elena Bahrim
- Faculty of Food Science and Engineering, Dunărea de Jos University of Galati, Domneasca Street No. 111, 800201 Galati, Romania; (B.P.-B.); (L.A.G.); (M.A.V.)
| |
Collapse
|
14
|
Bottani M, Cornaghi L, Donetti E, Ferraretto A. Excess of nutrient-induced morphofunctional adaptation and inflammation degree in a Caco2/HT-29 in vitro intestinal co-culture. Nutrition 2018; 58:156-166. [PMID: 30419477 DOI: 10.1016/j.nut.2018.07.018] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2018] [Accepted: 07/30/2018] [Indexed: 12/26/2022]
Abstract
OBJECTIVES The intestinal cell function can be modulated by the type and quantity of nutrients. The aim of this study was to evaluate the effects of an excess of nutrients on intestinal morphofunctional features and a possible association of inflammation in a 70/30 Caco2/HT-29 intestinal in vitro co-culture. METHODS An excess of nutrients (EX) was obtained by progressively increasing the medium change frequency with respect to standard cell growth conditions (ST) from confluence (T0) to 15 d after confluence (T15). RESULTS In comparison with the ST group, the EX group revealed a maintenance in the number of microvilli, an increase in follicle like-structures and mucus production, and a decrease in the number of tight junction. The specific activity of markers of intestinal differentiation, alkaline phosphatase and aminopeptidase N, and of the enterocyte differentiation specific marker, dipeptidyl peptidase-IV, were progressively raised. The transepithelial electrical resistance, indicative of the co-culture barrier properties, decreased, whereas Lucifer yellow Papp evaluation, an index of the paracellular permeability to large molecules, showed an increase. Reactive oxygen species and nitric oxide production, indicative of an oxidative status, together with interleukin-6, interleukin-8, indicative of a low-grade inflammation, and peptide YY secretion were higher in the EX group than in the ST group. The differences between ST and EX were particularly evident at T15. CONCLUSION These data support the suitability of our in vitro gut model for obesity studies at the molecular level and the necessity to standardize the medium frequency change in intestinal culture.
Collapse
Affiliation(s)
- Michela Bottani
- Dipartimento di Scienze Biomediche per la Salute, Università degli Studi di Milano, Milano, Italy
| | - Laura Cornaghi
- Dipartimento di Scienze Biomediche per la Salute, Università degli Studi di Milano, Milano, Italy
| | - Elena Donetti
- Dipartimento di Scienze Biomediche per la Salute, Università degli Studi di Milano, Milano, Italy
| | - Anita Ferraretto
- Dipartimento di Scienze Biomediche per la Salute, Università degli Studi di Milano, Milano, Italy; Centro Ricerca Metabolismi, San Donato Milanese, Italy.
| |
Collapse
|