1
|
Yang Y, Wang L, Deng Q, Liu Y, Zhou Q. What contributes to the richness and stability of the sesame flavor? Compr Rev Food Sci Food Saf 2025; 24:e70155. [PMID: 40243127 DOI: 10.1111/1541-4337.70155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2024] [Revised: 01/28/2025] [Accepted: 02/13/2025] [Indexed: 04/18/2025]
Abstract
Sesame, an oilseed crop with a long history, is renowned for its distinctive flavor characteristics and diverse uses. In-depth research on the stable and potent flavor components in sesame not only enhances the taste and aroma of sesame products but also promotes their high-value utilization. This review comprehensively discusses the latest advancements in the flavor of processed sesame foods, systematically categorizing 187 compounds that contribute to the flavor. The focus is on sulfur-containing compounds and heterocyclic compounds. From a molecular sensory perspective, this study explores the impact of various factors on flavor profiles. Moreover, sesame seeds contain natural polyphenols, such as sesamin, sesamol, and sesamolin, which enhance the flavor and stability of sesame products and play a crucial role in maintaining the stability during processing and storage. Future research should focus on using machine learning models for real-time flavor optimization. This approach can leverage robust data analysis to adjust parameters promptly and achieve desired flavor outcomes. Additionally, integrating cutting-edge detection technology to establish a comprehensive sesame food flavor database will provide essential data for flavor research, simplify the flavor enhancement process, ensure scientific and efficient flavor adjustment, and maintain stable flavor quality. This will help to promote the development and utilization of nutritious and delicious sesame products in-line with consumer preferences, thereby driving growth in the sesame industry.
Collapse
Affiliation(s)
- Yini Yang
- Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Hubei Key Laboratory of Lipid Chemistry and Nutrition, Key Laboratory of Oil Seed Processing of Ministry of Agriculture, Oil Crops and Lipids Process Technology National and Local Joint Engineering Laboratory, Wuhan, China
- Beijing Engineering and Technology Research Center of Food Additives, Beijing Advanced Innovation Center for Food Nutrition and Human Health, School of Food and Health, Beijing Technology and Business University (BTBU), Beijing, China
| | - Linhai Wang
- Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Hubei Key Laboratory of Lipid Chemistry and Nutrition, Key Laboratory of Oil Seed Processing of Ministry of Agriculture, Oil Crops and Lipids Process Technology National and Local Joint Engineering Laboratory, Wuhan, China
| | - Qianchun Deng
- Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Hubei Key Laboratory of Lipid Chemistry and Nutrition, Key Laboratory of Oil Seed Processing of Ministry of Agriculture, Oil Crops and Lipids Process Technology National and Local Joint Engineering Laboratory, Wuhan, China
| | - Ye Liu
- Beijing Engineering and Technology Research Center of Food Additives, Beijing Advanced Innovation Center for Food Nutrition and Human Health, School of Food and Health, Beijing Technology and Business University (BTBU), Beijing, China
| | - Qi Zhou
- Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Hubei Key Laboratory of Lipid Chemistry and Nutrition, Key Laboratory of Oil Seed Processing of Ministry of Agriculture, Oil Crops and Lipids Process Technology National and Local Joint Engineering Laboratory, Wuhan, China
| |
Collapse
|
2
|
Fallah Z, Vasmehjani AA, Aghaei S, Amiri M, Raeisi-Dekordi H, Moghtaderi F, Zimorovat A, Yazd EF, Madadizadeh F, Khayyatzadeh SS, Salehi-Abargouei A. Cardiometabolic risk factors are affected by interaction between FADS1 rs174556 variant and dietary vegetable oils in patients with diabetes: a randomized controlled trial. Sci Rep 2024; 14:27531. [PMID: 39528535 PMCID: PMC11555249 DOI: 10.1038/s41598-024-78294-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2024] [Accepted: 10/29/2024] [Indexed: 11/16/2024] Open
Abstract
FADS1 rs174556 polymorphism influences on dietary fats metabolism and type 2 diabetes (T2DM). This study aimed to compare the effect of three oils of sesame, canola and sesame-canola on cardio metabolic factors across genotypes of rs174556 variant in patients with type 2 of diabetes. This study was a randomized triple-blind three-way cross-over clinical trial. 95 Subjects with T2DM replaced their regular dietary oil with sesame oil, canola oil, or sesame-canola oil for three 9-week phases and completed the study. There were three anthropometric measurements, blood sampling and biochemical assessments at the beginning, middle, and at the end of each phase for assessments. Genotyping was conducted using the polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP) method. In the crude model, there was an interaction between consumed oils and rs174556 variant on serum concentration of Apolipoprotein A-I (ApoA-1). During intake of sesame oil, lower levels of triglycerides (TG) were observed in individuals with TT genotype compared to C allele carriers' allele, which remained significant in adjusted models. Compared to C allele carrier's, the people with TT genotype experienced significant increase and decrease in serum levels of HDL and TG, respectively in adjusted models. Also, the subjects who consumed sesame-canola oil had lower serum concentrations of fasting blood glucose than those who received sesame and canola oils, regardless of used oils and genotypes. FADS1 Gene variant (rs174556) might modify cardiometabolic changes following dietary vegetable oils. Larger longitudinal studies especially randomized clinical trials are needed to clarify these associations.
Collapse
Affiliation(s)
- Zahra Fallah
- Research Center for Food Hygiene and Safety, School of Public Health, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
- Department of Nutrition, School of Public Health, Shahid Sadoughi University of Medical Sciences, Yazd, 8914715645, Iran
| | - Azam Ahmadi Vasmehjani
- Research Center for Food Hygiene and Safety, School of Public Health, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
- Department of Nutrition, School of Public Health, Shahid Sadoughi University of Medical Sciences, Yazd, 8914715645, Iran
| | - Shiva Aghaei
- Stem Cell Biology Research Center, Yazd Reproductive Sciences Institute, Yazd, Iran
| | - Mojgan Amiri
- Department of Epidemiology, Erasmus MC, University Medical Center Rotterdam, PO Box 2040, 3000 CA, Rotterdam, The Netherlands
| | - Hamidreza Raeisi-Dekordi
- Julius Center for Health Sciences and Primary Care, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| | - Fatemeh Moghtaderi
- Research Center for Food Hygiene and Safety, School of Public Health, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
- Department of Nutrition, School of Public Health, Shahid Sadoughi University of Medical Sciences, Yazd, 8914715645, Iran
| | - Alireza Zimorovat
- Research Center for Food Hygiene and Safety, School of Public Health, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
- Department of Nutrition, School of Public Health, Shahid Sadoughi University of Medical Sciences, Yazd, 8914715645, Iran
| | - Ehsan Farashahi Yazd
- Stem Cell Biology Research Center, Yazd Reproductive Sciences Institute, Yazd, Iran
| | - Farzan Madadizadeh
- Center for Healthcare Data Modeling, Departments of Biostatistics and Epidemiology, School of Public Health, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
- Environmental Science and Technology Research Center, Department of Environmental Health Engineering, School of Public Health, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Sayyed Saeid Khayyatzadeh
- Research Center for Food Hygiene and Safety, School of Public Health, Shahid Sadoughi University of Medical Sciences, Yazd, Iran.
- Department of Nutrition, School of Public Health, Shahid Sadoughi University of Medical Sciences, Yazd, 8914715645, Iran.
| | - Amin Salehi-Abargouei
- Research Center for Food Hygiene and Safety, School of Public Health, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
- Department of Nutrition, School of Public Health, Shahid Sadoughi University of Medical Sciences, Yazd, 8914715645, Iran
- Yazd Cardiovascular Research Center, Non-Communicable Diseases Research Institute, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| |
Collapse
|
3
|
Abdollahi S, Soltani S, Ramezani-Jolfaie N, Mohammadi M, Sherafatmanesh S, Lorzadeh E, Salehi-Abargouei A. The effect of different edible oils on body weight: a systematic review and network meta-analysis of randomized controlled trials. BMC Nutr 2024; 10:107. [PMID: 39080785 PMCID: PMC11290154 DOI: 10.1186/s40795-024-00907-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Accepted: 07/07/2024] [Indexed: 08/02/2024] Open
Abstract
BACKGROUND Obesity is a major public health issue with no definitive treatment. The first-line approach for obesity is lifestyle modification, including a healthy diet. Although the amount of fat has been considered, there is no network meta-analysis (NMA) study investigating the effect of edible oils on body weight. Therefore, we sought to investigate the effect of different edible oils on body weight using a systematic review and NMA study of randomized controlled trials (RCTs). METHOD PubMed, Scopus, ISI Web of Science, and the Cochrane Library were searched from inception to April 2019. RCTs of different edible oils for body weight were included. A frequentist network meta-analysis was conducted to appraise the efficacy of different types of edible oils, and the Surface Under the Cumulative Ranking Curve (SUCRA) was estimated. The GRADE framework was used to assess the certainty of evidence. RESULTS Forty-two eligible studies were included. Most of the included trials examined the effect of olive oil compared to canola oil (n = 7 studies), followed by canola oil compared to sunflower oil (n = 6 studies), and olive oil compared to sunflower oil (n = 4 studies). Sesame oil had the highest SUCRA value for reducing weight (SUCRA value = 0.9), followed by the mixture of canola and sesame oil (0.8). Palm oil and soy oil were ranked the lowest (SUCRA value = 0.2). CONCLUSION There is low to moderate certainty of evidence showing that soybean, palm, and sunflower oils were associated with weight gain, while sesame oil produced beneficial anti-obesity effects.
Collapse
Affiliation(s)
- Shima Abdollahi
- Department of Nutrition, School of Health, North Khorasan University of Medical Sciences, Bojnurd, Iran
| | - Sepideh Soltani
- Yazd Cardiovascular Research Center, Noncommunicable Diseases Research Institute, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Nahid Ramezani-Jolfaie
- Food Health Research Center, Hormozgan University of Medical Sci- Ences, Bandar Abbas, Iran
- Department of Community Medicine, School of Medicine, Hormozgan University of Medical Sciences, Bandar Abbas, Iran
| | - Mohammad Mohammadi
- Food Health Research Center, Hormozgan University of Medical Sci- Ences, Bandar Abbas, Iran
- Department of Community Medicine, School of Medicine, Hormozgan University of Medical Sciences, Bandar Abbas, Iran
| | - Saeed Sherafatmanesh
- Department of Nutrition, School of Public Health, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
- Research Center for Food Hygiene and Safety, School of Public Health, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Elnaz Lorzadeh
- School of Medicine, Faculty of Science, Medicine and Health, University of Wollongong, Wollongong, NSW 2522, Australia
| | - Amin Salehi-Abargouei
- Yazd Cardiovascular Research Center, Noncommunicable Diseases Research Institute, Shahid Sadoughi University of Medical Sciences, Yazd, Iran.
- Department of Nutrition, School of Public Health, Shahid Sadoughi University of Medical Sciences, Yazd, Iran.
- Research Center for Food Hygiene and Safety, School of Public Health, Shahid Sadoughi University of Medical Sciences, Yazd, Iran.
| |
Collapse
|
4
|
Ramírez-Coronel AA, Ali Alhilali KA, Basheer Ahmed Y, Almalki SG, Karimian J. Effect of sesame (Sesamum indicum L.) consumption on glycemic control in patients with type 2 diabetes: A systematic review and meta-analysis of randomized controlled trials. Phytother Res 2023; 37:3809-3819. [PMID: 37317803 DOI: 10.1002/ptr.7918] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2021] [Revised: 05/16/2023] [Accepted: 05/27/2023] [Indexed: 06/16/2023]
Abstract
Conflicting evidence exists on the effect of sesame consumption on glucose metabolism in patients with type 2 diabetes (T2D). Therefore, this meta-analysis focuses on the relationship between sesame (Sesamum indicum L.) intervention and glycemic control in patients with T2D. Published literature was retrieved and screened from PubMed, Scopus, ISI Web of Science, and the Cochrane Library up to December 2022. Outcome measures included fasting blood sugar (FBS) concentrations, fasting insulin levels, and hemoglobin A1c (HbA1c) percentage. Pooled effect sizes were reported as weighted mean differences (WMDs) and 95% confidence intervals (CIs). Eight clinical trials (395 participants) were eligible for meta-analyses. Overall, sesame consumption significantly reduced serum FBS (WMD: -28.61 mg/dL, 95% CI: -36.07 to -21.16, p˂0.001; I2 = 98.3%) and HbA1c percentage (WMD: -0.99%, 95% CI: -1.22 to -0.76, p ≤ 0.001; I2 = 65.1%) in patients with T2D. However, sesame consumption did not significantly influence fasting insulin levels (Hedges's: 2.29, 95% CI: -0.06 to 4.63, p = 0.06; I2 = 98.1%). In summary, the current meta-analysis showed a promising effect of sesame consumption on glycemic control through reducing FBS and HbA1c, yet additional prospective studies are recommended, using higher doses and longer intervention period, to confirm the impact of sesame consumption on insulin levels in T2D patients.
Collapse
Affiliation(s)
- Andrés Alexis Ramírez-Coronel
- Azogues Campus Nursing Career, Health and Behavior Research Group (HBR), Psychometry and Ethology Laboratory, Catholic University of Cuenca, Cuenca, Ecuador
- University of Palermo, Buenos Aires, Argentina
- Research group in educational statistics, National University of Education, Azogues, Ecuador
- Epidemiology and Biostatistics Research Group, CES University, Medellín, Colombia
| | | | - Yasmin Basheer Ahmed
- Clinical Nutrition, University of Hafr Al Batin, Hafar Al Batin, Saudi Arabia
- Food science and nutrition, Avinashilingam University, Coimbatore, India
| | - Sami G Almalki
- Department of Medical Laboratory Sciences, College of Applied Medical Sciences, Majmaah University, Majmaah, Saudi Arabia
| | - Jahangir Karimian
- Department of General Courses, School of Management and Medical Information Sciences, Isfahan University of Medical Sciences, Isfahan, Iran
| |
Collapse
|
5
|
Atefi M, Entezari MH, Vahedi H, Hassanzadeh A. The effects of sesame oil on metabolic biomarkers: a systematic review and meta-analysis of clinical trials. J Diabetes Metab Disord 2022; 21:1065-1080. [PMID: 35673414 PMCID: PMC9167273 DOI: 10.1007/s40200-022-00997-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Accepted: 01/30/2022] [Indexed: 11/26/2022]
Abstract
Background Clinical evidences showing the effects of sesame oil on metabolic biomarkers led to inconsistent results. Propose This meta-analysis was designed to examine the effects of sesame oil on metabolic biomarkers in adults, including the maximum number of clinical trials. Methods Google Scholar, PubMed, Web of Science, and Scopus were systematically searched to date up to July 2021 to identify eligible clinical trial studies. We obtained the pooled estimates of weighted mean differences (WMDs) with their 95% confidence intervals (CIs) using random-effects meta-analysis. Result Meta-analysis showed that sesame oil consumption significantly lowered the levels of fasting blood glucose (FBG) (WMD: -3.268 mg/dl; 95% CI: -4.677, -1.86; P < 0.001), and malondialdehyde (MDA) (WMD: -4.847 nmol/dL; 95% CI: -7.051, -2.698; P < 0.001) between the intervention and control groups. Also, this study showed sesame oil consumption significantly decreased HbA1C (WMD: -2.057%; 95% CI: -3.467, -0.646; P = 0.004), systolic blood pressure (SBP) (WMD: -2.679 mmHg; 95% CI: -5.257, -0.101; P < 0.001), diastolic blood pressure (DBP) (WMD: -1.981 mmHg; 95% CI: -3.916, -0.046; P = 0.045), body weight (WMD: -0.346 kg; 95% CI: -0.641, -0.051; P = 0.021), and body mass index (BMI) (WMD: -0.385 kg/m2; 95% CI:-0.721, -0.049; P = 0.025) after intervention. No significant effect was seen in serum insulin levels (p > .05). Conclusions The current study provided some evidence regarding the beneficial effects of sesame oil on metabolic biomarkers. Further studies are still required to confirm our results. Supplementary Information The online version contains supplementary material available at 10.1007/s40200-022-00997-2.
Collapse
Affiliation(s)
- Masoumeh Atefi
- Department of Clinical Nutrition, School of Nutrition & Food Science, Isfahan University of Medical Sciences, Isfahan, I.R. Iran
| | - Mohammad Hassan Entezari
- Food Security Research Center and Department of Clinical Nutrition, School of Nutrition & Food Science, Isfahan University of Medical Sciences, PO Box 81745, Isfahan, I.R Iran
| | - Hamid Vahedi
- Department of Gastroenterology, School of Medicine, Shahroud University of Medical Sciences, Shahroud, I.R Iran
| | - Akbar Hassanzadeh
- Department of Epidemiology and Biostatistics, School of Health, Isfahan University of Medical Sciences, Isfahan, I.R Iran
| |
Collapse
|
6
|
Bioactive Constituents and Toxicological Evaluation of Selected Antidiabetic Medicinal Plants of Saudi Arabia. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2022; 2022:7123521. [PMID: 35082904 PMCID: PMC8786507 DOI: 10.1155/2022/7123521] [Citation(s) in RCA: 46] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Accepted: 12/30/2021] [Indexed: 12/23/2022]
Abstract
The purpose of this review is to summarize the available antidiabetic medicinal plants in the Kingdom of Saudi Arabia with its phytoconstituents and toxicological findings supporting by the latest literature. Required data about medicinal plants having antidiabetic activities and growing in the Kingdom of Saudi Arabia were searched/collected from the online databases including Wiley, Google, PubMed, Google Scholar, ScienceDirect, and Scopus. Keywords used in search are in vivo antidiabetic activities, flora of Saudi Arabia, active ingredients, toxicological evaluations, and medicinal plants. A total of 50 plant species belonging to 27 families were found in the flora of Saudi Arabia. Dominant family was found Lamiaceae with 5 species (highest) followed by Moraceae with 4 species. β-Amyrin, β-sitosterol, stigmasterol, oleanolic acid, ursolic acid, rutin, chlorogenic acid, quercetin, and kaempferol are the very common bioactive constituents of these selected plant species. This paper has presented a list of antidiabetic plants used in the treatment of diabetes mellitus. Bioactive antidiabetic phytoconstituents which showed that these plants have hypoglycemic effects and highly recommended for further pharmacological purposes and to isolate/identify antidiabetes mellitus (anti-DM) active agents also need to investigate the side effects of active ingredients.
Collapse
|
7
|
Tahini consumption improves metabolic and antioxidant status biomarkers in the postprandial state in healthy males. Eur Food Res Technol 2021. [DOI: 10.1007/s00217-021-03828-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
|
8
|
Raeisi-Dehkordi H, Amiri M, Moghtaderi F, Zimorovat A, Rahmanian M, Mozaffari-Khosravi H, Salehi-Abargouei A. Effects of sesame, canola and sesame-canola oils on body weight and composition in adults with type 2 diabetes mellitus: a randomized, triple-blind, cross-over clinical trial. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2021; 101:6083-6092. [PMID: 33899246 DOI: 10.1002/jsfa.11265] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/08/2020] [Revised: 03/23/2021] [Accepted: 04/25/2021] [Indexed: 06/12/2023]
Abstract
BACKGROUND Recent investigations have proposed that sesame and canola oils might affect body fat distribution. The present study aimed to examine the effects of sesame, canola and sesame-canola (a blend of sesame and canola oils) oils on body weight and composition in adults with type 2 diabetes mellitus in the context of a randomized, triple-blind, three-way, cross-over clinical trial. RESULTS Eligible participants were randomized to replace their regular dietary oil with sesame oil (SO), canola oil (CO) and sesame-canola oil (SCO) (with 40% SO and 60% CO). Treatment periods lasted 9 weeks and were separated by 4-week wash-out periods. Body weight and composition were measured at the beginning, in the middle and at the end of each intervention phase. In total, 93 participants completed the study. After adjustment for confounders, within-period changes were observed following SO and CO intake for body weight (0.34 ± 0.16 kg and 0.33 ± 0.17 kg) and visceral fat (0.13 ± 0.06% and 0.13 ± 0.05%, P < 0.05), respectively. Body mass index was increased within SO intake (0.13 ± 0.05 kg m-2 , P = 0.031). All of the treatment oils resulted in reduced waist circumference and index of central obesity (P < 0.05). A significant difference in change values was observed for visceral fat between SCO (-0.14 ± 0.07%) and SO (0.12 ± 0.08%) treatment periods in females (P = 0.02). CONCLUSION Sesame and canola oils might lead to a modest favorable body fat redistribution by reducing central adiposity, particularly in females; however, the changes were of little clinical importance. © 2021 Society of Chemical Industry.
Collapse
Affiliation(s)
- Hamidreza Raeisi-Dehkordi
- Nutrition and Food Security Research Center, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
- Department of Nutrition, School of Public Health, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Mojgan Amiri
- Nutrition and Food Security Research Center, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
- Department of Nutrition, School of Public Health, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Fatemeh Moghtaderi
- Nutrition and Food Security Research Center, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
- Department of Nutrition, School of Public Health, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Alireza Zimorovat
- Nutrition and Food Security Research Center, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
- Department of Nutrition, School of Public Health, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Masoud Rahmanian
- Diabetes Research Center, School of Medicine, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Hassan Mozaffari-Khosravi
- Department of Nutrition, School of Public Health, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
- Diabetes Research Center, School of Medicine, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Amin Salehi-Abargouei
- Nutrition and Food Security Research Center, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
- Department of Nutrition, School of Public Health, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| |
Collapse
|
9
|
Dalibalta S, Majdalawieh AF, Manjikian H. Health benefits of sesamin on cardiovascular disease and its associated risk factors. Saudi Pharm J 2020; 28:1276-1289. [PMID: 33132721 PMCID: PMC7584802 DOI: 10.1016/j.jsps.2020.08.018] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Accepted: 08/27/2020] [Indexed: 01/19/2023] Open
Abstract
Sesamin, a major lignin isolated from sesame (Sesamum indicum) seeds and sesame oil, is known to possess antioxidant and anti-inflammatory properties. Several studies have revealed that oxidative stress and inflammation play a major role in a variety of cardiovascular diseases (CVDs). This comprehensive review summarizes the evidence on the effects of sesamin on CVD and its risk factors, principally due to its antioxidant properties. Specifically, this review highlights the mechanisms underlying the anti-hypertensive, anti-atherogenic, anti-thrombotic, anti-diabetic, and anti-obesity, lipolytic effects of sesamin both in vivo and in vitro, and identifies the signaling pathways targeted by sesamin and its metabolites. The data indicates that RAS/MAPK, PI3K/AKT, ERK1/2, p38, p53, IL-6, TNFα, and NF-κB signaling networks are all involved in moderating the various effects of sesamin on CVD and its risk factors. In conclusion, the experimental evidence suggesting that sesamin can reduce CVD risk is convincing. Thus, sesamin can be potentially useful as an adjuvant therapeutic agent to combat CVD and its multitude of risk factors.
Collapse
Affiliation(s)
- Sarah Dalibalta
- Department of Biology, Chemistry, and Environmental Sciences, Faculty of Arts and Sciences, American University of Sharjah, Sharjah, P.O. Box 26666, United Arab Emirates
| | - Amin F. Majdalawieh
- Department of Biology, Chemistry, and Environmental Sciences, Faculty of Arts and Sciences, American University of Sharjah, Sharjah, P.O. Box 26666, United Arab Emirates
| | - Herak Manjikian
- Department of Biology, Chemistry, and Environmental Sciences, Faculty of Arts and Sciences, American University of Sharjah, Sharjah, P.O. Box 26666, United Arab Emirates
| |
Collapse
|
10
|
Ramezani-Jolfaie N, Aghaei S, Farashahi Yazd E, Moradi A, Mozaffari-Khosravi H, Amiri M, Raeisi-Dehkordi H, Moghtaderi F, Zimorovat A, Yasini Ardakani SA, Salehi-Abargouei A. The combined effects of cholesteryl ester transfer protein ( CETP) TaqIB gene polymorphism and canola, sesame and sesame-canola oils consumption on metabolic response in patients with diabetes and healthy people. J Cardiovasc Thorac Res 2020; 12:185-194. [PMID: 33123324 PMCID: PMC7581849 DOI: 10.34172/jcvtr.2020.32] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2020] [Accepted: 07/10/2020] [Indexed: 12/29/2022] Open
Abstract
Introduction: Cholesteryl ester transfer protein (CETP) is a key regulating enzyme in the lipid metabolism pathway, and its gene polymorphism may be a candidate for modulating the metabolic responses to dietary intervention. We thus examined whether the effects of the CETP TaqIB polymorphism on metabolic profiles were modified by dietary plant oils. Methods: This is a retrospective analysis of data collected during a randomized triple-blind cross over trial. A total of 95 patients with type 2 diabetes and 73 non-diabetes individuals completed a 9-weekof the intake of sesame, canola and sesame-canola oils. Blood samples were collected at the beginning and at the end of each intervention period for biochemical analysis. Genotyping was done using the polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP) method. Results: In diabetes patients, B1B1 homozygotes of the CETP TaqIB polymorphism compared with B2 carriers (B1B2 + B2B2) had significantly lower diastolic blood pressure, apoB and apoB: apoA-1,and higher Lp(a) after the intake of sesame-canola oil, as well as lower insulin and HOMA-IR after the intake of sesame oil. There was also a significant effect of genotype on adjusted changes of apoB, apoB: apoA-1, insulin, HOMA-IR and QUICKI. A significant genotype-dietary oils combined effects were observed for diastolic blood pressure, and LDL: HDL, TC: HDL and TG: HDL ratios in diabetes patients. No independent or combined effects of dietary oils and genotypes on outcomes were found in healthy people. Conclusion: There was a modulatory effect of the CETP TaqIB polymorphism on some metabolic traits in response to plant oils in patients with diabetes. Taken together, the intake of sesame-canola and canola oils showed more favorable effects in diabetes patients with B1B1 genotype. Future investigations are needed to confirm these results.
Collapse
Affiliation(s)
- Nahid Ramezani-Jolfaie
- Nutrition and Food Security Research Center, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
- Department of Nutrition, School of Public Health, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Shiva Aghaei
- Stem Cell Biology Research Center, Yazd Reproductive Sciences Institute, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Ehsan Farashahi Yazd
- Stem Cell Biology Research Center, Yazd Reproductive Sciences Institute, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Ali Moradi
- Department of Biochemistry and Molecular Biology, Faculty of Medicine, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Hassan Mozaffari-Khosravi
- Department of Nutrition, School of Public Health, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
- Yazd Diabetic Research Center, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Mojgan Amiri
- Nutrition and Food Security Research Center, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
- Department of Nutrition, School of Public Health, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Hamidreza Raeisi-Dehkordi
- Nutrition and Food Security Research Center, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
- Department of Nutrition, School of Public Health, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Fatemeh Moghtaderi
- Nutrition and Food Security Research Center, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
- Department of Nutrition, School of Public Health, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Alireza Zimorovat
- Nutrition and Food Security Research Center, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
- Department of Nutrition, School of Public Health, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | | | - Amin Salehi-Abargouei
- Nutrition and Food Security Research Center, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
- Department of Nutrition, School of Public Health, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| |
Collapse
|
11
|
Ramezani-Jolfaie N, Aghaei S, Yazd EF, Moradi A, Mozaffari-Khosravi H, Zimorovat A, Raeisi-Dehkordi H, Moghtaderi F, Amiri M, Yasini Ardakani SA, Salehi-Abargouei A. Association of rs670 variant of APOA-1 gene with cardiometabolic markers after consuming sesame, canola and sesame-canola oils in adults with and without type 2 diabetes mellitus. Clin Nutr ESPEN 2020; 38:129-137. [DOI: 10.1016/j.clnesp.2020.05.016] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2020] [Revised: 03/30/2020] [Accepted: 05/15/2020] [Indexed: 02/05/2023]
|
12
|
Moghtaderi F, Amiri M, Zimorovat A, Raeisi-Dehkordi H, Rahmanian M, Hosseinzadeh M, Fallahzadeh H, Salehi-Abargouei A. The effect of canola, sesame and sesame-canola oils on body fat and composition in adults: a triple-blind, three-way randomised cross-over clinical trial. Int J Food Sci Nutr 2020; 72:226-235. [PMID: 32684099 DOI: 10.1080/09637486.2020.1786024] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The present study aimed to examine the effect of replacing edible oils with sesame oil (SO), canola oil (CO) and sesame-canola oil (SCO) on body weight and composition in adults. Adults without any chronic diseases (n = 77) were entered a 4-week run-in period and then were randomised to receive SO, CO and SCO for their household use in 9-week intervention periods (separated by 4-week washout intervals). Anthropometric measurements, as well as body composition markers, were assessed at baseline, middle and after each intervention period. In total, 73 participants completed the study. Although significant time effects were seen for waist and hip circumference, waist-to-hip ratio, central obesity index, body adiposity index, muscle mass and body fat percent (ptime<.05), the treatment and treatment × time effects were not significant (p>.05). The present clinical trial revealed that CO, SO and SCO might not differently affect body fat and composition. Trial registration code: IRCT2016091312571N6 (http://en.irct.ir/trial/12622).
Collapse
Affiliation(s)
- Fatemeh Moghtaderi
- Nutrition and Food Security Research Center, Shahid Sadoughi University of Medical Sciences, Yazd, Iran.,Department of Nutrition, School of Public Health, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Mojgan Amiri
- Nutrition and Food Security Research Center, Shahid Sadoughi University of Medical Sciences, Yazd, Iran.,Department of Nutrition, School of Public Health, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Alireza Zimorovat
- Nutrition and Food Security Research Center, Shahid Sadoughi University of Medical Sciences, Yazd, Iran.,Department of Nutrition, School of Public Health, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Hamidreza Raeisi-Dehkordi
- Nutrition and Food Security Research Center, Shahid Sadoughi University of Medical Sciences, Yazd, Iran.,Department of Nutrition, School of Public Health, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Masoud Rahmanian
- Diabetes Research Center, School of Medicine, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Mahdieh Hosseinzadeh
- Nutrition and Food Security Research Center, Shahid Sadoughi University of Medical Sciences, Yazd, Iran.,Department of Nutrition, School of Public Health, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Hossein Fallahzadeh
- Research Center of Prevention and Epidemiology of Non-Communicable Disease, Department of Biostatistics and Epidemiology, School of Health, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Amin Salehi-Abargouei
- Nutrition and Food Security Research Center, Shahid Sadoughi University of Medical Sciences, Yazd, Iran.,Department of Nutrition, School of Public Health, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| |
Collapse
|