1
|
Park SH, Jeon YH, Park YJ, Kim KY, Kim JS, Lee JB. Guaijaverin and Epigallocatechin Gallate Complex Modulate Th1 and Th2 Cytokine-Mediated Allergic Responses Through STAT1/T-bet and STAT6/GATA3 Pathways. J Med Food 2024; 27:844-856. [PMID: 39293041 DOI: 10.1089/jmf.2023.k.0329] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/20/2024] Open
Abstract
We aimed to determine the in vitro and in vivo synergistic antiallergic effect of guaijaverin and epigallocatechin gallate (EGCG) complex (GEC), and the antiallergic rhinitis (AR) properties of guaijaverin-rich Psidium guajava and EGCG-rich Camellia sinensis (ILS-F-2301). GEC showed synergistic inhibition of β-hexosaminidase by 4.20% and interleukin (IL)-4, -5, and -13 by 4.08%, 0.67%, and 4.71%, respectively, while increasing interferon (IFN)-γ by 12.43%, compared with EGCG only. In addition, 50 μg/mL of ILS-F-2301 inhibited β-hexosaminidase release, and inhibited IL-4, -5, and -13 by 61.54%, 58.79%, and 59.25%, respectively, while increasing IFN-γ (showing 133.14% activation). Moreover, 50 μg/mL of ILS-F-2301 suppressed p-STAT6 and GATA3, while p-STAT1 and T-bet increased, and 0.039 μg/mL of guaijaverin or 5.275 μg/mL of EGCG modulated T helper (Th)1- and Th2-related proteins. These data suggested that guaijaverin and EGCG in ILS-F-2301 was the main active compound involved in Th1/Th2 modulation. In the AR mouse model, the administration of ILS-F-2301 inhibited ovalbumin (OVA)-specific IgE, histamine in serum; it also inhibited IL-4 and -5 by 28.23% and 47.15%, respectively, while increasing IFN-γ (showing 37.11% activation), compared with OVA/Alu-treated mice. Taken together, our findings suggest that ILS-F-2301 is a functional food for alleviating anti-AR.
Collapse
Affiliation(s)
- Se-Ho Park
- R&D Center, Il Seong Co., Ltd., Daegu, Korea
| | | | - Yu Jin Park
- R&D Center, Il Seong Co., Ltd., Daegu, Korea
| | | | - Jin Soo Kim
- R&D Center, Il Seong Co., Ltd., Daegu, Korea
| | - Ji-Beom Lee
- R&D Center, Il Seong Co., Ltd., Daegu, Korea
| |
Collapse
|
2
|
Shaddel R, Akbari-Alavijeh S, Cacciotti I, Yousefi S, Tomas M, Capanoglu E, Tarhan O, Rashidinejad A, Rezaei A, Bhia M, Jafari SM. Caffeine-loaded nano/micro-carriers: Techniques, bioavailability, and applications. Crit Rev Food Sci Nutr 2022; 64:4940-4965. [PMID: 36412258 DOI: 10.1080/10408398.2022.2147143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Caffeine, as one of the most consumed bioactive compounds globally, has gained considerable attention during the last years. Considering the bitter taste and adverse effects of high levels of caffeine consumption, it is crucial to apply a strategy for masking the caffeine's bitter taste and facilitating its programmable deliverance within a long time. Other operational parameters such as food processing parameters, exposure to sunlight and oxygen, and gastrointestinal digestion could also degrade the phenolic compounds in general and caffeine in special. To overcome these challenges, various nano/micro-platforms have been fabricated, including lipid-based (e.g., nanoliposomal vehicles; nanoemulsions, double emulsions, Pickering emulsions; microemulsions; niosomal vehicles; solid lipid nanoparticles and nanostructured lipid carriers), as well as biopolymeric (e.g., nanoparticles; hydrogels, organogels, oleogels; nanofibers and nanotubes; protein-polysaccharide nanocomplexes, conjugates; cyclodextrin inclusion complexes) and inorganic (e.g., gold and silica nanoparticles) nano/micro-structures. In this review, the findings on various caffeine-loaded nano/micro-carriers and their potential applications in functional food products/supplements will be discussed. Also, the controlled release and bioavailability of encapsulated caffeine will be given, and finally, the toxicity and safety of encapsulated caffeine will be presented.
Collapse
Affiliation(s)
- Rezvan Shaddel
- Department of Food Science and Technology, Faculty of Agriculture and Natural Resources, University of Mohaghegh Ardabili, Ardabil, Iran
| | - Safoura Akbari-Alavijeh
- Department of Food Science and Technology, Faculty of Agriculture and Natural Resources, University of Mohaghegh Ardabili, Ardabil, Iran
| | - Ilaria Cacciotti
- Department of Engineering, INSTM RU, University of Rome "Niccolò Cusano", Roma, Italy
| | - Shima Yousefi
- Department of Agriculture and Food Science, Islamic Azad University, Science and Research Branch, Tehran, Iran
| | - Merve Tomas
- Faculty of Engineering and Natural Sciences, Food Engineering Department, Istanbul Sabahattin Zaim University, Istanbul, Turkey
| | - Esra Capanoglu
- Faculty of Chemical and Metallurgical Engineering, Food Engineering Department, Istanbul Technical University, Istanbul, Turkey
| | - Ozgur Tarhan
- Department of Food Engineering, Engineering Faculty, Uşak University, Uşak, Turkey
| | - Ali Rashidinejad
- Riddet Institute, Massey University, Palmerston North, New Zealand
| | - Atefe Rezaei
- Department of Food Science and Technology, School of Nutrition and Food Science, Food Security Research Center, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Mohammed Bhia
- Student Research Committee, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Nanomedicine Research Association (NRA), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Seid Mahdi Jafari
- Department of Food Materials and Process Design Engineering, Gorgan University of Agricultural Sciences and Natural Resources, Gorgan, Iran
- Department of Analytical Chemistry and Food Science, Faculty of Science, Universidade de Vigo, Nutrition and Bromatology Group, Ourense, Spain
- College of Food Science and Technology, Hebei Agricultural University, Baoding, China
| |
Collapse
|
4
|
Handy and highly efficient oxidation of benzylic alcohols to the benzaldehyde derivatives using heterogeneous Pd/AlO(OH) nanoparticles in solvent-free conditions. Sci Rep 2020; 10:5731. [PMID: 32235857 PMCID: PMC7109032 DOI: 10.1038/s41598-020-62695-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Accepted: 03/18/2020] [Indexed: 12/15/2022] Open
Abstract
The selective oxidation of benzylic alcohols was performed by using commercially available aluminum oxy-hydroxide-supported palladium (Pd/AlO(OH)) nanoparticles (0.5 wt.% Pd, about 3 nm size) under mild conditions. The oxidation method comprises the oxidation of benzyl alcohols catalyzed by aluminum oxy-hydroxide-supported palladium under ultrasonic and solvent-free conditions and a continuous stream of O2. The characterization of aluminum oxy-hydroxide-supported palladium nanocatalyst was conducted by several advanced analytical techniques including scanning electron microscope (SEM), transmission electron microscope (TEM), X-ray diffraction (XRD), and elemental analysis by ICP-OES. The oxidation of a variety of benzyl alcohol compounds were tested by the aluminum oxy-hydroxide-supported palladium nanoparticles, and all expected oxidation products were obtained by the high conversion yields within 3 hours. The reaction progress was monitored by TLC (Thin-layer chromatography), and the yields of the products were determined by 1H-NMR and 13C NMR analysis.
Collapse
|
5
|
Hu J, Chen Y, Zhu J, Gao M, Li J, Song Z, Xu H, Wang Z. Anti-degranulation response of herbal formula in RBL-2H3 cells. Micron 2020; 130:102819. [PMID: 31896517 DOI: 10.1016/j.micron.2019.102819] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Revised: 12/27/2019] [Accepted: 12/27/2019] [Indexed: 01/04/2023]
Abstract
Allergic diseases not only bring serious economic burden to the patients, but also consume a lot of substantial resources of social medical systems. Thus, the prevention and treatment of allergic diseases are imperative. In this study, the anti-degranulation activity of herbal formula was evaluated using the rat basophil leukemia cells (RBL-2H3) as in vitro model. The morphological and biophysical properties of RBL-2H3 cells before and after treatment with herbal formula were also determined. Notably, the herbal formula exhibits clearly inhibited degranulation by RBL-2H3 cells in a concentration-dependent manner without cytotoxic effect. Therefore, this herbal formula can be used as an alternative and promising therapeutic agent to ameliorate allergic diseases.
Collapse
Affiliation(s)
- Jing Hu
- Ministry of Education Key Laboratory for Cross-Scale Micro and Nano Manufacturing, Changchun University of Science and Technology, Changchun 130022, China; International Research Centre for Nano Handling and Manufacturing of China, Changchun University of Science and Technology, Changchun 130022, China
| | - Yujuan Chen
- Ministry of Education Key Laboratory for Cross-Scale Micro and Nano Manufacturing, Changchun University of Science and Technology, Changchun 130022, China; International Research Centre for Nano Handling and Manufacturing of China, Changchun University of Science and Technology, Changchun 130022, China; School of Life Sciences, Changchun University of Science and Technology, Changchun 130022, China.
| | - Jiajing Zhu
- School of Engineering, University of Warwick, Coventry CV4 7AL, UK
| | - Mingyan Gao
- Ministry of Education Key Laboratory for Cross-Scale Micro and Nano Manufacturing, Changchun University of Science and Technology, Changchun 130022, China; International Research Centre for Nano Handling and Manufacturing of China, Changchun University of Science and Technology, Changchun 130022, China
| | - Jiani Li
- Ministry of Education Key Laboratory for Cross-Scale Micro and Nano Manufacturing, Changchun University of Science and Technology, Changchun 130022, China; International Research Centre for Nano Handling and Manufacturing of China, Changchun University of Science and Technology, Changchun 130022, China
| | - Zhengxun Song
- Ministry of Education Key Laboratory for Cross-Scale Micro and Nano Manufacturing, Changchun University of Science and Technology, Changchun 130022, China; International Research Centre for Nano Handling and Manufacturing of China, Changchun University of Science and Technology, Changchun 130022, China
| | - Hongmei Xu
- Ministry of Education Key Laboratory for Cross-Scale Micro and Nano Manufacturing, Changchun University of Science and Technology, Changchun 130022, China; International Research Centre for Nano Handling and Manufacturing of China, Changchun University of Science and Technology, Changchun 130022, China
| | - Zuobin Wang
- Ministry of Education Key Laboratory for Cross-Scale Micro and Nano Manufacturing, Changchun University of Science and Technology, Changchun 130022, China; International Research Centre for Nano Handling and Manufacturing of China, Changchun University of Science and Technology, Changchun 130022, China; JR3CN & IRAC, University of Bedfordshire, Luton LU1 3JU, UK.
| |
Collapse
|