1
|
Mao Y, Zhang Y, Li T, Chen Y, Wang Z, Jin W, Shen W, Li J. Insight into the mechanism of gel properties, microstructure and flavor of surimi gels improved by wheat bran with different particle sizes. Food Res Int 2025; 201:115601. [PMID: 39849762 DOI: 10.1016/j.foodres.2024.115601] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2024] [Revised: 12/19/2024] [Accepted: 12/28/2024] [Indexed: 01/25/2025]
Abstract
This study investigated the effect of wheat bran (WB) with different particle sizes (W1, 155.00 ± 2.08 μm; W2, 78.33 ± 0.52 μm; W3, 46.90 ± 0.60 μm; W4, 23.53 ± 0.49 μm; and W5, 12.97 ± 0.19 μm) on the gel strength, texture, microstructure, dynamic rheological, secondary structures and flavor of surimi gels. Results demonstrated that the gel strength and water-holding capacity (WHC) of the surimi gels gradually increased with the decrease in WB particle size. The added W5 (12.97 ± 0.19 μm) increased the bound water content in the surimi gels by 12.60 % whereas the free water decreased by 6.59 % (p < 0.05), indicating that the addition of superfine WB contributed to the conversion of free water into bound water in the surimi gels matrices. Microstructural observations indicated that WB with different particle sizes promoted the formation of a continuous gel matrix and a denser surimi gel network structure. The β-sheet dominated in the secondary structure of surimi gels. Electronic tongue results showed that the addition of WB reduced the bitterness of surimi gels. Gas chromatography-ion mobility spectrometry (GC-IMS) results revealed that more esters were present in the samples when W1, W2, and W3 were added. Overall, W5 had the best enhancement effect on the quality of surimi gels, and this study lays the reference value for WB as an agricultural by-product to improve the quality of surimi products.
Collapse
Affiliation(s)
- Ying Mao
- Hubei Key Laboratory for Processing and Transformation of Agricultural Products (Wuhan Polytechnic University), Wuhan 430023, Hubei, China; Department of Food Science and Engineering, Wuhan Polytechnic University, Wuhan, 430023, Hubei, China
| | - Yinghui Zhang
- Hubei Key Laboratory for Processing and Transformation of Agricultural Products (Wuhan Polytechnic University), Wuhan 430023, Hubei, China; Department of Food Science and Engineering, Wuhan Polytechnic University, Wuhan, 430023, Hubei, China
| | - Tiantian Li
- Hubei Key Laboratory for Processing and Transformation of Agricultural Products (Wuhan Polytechnic University), Wuhan 430023, Hubei, China; Department of Food Science and Engineering, Wuhan Polytechnic University, Wuhan, 430023, Hubei, China
| | - Yueyi Chen
- Hubei Key Laboratory for Processing and Transformation of Agricultural Products (Wuhan Polytechnic University), Wuhan 430023, Hubei, China; Department of Food Science and Engineering, Wuhan Polytechnic University, Wuhan, 430023, Hubei, China
| | - Zhan Wang
- Hubei Key Laboratory for Processing and Transformation of Agricultural Products (Wuhan Polytechnic University), Wuhan 430023, Hubei, China; Department of Food Science and Engineering, Wuhan Polytechnic University, Wuhan, 430023, Hubei, China
| | - Weiping Jin
- Hubei Key Laboratory for Processing and Transformation of Agricultural Products (Wuhan Polytechnic University), Wuhan 430023, Hubei, China; Department of Food Science and Engineering, Wuhan Polytechnic University, Wuhan, 430023, Hubei, China
| | - Wangyang Shen
- Hubei Key Laboratory for Processing and Transformation of Agricultural Products (Wuhan Polytechnic University), Wuhan 430023, Hubei, China; Department of Food Science and Engineering, Wuhan Polytechnic University, Wuhan, 430023, Hubei, China
| | - Jinling Li
- Hubei Key Laboratory for Processing and Transformation of Agricultural Products (Wuhan Polytechnic University), Wuhan 430023, Hubei, China; Department of Food Science and Engineering, Wuhan Polytechnic University, Wuhan, 430023, Hubei, China.
| |
Collapse
|
2
|
Zhang H, Li X, Zhang Z, Jiang A, Bai Q. Effect of chitosan on thermal gelling properties of pork myofibrillar protein and its mechanism. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2025; 105:1546-1555. [PMID: 39324370 DOI: 10.1002/jsfa.13929] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Revised: 09/14/2024] [Accepted: 09/15/2024] [Indexed: 09/27/2024]
Abstract
BACKGROUND Previous studies have demonstrated that the addition of chitosan can improve the quality and functional properties of meat products. However, the underlying mechanism remains unclear. In this study, the effect and mechanism of the addition of chitosan on the gel properties of myofibrillar protein (MP) were investigated. RESULTS The results indicated that the gel strength and the water-holding capacity of MP-chitosan gel increased significantly when chitosan was added at 2.5-10 mg mL-1. Myofibrillar protein samples with 10 mg mL-1 added chitosan exhibited the highest elasticity and viscosity during gel formation and strengthening. The addition of chitosan also caused a modification in both the secondary and tertiary structure of MP, resulting in an enhanced exposure of hydrophobic and sulfhydryl groups in comparison with the control. Chitosan inhibited the conversion of immobilized water into free water and the formation of water channels during the thermal gelation process of MP. The denaturation enthalpy (ΔH) of myosin decreased as the concentration of chitosan exceeded 5 mg mL-1. The microstructure showed that the incorporation of chitosan (5-10 mg mL-1) facilitated the formation of compact and well organized MP gel networks. CONCLUSION The addition of chitosan can enhance the functional properties of meat protein and facilitate heat-induced gelation, making it a promising ingredient for improving the quality of processed meat products. © 2024 Society of Chemical Industry.
Collapse
Affiliation(s)
- Huiyun Zhang
- School of Food and Bioengineering, Henan University of Science and Technology, Luoyang, China
| | - Xinling Li
- School of Food and Bioengineering, Henan University of Science and Technology, Luoyang, China
| | - Ziye Zhang
- School of Food and Bioengineering, Henan University of Science and Technology, Luoyang, China
| | - An Jiang
- School of Food and Bioengineering, Henan University of Science and Technology, Luoyang, China
| | - QiaoQiao Bai
- School of Food and Bioengineering, Henan University of Science and Technology, Luoyang, China
| |
Collapse
|
3
|
Bao H, Wang Y, Huang Y, Zhang Y, Dai H. The Beneficial Role of Polysaccharide Hydrocolloids in Meat Products: A Review. Gels 2025; 11:55. [PMID: 39852026 PMCID: PMC11764839 DOI: 10.3390/gels11010055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2024] [Revised: 01/05/2025] [Accepted: 01/07/2025] [Indexed: 01/26/2025] Open
Abstract
Polysaccharide hydrocolloids have garnered increasing attention from consumers, experts, and food processing industries due to their advantages of abundant resources, favorable thickening properties, emulsification stability, biocompatibility, biodegradability, and high acceptance as food additives. This review focuses on the application of polysaccharide hydrocolloids and their beneficial roles in meat products by focusing on several commonly used polysaccharides (i.e., cellulose, chitosan, starch, sodium alginate, pectin, and carrageenan). Firstly, the recent advancements of polysaccharide hydrocolloids used in meat products are briefly introduced, along with their structure and potential application prospects. Then, the beneficial roles of polysaccharide hydrocolloids in meat products are comprehensively summarized and highlighted, including retarding lipid and protein oxidation, enhancing nutritional properties, improving texture and color quality, providing antibacterial activity, monitoring freshness, acting as a cryoprotectant, improving printability, and ensuring security. Finally, the challenges and opportunities of polysaccharide hydrocolloids in meat products are also introduced.
Collapse
Affiliation(s)
- Hanxiao Bao
- College of Food Science, Southwest University, Chongqing 400715, China; (H.B.); (Y.W.); (Y.Z.)
- College of Food Science, South China Agricultural University, Guangzhou 510642, China
| | - Yuxi Wang
- College of Food Science, Southwest University, Chongqing 400715, China; (H.B.); (Y.W.); (Y.Z.)
| | - Yue Huang
- Chongqing Sericulture Science and Technology Research Institute, Chongqing 400700, China
| | - Yuhao Zhang
- College of Food Science, Southwest University, Chongqing 400715, China; (H.B.); (Y.W.); (Y.Z.)
| | - Hongjie Dai
- College of Food Science, Southwest University, Chongqing 400715, China; (H.B.); (Y.W.); (Y.Z.)
| |
Collapse
|
4
|
Liu Y, Li X, Qin H, Huang M, Xi B, Mao J, Zhang S. Comparing the antioxidation and bioavailability of polysaccharides from extruded and unextruded Baijiu vinasses via in vitro digestion and fecal fermentation. Int J Biol Macromol 2024; 276:133681. [PMID: 38971292 DOI: 10.1016/j.ijbiomac.2024.133681] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 06/26/2024] [Accepted: 07/03/2024] [Indexed: 07/08/2024]
Abstract
Extrusion has been proven to be a novel approach for modifying the physicochemical characteristic of Baijiu vinasses (BV) to extract polysaccharides, contributing to the sustainable development of brewing industry. However, the comparison of the bioactivity and bioavailability of extruded (EX) and unextruded (UE) BV polysaccharides was unclear, which impended the determination of the efficacy of extrusion in BV resourcing. In this study, in vitro digestion and fecal fermentation experiments were conducted to investigate the bioavailability, and the results showed that EX exhibited less variation in the monosaccharide composition and molecular weight, while exhibiting a stronger antioxidant capacity compared to UE. Moreover, during fermentation EX increased the abundance of Parasutterella and Lachnospiraceae, while UE promoted the proliferation of Bacteroides, Faecalibacterium, and Dialister, resulting in variation in short-chain fatty acids. These findings indicate that extrusion can enhance the capacity of antioxidants and bioavailability of BV polysaccharides.
Collapse
Affiliation(s)
- Yizhou Liu
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300350, China
| | - Xiong Li
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou, Guangdong 511458, China
| | - Hui Qin
- National Engineering Research Center of Solid-State Brewing, Luzhou, Sichuan 646000, China
| | - Mengyang Huang
- National Engineering Research Center of Solid-State Brewing, Luzhou, Sichuan 646000, China
| | - Beidou Xi
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300350, China; State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Jian Mao
- National Engineering Research Center of Solid-State Brewing, Luzhou, Sichuan 646000, China; National Engineering Research Center of Cereal Fermentation and Food Biomanufacturing, State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China.
| | - Suyi Zhang
- National Engineering Research Center of Solid-State Brewing, Luzhou, Sichuan 646000, China
| |
Collapse
|
5
|
Cheng Y, Meng Y, Liu S. Diversified Techniques for Restructuring Meat Protein-Derived Products and Analogues. Foods 2024; 13:1950. [PMID: 38928891 PMCID: PMC11202613 DOI: 10.3390/foods13121950] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Revised: 06/17/2024] [Accepted: 06/19/2024] [Indexed: 06/28/2024] Open
Abstract
Accompanied by the rapid growth of the global population and increasing public awareness of protein-rich foods, the market demand for protein-derived products is booming. Utilizing available technologies to make full use of meat by-products, such as scraps, trimmings, etc., to produce restructured meat products and explore emerging proteins to produce meat analogues can be conducive to alleviating the pressure on supply ends of the market. The present review summarizes diversified techniques (such as high-pressure processing, ultrasonic treatment, edible polysaccharides modification, enzymatic restructuring, etc.) that have been involved in restructuring meat protein-derived products as well as preparing meat analogues identified so far and classifying them into three main categories (physical, chemical and enzymatic). The target systems, processing conditions, effects, advantages, etc., of the included techniques, are comprehensively and systemically summarized and discussed, and their existing problems or developing trends are also briefly prospected. It can be concluded that a better quality of restructured products can be obtained by the combination of different restructuring technologies. This review provides a valuable reference both for the research and industrial production of restructured meat protein-derived products and analogues.
Collapse
Affiliation(s)
- Yuliang Cheng
- State Key Laboratory of Food Science and Resources, School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Yiyun Meng
- Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, Wuxi 214122, China; (Y.M.); (S.L.)
| | - Shengnan Liu
- Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, Wuxi 214122, China; (Y.M.); (S.L.)
| |
Collapse
|
6
|
Jurkaninová L, Dvořáček V, Gregusová V, Havrlentová M. Cereal β-d-Glucans in Food Processing Applications and Nanotechnology Research. Foods 2024; 13:500. [PMID: 38338635 PMCID: PMC10855322 DOI: 10.3390/foods13030500] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2023] [Revised: 01/21/2024] [Accepted: 01/29/2024] [Indexed: 02/12/2024] Open
Abstract
Cereal (1,3)(1,4)-β-d-glucans, known as β-d-glucans, are cell wall polysaccharides observed in selected plants of grasses, and oats and barley are their good natural sources. Thanks to their physicochemical properties β-d-glucans have therapeutic and nutritional potential and a specific place for their functional characteristics in diverse food formulations. They can function as thickeners, stabilizers, emulsifiers, and textural and gelation agents in beverages, bakery, meat, and extruded products. The objective of this review is to describe the primary procedures for the production of β-d-glucans from cereal grains, to define the processing factors influencing their properties, and to summarize their current use in the production of novel cereal-based foods. Additionally, the study delves into the utilization of β-d-glucans in the rapidly evolving field of nanotechnology, exploring potential applications within this technological realm.
Collapse
Affiliation(s)
- Lucie Jurkaninová
- Department of Food Science, Faculty of Agrobiology, Food and Natural Resources, Czech University of Life Sciences, Kamýcká 129, 165 00 Praha, Czech Republic;
| | - Václav Dvořáček
- Crop Research Institute, Drnovská 507, 161 06 Prague, Czech Republic;
| | - Veronika Gregusová
- Department of Biotechnology, Faculty of Natural Sciences, University of Ss. Cyril and Methodius, Námestie J. Herdu 2, 917 01 Trnava, Slovakia;
| | - Michaela Havrlentová
- Department of Biotechnology, Faculty of Natural Sciences, University of Ss. Cyril and Methodius, Námestie J. Herdu 2, 917 01 Trnava, Slovakia;
- National Agricultural and Food Center—Research Institute of Plant Production, Bratislavská Cesta 122, 921 68 Piešťany, Slovakia
| |
Collapse
|
7
|
Cao C, Liang X, Xu Y, Kong B, Sun F, Liu H, Zhang H, Liu Q, Wang H. Effects and mechanisms of different κ-carrageenan incorporation forms and ionic strength on the physicochemical and gelling properties of myofibrillar protein. Int J Biol Macromol 2024; 257:128659. [PMID: 38101671 DOI: 10.1016/j.ijbiomac.2023.128659] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2023] [Revised: 12/04/2023] [Accepted: 12/05/2023] [Indexed: 12/17/2023]
Abstract
The present work was aimed to investigate the effects of incorporating κ-carrageenan into myofibrillar protein (MP) as a dry powder (CP) or water suspension (CW) and the ionic strength (0.3 or 0.6 M sodium chloride (NaCl)) on MP physicochemical and gelling properties. The results indicated that incorporation of either CP or CW significantly increased turbidity, surface hydrophobicity, particle size and rheological behaviour of MP. In contrast, the protein solubility and fluorescence intensity of MP decreased when added with each form of κ-carrageenan (P < 0.05). These observed effects improved MP's gelling properties and produced a more compact and homogenous gel network after heating treatment. Moreover, the addition of CW rendered higher gel strength, water holding capacity and intermolecular interactions, such as ionic, hydrogen and disulphide bonds and hydrophobic interactions in MP gel compared with those added with CP, especially for 0.3 M NaCl (P < 0.05). Furthermore, addition of CW significantly decreased the α-helix content of MP gels (P < 0.05), which mainly contributing to the transformation from a random structure to an organised configuration. In addition, a higher NaCl concentration (0.6 M) enhanced the gelling properties of MP gels compared with 0.3 M NaCl concentration in the presence of each form of κ-carrageenan. Therefore, our present study indicated that incorporation form of κ-carrageenan and ionic strength have distinctive effects on regulating physicochemical characteristics and improves gelling properties of MP.
Collapse
Affiliation(s)
- Chuanai Cao
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China
| | - Xue Liang
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China
| | - Yining Xu
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China
| | - Baohua Kong
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China
| | - Fangda Sun
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China
| | - Haotian Liu
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China
| | - Hongwei Zhang
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China
| | - Qian Liu
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China; Heilongjiang Green Food Science & Research Institute, Harbin, Heilongjiang 150028, China.
| | - Hao Wang
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China.
| |
Collapse
|
8
|
Wang Z, Wang L, Yu X, Wang X, Zheng Y, Hu X, Zhang P, Sun Q, Wang Q, Li N. Effect of polysaccharide addition on food physical properties: A review. Food Chem 2024; 431:137099. [PMID: 37572481 DOI: 10.1016/j.foodchem.2023.137099] [Citation(s) in RCA: 22] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Revised: 07/18/2023] [Accepted: 08/02/2023] [Indexed: 08/14/2023]
Abstract
The texture, flavor, performance and nutrition of foods are affected by their physical properties during processing, cooking, storage, and shelf life. In addition to chemical, physical, and enzymatic modification methods, polysaccharide addition is also considered a safe, effective, and convenient food modification strategy. However, thus far, literature review on the effects of polysaccharides on the physical properties of foods is few. Therefore, the present work reviews the effects of polysaccharides on water retention capacity, rheological property, suspension ability, viscoelasticity, emulsifying property, gelling property, stability, and starch regeneration and digestion. Furthermore, the existing problems and future recommendations during food physical property modification by polysaccharides are presented. This work aims to provide some theoretical references for future research, development, and application of polysaccharides on food physical property modification.
Collapse
Affiliation(s)
- Zichao Wang
- School of Biological Engineering, Henan University of Technology, Zhengzhou 450001, China
| | - Lu Wang
- School of Biological Engineering, Henan University of Technology, Zhengzhou 450001, China
| | - Xiaoxue Yu
- School of Biological Engineering, Henan University of Technology, Zhengzhou 450001, China
| | - Xueqin Wang
- School of Biological Engineering, Henan University of Technology, Zhengzhou 450001, China
| | - Yi Zheng
- School of International Education, Henan University of Technology, Zhengzhou 450001, China
| | - Xilei Hu
- School of International Education, Henan University of Technology, Zhengzhou 450001, China
| | - Peiyao Zhang
- School of International Education, Henan University of Technology, Zhengzhou 450001, China
| | - Qi Sun
- College of Life Sciences, Chongqing Normal University, Chongqing 401331, China.
| | - Qi Wang
- School of Biological Engineering, Henan University of Technology, Zhengzhou 450001, China.
| | - Na Li
- Henan Provincial Key Laboratory of Ultrasound Imaging and Artificial Intelligence, Henan Provincial People's Hospital, Zhengzhou University People's Hospital, Zhengzhou University, Zhengzhou 450001, China; Henan Institute of Medical and Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, China.
| |
Collapse
|
9
|
Lu W, Wu D, Wang L, Song G, Chi R, Ma J, Li Z, Wang L, Sun W. Insoluble dietary fibers from Lentinus edodes stipes improve the gel properties of pork myofibrillar protein: A water distribution, microstructure and intermolecular interactions study. Food Chem 2023; 411:135386. [PMID: 36652882 DOI: 10.1016/j.foodchem.2023.135386] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Revised: 12/21/2022] [Accepted: 01/02/2023] [Indexed: 01/07/2023]
Abstract
This paper investigated the effects of Lentinus edodes stipes insoluble dietary fiber (LESIDF, 0%-3.0%) on the quality and microscopic properties of pork myofibrillar protein (MP) gels. The results showed that the water holding capacity and gel strength of composite gels enhanced with increasing LESIDF (1.0%-2.5%), and reached the maximum at the level of 2.5%-3.0%. Disulfide and non-disulfide covalent bonds were major chemical forces maintaining the 3D network of LESIDF-MP composite gels. LESIDF also promoted the formation of ionic and hydrogen bonds, confirmed by the self-assembly of β-sheets to α-helices, leading to a compact gel network structure. The observation of paraffin section revealed that LESIDF could capture more water molecules in gels, which was consistent with the transformation of free water to immobilized water. Overall, the optimal addition of LESIDF was 2.5%-3.0%, which provided a good strategy for LESIDF as an agricultural by-product to improve the quality of gel meat products.
Collapse
Affiliation(s)
- Weiwei Lu
- College of Life Science, Yangtze University, Jingzhou, Hubei 434023, PR China
| | - Di Wu
- College of Life Science, Yangtze University, Jingzhou, Hubei 434023, PR China
| | - LiMei Wang
- College of Life Science, Yangtze University, Jingzhou, Hubei 434023, PR China
| | - Geyao Song
- College of Life Science, Yangtze University, Jingzhou, Hubei 434023, PR China
| | - Rongshuo Chi
- College of Life Science, Yangtze University, Jingzhou, Hubei 434023, PR China
| | - Jing Ma
- College of Life Science, Yangtze University, Jingzhou, Hubei 434023, PR China
| | - Zhenshun Li
- College of Life Science, Yangtze University, Jingzhou, Hubei 434023, PR China
| | - Lan Wang
- Institute for Farm Products Processing and Nuclear-Agricultural Technology, Hubei Academy of Agricultural Science, Wuhan, Hubei 430064, PR China
| | - Weiqing Sun
- College of Life Science, Yangtze University, Jingzhou, Hubei 434023, PR China.
| |
Collapse
|
10
|
Song Z, Xiong X, Huang G. Ultrasound-assisted extraction and characteristics of maize polysaccharides from different sites. ULTRASONICS SONOCHEMISTRY 2023; 95:106416. [PMID: 37094477 PMCID: PMC10160789 DOI: 10.1016/j.ultsonch.2023.106416] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2023] [Revised: 04/08/2023] [Accepted: 04/18/2023] [Indexed: 05/03/2023]
Abstract
Antitumor, antioxidant, hypoglycemic, and immunomodulatory properties are all exhibited by maize polysaccharides. With the increasing sophistication of maize polysaccharide extraction methods, enzymatic method is no longer limited to a single enzyme to extract polysaccharides, and is more often used in combination with ultrasound or microwave, or combination with different enzymes. Ultrasound has a good cell wall-breaking effect, making it easier to dislodge lignin and hemicellulose from the cellulose surface of the maize husk. The "water extraction and alcohol precipitation" method is the simplest but most resource- and time-consuming process. However, the "ultrasound-assisted extraction" and "microwave-assisted extraction" methods not only compensate for the shortcoming, but also increase the extraction rate. Herein, the preparation, structural analysis, and activities of maize polysaccharides were analyzed and discussed.
Collapse
Affiliation(s)
- Zongyan Song
- Key Laboratory of Carbohydrate Science and Engineering, Chongqing Normal University, Chongqing 401331, China
| | - Xiong Xiong
- Key Laboratory of Carbohydrate Science and Engineering, Chongqing Normal University, Chongqing 401331, China
| | - Gangliang Huang
- Key Laboratory of Carbohydrate Science and Engineering, Chongqing Normal University, Chongqing 401331, China.
| |
Collapse
|
11
|
Xiao T, Su X, Jiang R, zhou H, Xie T. Low moisture extrusion of soybean protein isolate: Effect of β-glucan on the physicochemical properties of the product. Lebensm Wiss Technol 2023. [DOI: 10.1016/j.lwt.2023.114660] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/18/2023]
|
12
|
Development of Healthier and Functional Dry Fermented Sausages: Present and Future. Foods 2022; 11:foods11081128. [PMID: 35454715 PMCID: PMC9031353 DOI: 10.3390/foods11081128] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Revised: 04/05/2022] [Accepted: 04/12/2022] [Indexed: 12/19/2022] Open
Abstract
In recent years, consumer perception about the healthiness of meat products has changed. In this scenario, the meat industry and the scientific and technological areas have put their efforts into improving meat products and achieving healthier and functional formulations that meet the demands of today’s market and consumers. This article aims to review the current functional fermented meat products, especially on sausage development. Firstly, an emphasis is given to reducing and replacing traditional ingredients associated with increased risk to consumer’s health (sodium, fat, and nitrites), adding functional components (prebiotics, probiotics, symbiotics, and polyphenols), and inducing health benefits. Secondly, a look at future fermented sausages is provided by mentioning emerging strategies to produce innovative healthier and functional meat products. Additional recommendations were also included to assist researchers in further development of healthier and functional sausages.
Collapse
|
13
|
Mumyapan M, Aktaş N, Gerçekaslan KE. Seed Pumpkin Flour as a Dietary Fiber Source in
Bologna‐Type
Sausages. J FOOD PROCESS PRES 2022. [DOI: 10.1111/jfpp.16586] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Mübeccel Mumyapan
- University of Nevşehir Hacı Bektaş Veli Faculty of Engineering Architecture, Department of Food Engineering Nevşehir Turkey
| | - Nesimi Aktaş
- University of Nevşehir Hacı Bektaş Veli Faculty of Engineering Architecture, Department of Food Engineering Nevşehir Turkey
| | - Kamil Emre Gerçekaslan
- University of Nevşehir Hacı Bektaş Veli Faculty of Engineering Architecture, Department of Food Engineering Nevşehir Turkey
| |
Collapse
|
14
|
Recent advances in the study of modified cellulose in meat products: Modification method of cellulose, meat quality improvement and safety concern. Trends Food Sci Technol 2022. [DOI: 10.1016/j.tifs.2022.02.024] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
|
15
|
Cao C, Xu J, Li X, Kong B, Wang M, He J, Liu Q. A new enzymatic method for measuring the degree of gelatinized starch in meat products. J Food Compost Anal 2022. [DOI: 10.1016/j.jfca.2022.104451] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
16
|
The Extraction, Functionalities and Applications of Plant Polysaccharides in Fermented Foods: A Review. Foods 2021; 10:foods10123004. [PMID: 34945554 PMCID: PMC8701727 DOI: 10.3390/foods10123004] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Revised: 11/25/2021] [Accepted: 12/02/2021] [Indexed: 02/07/2023] Open
Abstract
Plant polysaccharides, as prebiotics, fat substitutes, stabilizers, thickeners, gelling agents, thickeners and emulsifiers, have been immensely studied for improving the texture, taste and stability of fermented foods. However, their biological activities in fermented foods are not yet properly addressed in the literature. This review summarizes the classification, chemical structure, extraction and purification methods of plant polysaccharides, investigates their functionalities in fermented foods, especially the biological activities and health benefits. This review may provide references for the development of innovative fermented foods containing plant polysaccharides that are beneficial to health.
Collapse
|
17
|
Mateo J, Caro I, Kasiayan S, Salvá BK, Carhuallanqui A, Ramos DD. Potential of Pulse Flours as Partial Meat Replacers in Heat-Treated Emulsion-Type Meat Sausages. FRONTIERS IN ANIMAL SCIENCE 2021. [DOI: 10.3389/fanim.2021.693086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Reformulation approaches in the meat industry are required to promote nutritional improvement, health functionality, and reduce environmental impact. A relevant approach among these is to reduce the amount of meat in meat products. Reduced-meat products should maintain or improve the sensory characteristics and nutritive value compared to conventional meat products. Among meat products, heat-treated emulsion-meat sausages are widely consumed and especially suitable for reformulation approaches. Due to its high protein content, with high functionally and biological value, pulse flour has a high potential to be used as meat replacer. Most studies regarding the replacement of meat with pulses have been made on fresh meat preparations where amounts of up to 15% of pulse flour did not negatively affect sensory quality while increased yield and firmness. However, studies using pulse flour in emulsion-type sausages are scarce. Further research is warranted to optimize the reformulation of these meat products using flour pulses. The topics to be addressed are the following: effects of pulse type, pulse pretreatments, such as soaking or germination, pulse flour treatments before incorporation into the meat mix, combination of pulses with other proper ingredients, and heat treatment intensity on the pulse antinutrient inactivation and the technological and edible quality traits of the pulse-containing sausages.
Collapse
|
18
|
Rezler R. DMA Study of the Molecular Structure of Porcine Fat in-Water Emulsions Stabilised by Potato Starch. Int J Mol Sci 2021; 22:7276. [PMID: 34298901 PMCID: PMC8307950 DOI: 10.3390/ijms22147276] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Revised: 06/25/2021] [Accepted: 07/01/2021] [Indexed: 11/17/2022] Open
Abstract
The aim of the study was to determine how the molecular structure of porcine fat-in-water type emulsions stabilised with potato starch affected their rheomechanical properties. Dynamic mechanical analysis (DMA) and instrumental analysis of the texture were the method used in experiments. Starch gels with concentrations corresponding to the water starch concentration of the examined emulsions were used as control systems. The analysis of the starch and starch-fat systems showed that the values characterising their rheomechanical and textural properties reflected the spatial reaction of the amylose matrix to dynamic mechanical interactions. Changes in their values resulted from conformational changes in the structure of segments and nodes of the lattice, conditioned by the concentration of starch and the presence of fat. As a result of these changes, starch-fat emulsions are distinguished by greater densities of network segments and nearly two times greater functionalities of nodes than starch gels. The instrumental analysis of the texture showed that the values of the texture parameters in the starch gels were greater than in the starch-fat emulsions. The high values of the correlation coefficients (R~0.9) between the texture determinants and the rheological parameters proved that there was a strong correlation between the textural properties of the tested systems and their rheomechanical properties.
Collapse
Affiliation(s)
- Ryszard Rezler
- Department of Physics and Biophysics, Faculty of Food Science and Nutrition, Poznań University of Life Sciences, Wojska Polskiego 38/42, 60-637 Poznań, Poland
| |
Collapse
|
19
|
Kaur R, Kaur L. Encapsulated natural antimicrobials: A promising way to reduce microbial growth in different food systems. Food Control 2021. [DOI: 10.1016/j.foodcont.2020.107678] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
20
|
Xue S, He L. Optimization of adding polysaccharides from chicory root based on fuzzy mathematics to improve physicochemical properties of silver carp surimi balls during storage. J FOOD PROCESS PRES 2021. [DOI: 10.1111/jfpp.15307] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Affiliation(s)
- Shan Xue
- College of Biological Science and Technology Minnan Normal University Zhangzhou PR China
| | - Li He
- College of Biological Science and Technology Minnan Normal University Zhangzhou PR China
| |
Collapse
|
21
|
Gelling Properties. Food Hydrocoll 2021. [DOI: 10.1007/978-981-16-0320-4_4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
22
|
Yang K, Wang L, Guo J, Wu D, Wang X, Wu M, Feng X, Ma J, Zhang Y, Sun W. Structural changes induced by direct current magnetic field improve water holding capacity of pork myofibrillar protein gels. Food Chem 2020; 345:128849. [PMID: 33601660 DOI: 10.1016/j.foodchem.2020.128849] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Revised: 11/02/2020] [Accepted: 12/06/2020] [Indexed: 12/11/2022]
Abstract
The study was to investigate the role of direct current magnetic field (DC-MF) for water-holding capacity (WHC) of myofibrillar protein gels and to understand potential mechanisms. Samples were subjected to DC-MF with different intensities (3.5, 3.8, 9.5 and 10.4 mT), and DC-MF treatment significantly improved WHC compared with control (46.09%), reaching the maximum value of 50.36% at 3.8 mT. The main reason for the increase in WHC might be that DC-MF modified the protein structure via unfolding, re-crosslinking and aggregation of proteins, which was supported by the increased intensity of tyrosine, aliphatic and tryptophan residues, and reduced reactive sulfhydryl (2.97 to 1.94). And the re-crosslinking between molecules was maintained mainly through hydrophobic interactions and disulfide bonds. Besides, DC-MF treatment helped to generate a relatively loose and uniform microstructure to trap more water as shown by electron microscope image, which was consistent with the highest WHC at 3.8 mT.
Collapse
Affiliation(s)
- Kun Yang
- College of Life Science, Yangtze University, Jingzhou, Hubei 434023, PR China
| | - Limei Wang
- College of Life Science, Yangtze University, Jingzhou, Hubei 434023, PR China
| | - Juanjuan Guo
- College of Life Science, Yangtze University, Jingzhou, Hubei 434023, PR China
| | - Di Wu
- College of Life Science, Yangtze University, Jingzhou, Hubei 434023, PR China
| | - Xian Wang
- College of Life Science, Yangtze University, Jingzhou, Hubei 434023, PR China
| | - Mengting Wu
- College of Life Science, Yangtze University, Jingzhou, Hubei 434023, PR China
| | - Xiaolong Feng
- College of Life Science, Yangtze University, Jingzhou, Hubei 434023, PR China
| | - Jing Ma
- College of Life Science, Yangtze University, Jingzhou, Hubei 434023, PR China
| | - Yunhua Zhang
- School of Mechanical Engineering, Yangtze University, Jingzhou, Hubei 434023, PR China
| | - Weiqing Sun
- College of Life Science, Yangtze University, Jingzhou, Hubei 434023, PR China; Jingchu Food Research and Development Center, Yangtze University, Jingzhou, Hubei 434025, PR China.
| |
Collapse
|
23
|
Yang X, Li A, Li X, Sun L, Guo Y. An overview of classifications, properties of food polysaccharides and their links to applications in improving food textures. Trends Food Sci Technol 2020. [DOI: 10.1016/j.tifs.2020.05.020] [Citation(s) in RCA: 77] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
24
|
Jakubczyk A, Ćwiek P, Rybczyńska-Tkaczyk K, Gawlik-Dziki U, Złotek U. The Influence of Millet Flour on Antioxidant, Anti-ACE, and Anti-Microbial Activities of Wheat Wafers. Foods 2020; 9:E220. [PMID: 32093055 PMCID: PMC7074126 DOI: 10.3390/foods9020220] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2020] [Revised: 02/13/2020] [Accepted: 02/17/2020] [Indexed: 01/10/2023] Open
Abstract
The aim of the present study was to investigate antioxidant, angiotensin converting enzyme (ACE) inhibitory, and anti-microbial activities of wheat wafers enriched with 1%, 2%, or 3% (w/w) of millet flour (M1, M2, or M3, respectively). All samples were characterized by a richer composition of protein, polyphenols, flavonoids, phenolic acids, and reducing sugar in comparison with the control sample. The highest content of the components, i.e., 1.03 mg mL-1, 0.021 mg mL-1, 2.26 mg mL-1, 0.17 µg mL-1, and 0.63 mg mL-1, respectively, was detected in sample M3. The same sample was characterized by 803.91 and 42.79% of water and oil absorption capacity, respectively. The additive did not change the rheological features of the wafers. The 3% addition of millet flour to the wafer formulation induced the highest antioxidant activity against DPPH, Fe2+ chelation, and ACE inhibitory activity of hydrolysates (IC50 = 191.04, 0.46, and 157.73 µg mL-1, respectively). The highest activities were determined in the M3 fraction <3.0 kDa (IC50 = 3.46, 0.26, and 16.27 µg mL, respectively). In turn, the M2 fraction was characterized by the highest antimicrobial activity against Listeria monocytogenes with a minimum inhibitory concentration (MIC) value of 75 µg mL-1.
Collapse
Affiliation(s)
- Anna Jakubczyk
- Department of Biochemistry and Food Chemistry, University of Life Sciences, Skromna 8, 20-704 Lublin, Poland; (A.J.); (P.Ć.); (U.G.-D.)
| | - Paula Ćwiek
- Department of Biochemistry and Food Chemistry, University of Life Sciences, Skromna 8, 20-704 Lublin, Poland; (A.J.); (P.Ć.); (U.G.-D.)
| | - Kamila Rybczyńska-Tkaczyk
- Department of Environmental Microbiology, Laboratory of Mycology, The University of Life Sciences, Leszczyńskiego Street 7, 20-069 Lublin, Poland;
| | - Urszula Gawlik-Dziki
- Department of Biochemistry and Food Chemistry, University of Life Sciences, Skromna 8, 20-704 Lublin, Poland; (A.J.); (P.Ć.); (U.G.-D.)
| | - Urszula Złotek
- Department of Biochemistry and Food Chemistry, University of Life Sciences, Skromna 8, 20-704 Lublin, Poland; (A.J.); (P.Ć.); (U.G.-D.)
| |
Collapse
|
25
|
Abstract
Β-glucan is a strongly hydrophilic non-starchy polysaccharide, which, when incorporated in food, is renowned for its ability to alter functional characteristics such as viscosity, rheology, texture, and sensory properties of the food product. The functional properties of β-glucans are directly linked to their origin/source, molecular weight, and structural features. The molecular weight and structural/conformational features are in turn influenced by method of extraction and modification of the β-glucan. For example, whereas physical modification techniques influence only the spatial structures, modification by chemical agents, enzyme hydrolysis, mechanical treatment, and irradiation affect both spatial conformation and primary structures of β-glucan. Consequently, β-glucan can be modified (via one or more of the aforementioned techniques) into forms that have desired morphological, rheological, and (bio)functional properties. This review describes how various modification techniques affect the structure, properties, and applications of β-glucans in the food industry.
Collapse
|