1
|
Eveliina S, Halahlah A, Räikkönen H, Yousefvand A, Saris PEJ, Mikkonen KS, Ho TM. Wood hemicelluloses as protective materials for preserving the viability of probiotic Lacticaseibacillus rhamnosus GG during spray drying. Int J Biol Macromol 2024; 282:137216. [PMID: 39515729 DOI: 10.1016/j.ijbiomac.2024.137216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 10/27/2024] [Accepted: 11/01/2024] [Indexed: 11/16/2024]
Abstract
Wood hemicelluloses from forest industry side-streams are promising economic and sustainable alternatives for encapsulating bioactive compounds. This study explores their suitability for probiotic encapsulation, specifically for maintaining cell viability and structure. The ability of galactoglucomannans (GGM) and glucuronoxylans (GX) to support the survival of Lacticaseibacillus rhamnosus GG (LGG) during spray drying at solid feed concentrations of 15 and 20 % and inlet air temperatures of 105 and 140 °C (outlet air temperature of 50 °C) was investigated and compared to the results obtained using maltodextrin (MD). Across all investigated conditions, LGG survival rates exceeded 85 % (>107 cfu/g) in GX and GGM microcapsule powders, which similar to that in MD microcapsules despite the differences in pH, particle size, and viscosity of their feed dispersions. The GX microcapsules demonstrated the highest process yield (50-58 %), followed by MD (39-51 %). All the microcapsule powders exhibited an amorphous structure consisting of spherical particles with an average diameter of 10 μm, sufficient for LGG accommodation. Atomic force microscopy analysis confirmed the encapsulation of LGG cells within microcapsules with intact rod-shaped chains post-spray drying. Overall, the spray-dried microencapsulation of probiotics using wood hemicelluloses maintains high probiotic viability and offers an eco-friendly, cost-effective alternative to traditional materials.
Collapse
Affiliation(s)
- Suutari Eveliina
- Department of Food and Nutrition, P.O. Box 66, FIN-00014, University of Helsinki, Finland
| | - Abedalghani Halahlah
- Department of Food and Nutrition, P.O. Box 66, FIN-00014, University of Helsinki, Finland
| | - Heikki Räikkönen
- Faculty of Pharmacy, P.O. Box 56, FIN-00014, University of Helsinki, Finland
| | - Amin Yousefvand
- Department of Microbiology, P.O. Box 56, FIN-00014, University of Helsinki, Finland; Helsinki Institute of Sustainability Science (HELSUS), P.O. Box 65, FIN-00014, University of Helsinki, Finland
| | | | - Kirsi S Mikkonen
- Department of Food and Nutrition, P.O. Box 66, FIN-00014, University of Helsinki, Finland; Helsinki Institute of Sustainability Science (HELSUS), P.O. Box 65, FIN-00014, University of Helsinki, Finland
| | - Thao M Ho
- Department of Food and Nutrition, P.O. Box 66, FIN-00014, University of Helsinki, Finland; Helsinki Institute of Sustainability Science (HELSUS), P.O. Box 65, FIN-00014, University of Helsinki, Finland.
| |
Collapse
|
2
|
Dos Santos Lima A, de Oliveira Pedreira FR, Bento NA, Novaes RD, Dos Santos EG, de Almeida Lima GD, de Almeida LA, Belo TCA, Vieira FV, Mohammadi N, Kilpeläinen P, Giusti-Paiva A, Granato D, Azevedo L. Digested galactoglucomannan mitigates oxidative stress in human cells, restores gut bacterial diversity, and provides chemopreventive protection against colon cancer in rats. Int J Biol Macromol 2024; 277:133986. [PMID: 39033896 DOI: 10.1016/j.ijbiomac.2024.133986] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 07/11/2024] [Accepted: 07/16/2024] [Indexed: 07/23/2024]
Abstract
Galactoglucomannan (GGM) is the predominant hemicellulose in coniferous trees, such as Norway spruce, and has been used as a multipurpose emulsifier in the food industry. In vitro digestion with a cellular antioxidant activity assay was performed to determine the bioaccessibility and antioxidant activity of phenolic compounds, and the behaviour of GGM on in vivo experimental assay against induced colon cancer. The results showed that digestion decreased the bioaccessibility and antioxidant capacity of phenolic compounds. Cellular analysis did not support these findings once an antioxidant effect was observed in human cell lines. GGM attenuated the initiation and progression of colon cancer, by reducing the foci of aberrant crypts in rats, and modified the intestinal bacterial microbiota (disrupting the balance between Firmicutes and Bacteroidetes phyla). Thus, GGM provided chemopreventive protection against the development of colon cancer and acted as an intracellular antioxidant agent.
Collapse
Affiliation(s)
- Amanda Dos Santos Lima
- In vitro and in vivo Nutritional and Toxicological Analysis Lab, Federal University of Alfenas, Alfenas, Minas Gerais, Brazil
| | | | - Nathália Alves Bento
- In vitro and in vivo Nutritional and Toxicological Analysis Lab, Federal University of Alfenas, Alfenas, Minas Gerais, Brazil
| | - Rômulo Dias Novaes
- Institute of Biomedical Sciences, Department of Structural Biology, Federal University of Alfenas, Alfenas, Minas Gerais, Brazil
| | - Elda Gonçalves Dos Santos
- Institute of Biomedical Sciences, Department of Structural Biology, Federal University of Alfenas, Alfenas, Minas Gerais, Brazil
| | | | | | | | - Fernando Vitor Vieira
- In vitro and in vivo Nutritional and Toxicological Analysis Lab, Federal University of Alfenas, Alfenas, Minas Gerais, Brazil
| | - Nima Mohammadi
- Bioactivity & Applications Lab, Department of Biological Sciences, Faculty of Science and Engineering, School of Natural Sciences, University of Limerick, V94 T9PX Limerick, Ireland
| | - Petri Kilpeläinen
- Biorefinery and Bioproducts, Production Systems Unit, Natural Resources Institute Finland (Luke), Myllytie 1, 31600 Jokioinen, Finland
| | - Alexandre Giusti-Paiva
- Center of Biological Sciences, Federal University of Santa Catarina, Florianópolis, Santa Catarina, Brazil
| | - Daniel Granato
- Bioactivity & Applications Lab, Department of Biological Sciences, Faculty of Science and Engineering, School of Natural Sciences, University of Limerick, V94 T9PX Limerick, Ireland.
| | - Luciana Azevedo
- In vitro and in vivo Nutritional and Toxicological Analysis Lab, Federal University of Alfenas, Alfenas, Minas Gerais, Brazil.
| |
Collapse
|
3
|
Zhang T, Xiao Y, Wang H, Zhu J, Lu W, Zhang H, Chen W. Construction and characterization of stable multi-species biofilms formed by nine core gut bacteria on wheat fiber. Food Funct 2024; 15:8674-8688. [PMID: 39082112 DOI: 10.1039/d4fo01294a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/28/2024]
Abstract
Microbial aggregation mainly occurs on the intestinal epithelium, mucosal layer and undigested food particles in the gastrointestinal tract (GIT). Undigested food particles are usually insoluble dietary fiber (IDF), which can be easily obtained through daily diet, but there are few studies investigating whether the gut bacteria adhering to undigested food particles can form multi-species biofilms. In this study, we prepared mono- and multi-species biofilms using 18 core gut bacteria via a dynamic fermentation method, and it was found that multi-species composed of nine core gut bacteria (M9) showed the best biofilm formation ability. Cell counts of the nine bacteria in multi-species biofilms were 9.36, 11.85, 10.17, 9.93, 12.88, 11.39, 10.089, 9.06, and 13.21 Log10 CFU mL-1. M9 was tightly connected and regularly stacked on wheat fiber and had larger particle sizes than mono-species biofilms. M9 retained biofilm formation ability under pH and bile salt stresses. A human feces invasion experiment demonstrated that M9 can stably adhere to wheat fiber under the interference of complex gut bacteria, and the M9 multi-species biofilm had positions that can be filled by various gut bacteria. Metabolome results indicated that the M9 multi-species biofilm had more metabolic productions and more complex interspecies interactions than mono-species biofilms. This study provides a dynamic fermentation method to prepare multi-species biofilms on wheat fiber in vitro. It will also offer a research basis for clarifying whether gut bacteria can utilize IDF to form biofilm structures in vivo and the possible interspecific interactions and physiological functions of bacteria in biofilms.
Collapse
Affiliation(s)
- Ting Zhang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, 214122, China.
- School of Food Science and Technology, Jiangnan University, Wuxi, 214122, China
| | - Yue Xiao
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, 214122, China.
- School of Food Science and Technology, Jiangnan University, Wuxi, 214122, China
| | - Hongchao Wang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, 214122, China.
- School of Food Science and Technology, Jiangnan University, Wuxi, 214122, China
| | - Jinlin Zhu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, 214122, China.
- School of Food Science and Technology, Jiangnan University, Wuxi, 214122, China
| | - Wenwei Lu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, 214122, China.
- School of Food Science and Technology, Jiangnan University, Wuxi, 214122, China
- International Joint Research Laboratory for Pharmabiotics & Antibiotic Resistance, Jiangnan University, Wuxi, 214122, China
- National Engineering Research Center for Functional Food, Jiangnan University, Wuxi, 214122, China
| | - Hao Zhang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, 214122, China.
- School of Food Science and Technology, Jiangnan University, Wuxi, 214122, China
- National Engineering Research Center for Functional Food, Jiangnan University, Wuxi, 214122, China
| | - Wei Chen
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, 214122, China.
- School of Food Science and Technology, Jiangnan University, Wuxi, 214122, China
- National Engineering Research Center for Functional Food, Jiangnan University, Wuxi, 214122, China
| |
Collapse
|
4
|
Abik F, Palasingh C, Bhattarai M, Leivers S, Ström A, Westereng B, Mikkonen KS, Nypelö T. Potential of Wood Hemicelluloses and Their Derivates as Food Ingredients. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:2667-2683. [PMID: 36724217 PMCID: PMC9936590 DOI: 10.1021/acs.jafc.2c06449] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Revised: 01/09/2023] [Accepted: 01/12/2023] [Indexed: 06/18/2023]
Abstract
A holistic utilization of all lignocellulosic wood biomass, instead of the current approach of using only the cellulose fraction, is crucial for the efficient, ecological, and economical use of the forest resources. Use of wood constituents in the food and feed sector is a potential way of promoting the global economy. However, industrially established food products utilizing such components are still scarce, with the exception of cellulose derivatives. Hemicelluloses that include xylans and mannans are major constituents of wood. The wood hemicelluloses are structurally similar to hemicelluloses from crops, which are included in our diet, for example, as a part of dietary fibers. Hence, structurally similar wood hemicelluloses have the potential for similar uses. We review the current status and future potential of wood hemicelluloses as food ingredients. We include an inventory of the extraction routes of wood hemicelluloses, their physicochemical properties, and some of their gastrointestinal characteristics, and we also consider the regulatory route that research findings need to follow to be approved for food solutions, as well as the current status of the wood hemicellulose applications on that route.
Collapse
Affiliation(s)
- Felix Abik
- Department
of Food and Nutrition, University of Helsinki, P.O. Box 66, Helsinki 00014, Finland
| | - Chonnipa Palasingh
- Department
of Chemistry and Chemical Engineering, Chalmers
University of Technology, Gothenburg 41296, Sweden
| | - Mamata Bhattarai
- Department
of Food and Nutrition, University of Helsinki, P.O. Box 66, Helsinki 00014, Finland
- Department
of Bioproducts and Biosystems, Aalto University, P.O. Box 16300, Espoo 00076, Finland
| | - Shaun Leivers
- Faculty
of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences, Ås 1430, Norway
| | - Anna Ström
- Department
of Chemistry and Chemical Engineering, Chalmers
University of Technology, Gothenburg 41296, Sweden
| | - Bjørge Westereng
- Faculty
of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences, Ås 1430, Norway
| | - Kirsi S. Mikkonen
- Department
of Food and Nutrition, University of Helsinki, P.O. Box 66, Helsinki 00014, Finland
- Helsinki
Institute of Sustainability Science (HELSUS), University of Helsinki, P.O. Box 65, Helsinki 00014, Finland
| | - Tiina Nypelö
- Department
of Chemistry and Chemical Engineering, Chalmers
University of Technology, Gothenburg 41296, Sweden
- Wallenberg
Wood Science Center, Chalmers University
of Technology, Gothenburg 41296, Sweden
- Department
of Bioproducts and Biosystems, Aalto University, Espoo 00760, Finland
| |
Collapse
|
5
|
Harvey DJ. Analysis of carbohydrates and glycoconjugates by matrix-assisted laser desorption/ionization mass spectrometry: An update for 2019-2020. MASS SPECTROMETRY REVIEWS 2022:e21806. [PMID: 36468275 DOI: 10.1002/mas.21806] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
This review is the tenth update of the original article published in 1999 on the application of matrix-assisted laser desorption/ionization (MALDI) mass spectrometry to the analysis of carbohydrates and glycoconjugates and brings coverage of the literature to the end of 2020. Also included are papers that describe methods appropriate to analysis by MALDI, such as sample preparation techniques, even though the ionization method is not MALDI. The review is basically divided into three sections: (1) general aspects such as theory of the MALDI process, matrices, derivatization, MALDI imaging, fragmentation, quantification and the use of arrays. (2) Applications to various structural types such as oligo- and polysaccharides, glycoproteins, glycolipids, glycosides and biopharmaceuticals, and (3) other areas such as medicine, industrial processes and glycan synthesis where MALDI is extensively used. Much of the material relating to applications is presented in tabular form. The reported work shows increasing use of incorporation of new techniques such as ion mobility and the enormous impact that MALDI imaging is having. MALDI, although invented nearly 40 years ago is still an ideal technique for carbohydrate analysis and advancements in the technique and range of applications show little sign of diminishing.
Collapse
Affiliation(s)
- David J Harvey
- Nuffield Department of Medicine, Target Discovery Institute, University of Oxford, Oxford, UK
- Department of Chemistry, University of Oxford, Oxford, Oxfordshire, United Kingdom
| |
Collapse
|
6
|
Baky MH, Salah M, Ezzelarab N, Shao P, Elshahed MS, Farag MA. Insoluble dietary fibers: structure, metabolism, interactions with human microbiome, and role in gut homeostasis. Crit Rev Food Sci Nutr 2022; 64:1954-1968. [PMID: 36094440 DOI: 10.1080/10408398.2022.2119931] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Consumption of food rich in dietary fibers (DFs) has been long recognized to exert an overall beneficial effect on human health. This review aims to provide a holistic overview on how IDFs impact human gut health either directly, or through modulation of the gut microbiome. Several databases were searched for collecting papers such as PubMed, Google Scholar, Web of Science, Scopus and Reaxys from 2000 till 2022. Firstly, an overview of the chemical structure of the various IDFs and the pathways employed by gut microbiota for their degradation is provided. The impact of IDFs on microbial community structure and pathogens colonization inside the human gut was discussed. Finally, the impact of IDFs on gut homeostasis and systemic effects at the cellular level, as well as the overall immunological benefits of IDFs consumption were analyzed. IDFs viz., cellulose, hemicellulose, resistant starch, and lignin found enriched in food are discussed for these effects. IDFs were found to induce gut immunity, improve intestinal integrity and mucosal proliferation, and favor adhesion of probiotics and hence improve human health. Also, IDFs were concluded to improve the bioavailability of plant polyphenols and improve their health-related functional roles. Ultimately, dietary fibers processing by modification shows potential to enhance fibers-based functional food production, in addition to increase the economic value and usage of food-rich fibers and their by-products.
Collapse
Affiliation(s)
- Mostafa H Baky
- Pharmacognosy Department, College of Pharmacy, Egyptian Russian University, Badr City, Egypt
| | - Mohamed Salah
- Microbiology Department, College of Pharmacy, Port Said University, Port Said, Egypt
| | - Nada Ezzelarab
- Biology Department, School of Sciences & Engineering, The American University in Cairo, New Cairo, Egypt
| | - Ping Shao
- Department of Food Science and Technology, Zhejiang University of Technology, Zhejiang, Hangzhou, PR China
| | - Mostafa S Elshahed
- Department of Microbiology and Molecular Genetics, Oklahoma State University, Stillwater, Oklahoma, USA
| | - Mohamed A Farag
- Pharmacognosy Department, College of Pharmacy, Cairo University, Cairo, Egypt
| |
Collapse
|
7
|
Alvi T, Khan MKI, Maan AA, Razzaq ZU. Date fruit as a promising source of functional carbohydrates and bioactive compounds: A review on its nutraceutical potential. J Food Biochem 2022; 46:e14325. [PMID: 35894233 DOI: 10.1111/jfbc.14325] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Accepted: 06/14/2022] [Indexed: 11/28/2022]
Abstract
From the past decade, consumption of ready-to-eat food and ease of access to fast food increased the onset of several diseases. Thus, there is a need to shift the trend from consumption of unhealthy food item to natural and healthy alternatives. In this context, fruits can be considered as functional food, which have ability to provide essential nutrients and bioactive compounds. These compounds when consume in adequate amount would have the potential to lower the onset of diseases. In this regard, Phoenix dactylifera or date fruit is an important source of functional carbohydrates and bioactive compounds for their use as functional foods. The major functional carbohydrate in date fruit are in the form of dietary fiber, such as β-glucan, cellulose and fructans along with other bioactive compounds. Additionally, it is also a good source of other important nutrients such as sugars, minerals, along with minor quantities of proteins and lipids. Due to these functional compounds, date fruit have shown a wide range of pharmaceutical properties such as antioxidant, anti-inflammatory, anti-diabetic, hepatoprotective and anticancer. This review provides latest information regarding functional and nutraceutical carbohydrates of date fruits along-with mechanism of action on different diseases reported in recent years. PRACTICAL APPLICATIONS: This will provide information to food industries for the development of innovative food products by using date fruit. Moreover, bioactive components from date fruit may prove to enhance global health and wellness. However, further research is needed on clinical trials for the development of functional food products by using date fruit for functional foods and pharmaceutical applications.
Collapse
Affiliation(s)
- Tayyaba Alvi
- National Institute of Food Science and Technology, University of Agriculture, Faisalabad, Pakistan
| | - Muhammad Kashif Iqbal Khan
- National Institute of Food Science and Technology, University of Agriculture, Faisalabad, Pakistan.,Department of Food Engineering, University of Agriculture, Faisalabad, Pakistan
| | - Abid Aslam Maan
- National Institute of Food Science and Technology, University of Agriculture, Faisalabad, Pakistan.,Department of Food Engineering, University of Agriculture, Faisalabad, Pakistan
| | - Zafar Ullah Razzaq
- National Institute of Food Science and Technology, University of Agriculture, Faisalabad, Pakistan
| |
Collapse
|
8
|
Functional exploration of the glycoside hydrolase family GH113. PLoS One 2022; 17:e0267509. [PMID: 35452491 PMCID: PMC9032380 DOI: 10.1371/journal.pone.0267509] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Accepted: 04/08/2022] [Indexed: 12/02/2022] Open
Abstract
β-Mannans are a heterogeneous group of polysaccharides with a common main chain of β-1,4-linked mannopyranoside residues. The cleavage of β-mannan chains is catalyzed by glycoside hydrolases called β-mannanases. In the CAZy database, β-mannanases are grouped by sequence similarity in families GH5, GH26, GH113 and GH134. Family GH113 has been under-explored so far with six enzymes characterized, all from the Firmicutes phylum. We undertook the functional characterization of 14 enzymes from a selection of 31 covering the diversity of the family GH113. Our observations suggest that GH113 is a family with specificity towards mannans, with variations in the product profiles and modes of action. We were able to assign mannanase and mannosidase activities to four out of the five clades of the family, increasing by 200% the number of characterized GH113 members, and expanding the toolbox for fine-tuning of mannooligosaccharides.
Collapse
|
9
|
Borovkova VS, Malyar YN, Sudakova IG, Chudina AI, Skripnikov AM, Fetisova OY, Kazachenko AS, Miroshnikova AV, Zimonin DV, Ionin VA, Seliverstova AA, Samoylova ED, Issaoui N. Molecular Characteristics and Antioxidant Activity of Spruce ( Picea abies) Hemicelluloses Isolated by Catalytic Oxidative Delignification. Molecules 2022; 27:266. [PMID: 35011498 PMCID: PMC8746494 DOI: 10.3390/molecules27010266] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Revised: 12/27/2021] [Accepted: 12/30/2021] [Indexed: 01/18/2023] Open
Abstract
Spruce (Piceaabies) wood hemicelluloses have been obtained by the noncatalytic and catalytic oxidative delignification in the acetic acid-water-hydrogen peroxide medium in a processing time of 3-4 h and temperatures of 90-100 °C. In the catalytic process, the H2SO4, MnSO4, TiO2, and (NH4)6Mo7O24 catalysts have been used. A polysaccharide yield of up to 11.7 wt% has been found. The hemicellulose composition and structure have been studied by a complex of physicochemical methods, including gas and gel permeation chromatography, Fourier-transform infrared spectroscopy, and thermogravimetric analysis. The galactose:mannose:glucose:arabinose:xylose monomeric units in a ratio of 5:3:2:1:1 have been identified in the hemicelluloses by gas chromatography. Using gel permeation chromatography, the weight average molar mass Mw of hemicelluloses has been found to attain 47,654 g/mol in noncatalytic delignification and up to 42,793 g/mol in catalytic delignification. Based on the same technique, a method for determining the α and k parameters of the Mark-Kuhn-Houwink equation for hemicelluloses has been developed; it has been established that these parameters change between 0.33-1.01 and 1.57-472.17, respectively, depending on the catalyst concentration and process temperature and time. Moreover, the FTIR spectra of the hemicellulose samples contain all the bands characteristic of heteropolysaccharides, specifically, 1069 cm-1 (C-O-C and C-O-H), 1738 cm-1 (ester C=O), 1375 cm-1 (-C-CH3), 1243 cm-1 (-C-O-), etc. It has been determined by the thermogravimetric analysis that the hemicelluloses isolated from spruce wood are resistant to heating to temperatures of up to ~100 °C and, upon further heating, start destructing at an increasing rate. The antioxidant activity of the hemicelluloses has been examined using the compounds simulating the 2,2-diphenyl-2-picrylhydrazyl free radicals.
Collapse
Affiliation(s)
- Valentina S. Borovkova
- School of Non-Ferrous Metals and Materials Science, Siberian Federal University, pr. Svobodny 79, 660041 Krasnoyarsk, Russia; (V.S.B.); (A.M.S.); (A.S.K.); (A.V.M.); (D.V.Z.); (V.A.I.); (A.A.S.); (E.D.S.)
- Krasnoyarsk Science Center, Institute of Chemistry and Chemical Technology, Siberian Branch, Russian Academy of Sciences, Akademgorodok 50/24, 660036 Krasnoyarsk, Russia; (I.G.S.); (A.I.C.); (O.Y.F.)
| | - Yuriy N. Malyar
- School of Non-Ferrous Metals and Materials Science, Siberian Federal University, pr. Svobodny 79, 660041 Krasnoyarsk, Russia; (V.S.B.); (A.M.S.); (A.S.K.); (A.V.M.); (D.V.Z.); (V.A.I.); (A.A.S.); (E.D.S.)
- Krasnoyarsk Science Center, Institute of Chemistry and Chemical Technology, Siberian Branch, Russian Academy of Sciences, Akademgorodok 50/24, 660036 Krasnoyarsk, Russia; (I.G.S.); (A.I.C.); (O.Y.F.)
| | - Irina G. Sudakova
- Krasnoyarsk Science Center, Institute of Chemistry and Chemical Technology, Siberian Branch, Russian Academy of Sciences, Akademgorodok 50/24, 660036 Krasnoyarsk, Russia; (I.G.S.); (A.I.C.); (O.Y.F.)
| | - Anna I. Chudina
- Krasnoyarsk Science Center, Institute of Chemistry and Chemical Technology, Siberian Branch, Russian Academy of Sciences, Akademgorodok 50/24, 660036 Krasnoyarsk, Russia; (I.G.S.); (A.I.C.); (O.Y.F.)
| | - Andrey M. Skripnikov
- School of Non-Ferrous Metals and Materials Science, Siberian Federal University, pr. Svobodny 79, 660041 Krasnoyarsk, Russia; (V.S.B.); (A.M.S.); (A.S.K.); (A.V.M.); (D.V.Z.); (V.A.I.); (A.A.S.); (E.D.S.)
- Krasnoyarsk Science Center, Institute of Chemistry and Chemical Technology, Siberian Branch, Russian Academy of Sciences, Akademgorodok 50/24, 660036 Krasnoyarsk, Russia; (I.G.S.); (A.I.C.); (O.Y.F.)
| | - Olga Yu. Fetisova
- Krasnoyarsk Science Center, Institute of Chemistry and Chemical Technology, Siberian Branch, Russian Academy of Sciences, Akademgorodok 50/24, 660036 Krasnoyarsk, Russia; (I.G.S.); (A.I.C.); (O.Y.F.)
| | - Alexander S. Kazachenko
- School of Non-Ferrous Metals and Materials Science, Siberian Federal University, pr. Svobodny 79, 660041 Krasnoyarsk, Russia; (V.S.B.); (A.M.S.); (A.S.K.); (A.V.M.); (D.V.Z.); (V.A.I.); (A.A.S.); (E.D.S.)
- Krasnoyarsk Science Center, Institute of Chemistry and Chemical Technology, Siberian Branch, Russian Academy of Sciences, Akademgorodok 50/24, 660036 Krasnoyarsk, Russia; (I.G.S.); (A.I.C.); (O.Y.F.)
| | - Angelina V. Miroshnikova
- School of Non-Ferrous Metals and Materials Science, Siberian Federal University, pr. Svobodny 79, 660041 Krasnoyarsk, Russia; (V.S.B.); (A.M.S.); (A.S.K.); (A.V.M.); (D.V.Z.); (V.A.I.); (A.A.S.); (E.D.S.)
- Krasnoyarsk Science Center, Institute of Chemistry and Chemical Technology, Siberian Branch, Russian Academy of Sciences, Akademgorodok 50/24, 660036 Krasnoyarsk, Russia; (I.G.S.); (A.I.C.); (O.Y.F.)
| | - Dmitriy V. Zimonin
- School of Non-Ferrous Metals and Materials Science, Siberian Federal University, pr. Svobodny 79, 660041 Krasnoyarsk, Russia; (V.S.B.); (A.M.S.); (A.S.K.); (A.V.M.); (D.V.Z.); (V.A.I.); (A.A.S.); (E.D.S.)
- Krasnoyarsk Science Center, Institute of Chemistry and Chemical Technology, Siberian Branch, Russian Academy of Sciences, Akademgorodok 50/24, 660036 Krasnoyarsk, Russia; (I.G.S.); (A.I.C.); (O.Y.F.)
| | - Vladislav A. Ionin
- School of Non-Ferrous Metals and Materials Science, Siberian Federal University, pr. Svobodny 79, 660041 Krasnoyarsk, Russia; (V.S.B.); (A.M.S.); (A.S.K.); (A.V.M.); (D.V.Z.); (V.A.I.); (A.A.S.); (E.D.S.)
- Krasnoyarsk Science Center, Institute of Chemistry and Chemical Technology, Siberian Branch, Russian Academy of Sciences, Akademgorodok 50/24, 660036 Krasnoyarsk, Russia; (I.G.S.); (A.I.C.); (O.Y.F.)
| | - Anastasia A. Seliverstova
- School of Non-Ferrous Metals and Materials Science, Siberian Federal University, pr. Svobodny 79, 660041 Krasnoyarsk, Russia; (V.S.B.); (A.M.S.); (A.S.K.); (A.V.M.); (D.V.Z.); (V.A.I.); (A.A.S.); (E.D.S.)
| | - Ekaterina D. Samoylova
- School of Non-Ferrous Metals and Materials Science, Siberian Federal University, pr. Svobodny 79, 660041 Krasnoyarsk, Russia; (V.S.B.); (A.M.S.); (A.S.K.); (A.V.M.); (D.V.Z.); (V.A.I.); (A.A.S.); (E.D.S.)
| | - Noureddine Issaoui
- Laboratory of Quantum and Statistical Physics (LR18ES18), Faculty of Sciences, University of Monastir, Monastir 5079, Tunisia;
| |
Collapse
|
10
|
Kynkäänniemi E, Lahtinen MH, Jian C, Salonen A, Hatanpää T, Mikkonen KS, Pajari AM. Gut microbiota can utilize prebiotic birch glucuronoxylan in production of short-chain fatty acids in rats. Food Funct 2022; 13:3746-3759. [DOI: 10.1039/d1fo03922a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Birch-derived polyphenol and fiber (glucuronoxylan, GX)-rich extract and highly purified GX-rich extract support the growth of beneficial gut bacteria, suppress the harmful ones, and increase the production of total short-chain fatty acids (SCFA).
Collapse
Affiliation(s)
- Emma Kynkäänniemi
- Department of Food and Nutrition, University of Helsinki, 00014 Helsinki, Finland
| | - Maarit H. Lahtinen
- Department of Food and Nutrition, University of Helsinki, 00014 Helsinki, Finland
| | - Ching Jian
- Human Microbiome Research Program, Faculty of Medicine, University of Helsinki, 00014 Helsinki, Finland
| | - Anne Salonen
- Human Microbiome Research Program, Faculty of Medicine, University of Helsinki, 00014 Helsinki, Finland
| | - Timo Hatanpää
- Department of Chemistry, University of Helsinki, 00014 Helsinki, Finland
| | - Kirsi S. Mikkonen
- Department of Food and Nutrition, University of Helsinki, 00014 Helsinki, Finland
- Helsinki Institute of Sustainability Science (HELSUS), University of Helsinki, P.O. Box 65, 00014, Finland
| | - Anne-Maria Pajari
- Department of Food and Nutrition, University of Helsinki, 00014 Helsinki, Finland
| |
Collapse
|
11
|
Glucuronosylated and linear xylooligosaccharides from Quinoa stalks xylan as potential prebiotic source for growth of Bifidobacterium adolescentis and Weissella cibaria. Lebensm Wiss Technol 2021. [DOI: 10.1016/j.lwt.2021.112348] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
12
|
Qaseem MF, Shaheen H, Wu AM. Cell wall hemicellulose for sustainable industrial utilization. RENEWABLE AND SUSTAINABLE ENERGY REVIEWS 2021; 144:110996. [DOI: 10.1016/j.rser.2021.110996] [Citation(s) in RCA: 54] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2025]
|
13
|
Naidjonoka P, Fornasier M, Pålsson D, Rudolph G, Al-Rudainy B, Murgia S, Nylander T. Bicontinuous cubic liquid crystalline phase nanoparticles stabilized by softwood hemicellulose. Colloids Surf B Biointerfaces 2021; 203:111753. [PMID: 33845421 DOI: 10.1016/j.colsurfb.2021.111753] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Revised: 03/04/2021] [Accepted: 04/03/2021] [Indexed: 10/21/2022]
Abstract
The colloidal stability of lipid based cubosomes, aqueous dispersion of inverse bicontinuous cubic phase, can be significantly increased by a stabilizer. The most commonly used stabilizers are non-ionic tri-block copolymers, poloxamers, which adsorb at the lipid-water interface and hence sterically stabilize the dispersion. One of the challenges with these synthetic polymers is the effect on the internal structure of the cubosomes and the potential toxicity when these nanoparticles are applied as nanomedicine platforms. The natural polysaccharide, softwood hemicellulose, has been proved to be an excellent stabilizer for oil-in-water emulsions, partially due to the presence of hydrophobic lignin in the extract which to some extent is associated to hemicellulose. Herein, we reported for the first time cubosomes stabilized by two types of softwood hemicelluloses, where one is extracted through thermomechanical pulping (TMP, low lignin content) and the other obtained from sodium-based sulfite liquor (SSL, high lignin content). The effect of the two hemicellulose samples on the colloidal stability and structure of monoolein-based cubosomes have been investigated via DLS, SAXS, AFM and cryo-TEM. The data obtained suggest that both types of the hemicelluloses stabilize monoolein (GMO) based cubosomes in water without significantly affecting their size, morphology and inner structure. SSL-extracted hemicellulose yields the most stable cubosomes, likely due to the higher content of lignin in comparison to TMP-stabilized ones. In addition, the stability of these particles was tested under physiological conditions relevant to possible application as drug carriers.
Collapse
Affiliation(s)
- Polina Naidjonoka
- Division of Physical Chemistry, Department of Chemistry, Lund University, P.O. Box 124, Lund, SE-221 00, Sweden.
| | - Marco Fornasier
- Division of Physical Chemistry, Department of Chemistry, Lund University, P.O. Box 124, Lund, SE-221 00, Sweden; Department of Chemical and Geological Sciences, University of Cagliari, s.s 554 bivio Sestu, Monserrato, I-09042, Italy.
| | - David Pålsson
- Division of Physical Chemistry, Department of Chemistry, Lund University, P.O. Box 124, Lund, SE-221 00, Sweden
| | - Gregor Rudolph
- Department of Chemical Engineering, Lund University, SE-221 00, Lund, Sweden
| | - Basel Al-Rudainy
- Department of Chemical Engineering, Lund University, SE-221 00, Lund, Sweden
| | - Sergio Murgia
- Department of Life and Environmental Sciences, University of Cagliari, via Ospedale 72, Cagliari, I-09124, Italy
| | - Tommy Nylander
- Division of Physical Chemistry, Department of Chemistry, Lund University, P.O. Box 124, Lund, SE-221 00, Sweden; NanoLund, Lund University, Lund, Sweden; Lund Institute of Advanced Neutron and X-ray Science LINXS, Lund, Sweden
| |
Collapse
|
14
|
Spruce Galactoglucomannan-Stabilized Emulsions Enhance Bioaccessibility of Bioactive Compounds. Foods 2020; 9:foods9050672. [PMID: 32456198 PMCID: PMC7278669 DOI: 10.3390/foods9050672] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Revised: 05/19/2020] [Accepted: 05/20/2020] [Indexed: 11/24/2022] Open
Abstract
The increasing public awareness of health and sustainability has prompted the development of functional foods rich in health-promoting ingredients. Processing technologies and sustainable multifunctional ingredients are needed for structuring these formulations. Spruce galactoglucomannan (GGM), the main hemicelluloses in softwood cell walls, are an abundantly available, emerging sustainable food hydrocolloid that have the ability to efficiently emulsify and stabilize oil-in-water emulsions. In this study, we illustrate how this lignocellulosic stabilizer affects the digestion of polyunsaturated fatty acids (PUFAs) in vitro. A 100% decrease in the initial TAG content was observed during the in vitro digestion, suggesting that complete hydrolysis of the TAGs was achieved by the digestive enzymes. Besides, no release of mono-, di-, and oligosaccharides or phenolic compounds from GGM was detected. Our results demonstrate that the GGM-stabilized emulsion could potentially deliver lipophilic bioactive ingredients and enhance their bioaccessibility. In addition, this bio-stabilizer itself would remain stable in the upper gastrointestinal track and serve as a prebiotic for gut microbiota. We anticipate GGM to complement or even replace many of the conventional carriers of bioactive components in future health care products and functional foods.
Collapse
|