1
|
Lima ADSP, Cahú TB, Dantas DMM, Veras BO, Oliveira CYB, Souza RS, Moraes LBS, Silva FCO, Araújo MIF, Gálvez AO, Souza RB. Accessing the biotechnological potential of a novel isolated microalga from a semi-arid region of Brazil. FOOD SCI TECHNOL INT 2025; 31:128-141. [PMID: 37408365 DOI: 10.1177/10820132231186171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/07/2023]
Abstract
The use of microalgae as a source of food and pharmaceutical ingredients has garnered growing interest in recent years. Despite the rapid growth of the nutraceutical market, knowledge about the potential of bioactive molecules from microalgae remains insufficient. The present study aimed to investigate the biotechnological potential of the green microalga Desmodesmus armatus isolated from a semi-arid region of Brazil. The algal biomass was characterized in terms of gross biochemical composition, exopolysaccharide content, enzymatic inhibition capacity, and antioxidant, antibacterial, and hemolytic activities from solvents of different polarities (water, ethanol, acetone, and hexane). D armatus biomass had 40% of crude protein content, 25.94% of lipids, and 25.03% of carbohydrates. The prebiotic potential of exopolysaccharides from D armatus was demonstrated, which stimulated the growth of Lacticaseibacillus rhamnosus and Lactiplantibacillus plantarum bacteria strains. Moreover, the enzyme inhibition capacity for the proteases chymotrypsin (34.78%-45.8%) and pepsin (16.64%-27.27%), in addition to α-amylase (24.79%) and lipase (31.05%) was confirmed. The antioxidant potential varied between the different extracts, with 2,2-diphenyl-1-picrylhydrazyl sequestration values varying between 17.51% and 63.12%, and those of the 2,2'-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid) method between 6.82% and 22.89%. In the antibacterial activity test, only the ethanolic extract showed inhibition against Listeria sp. (at minimum inhibitory concentration [MIC] = 256 µg mL-1). This fraction also presented the highest significant levels of hemolysis (31.88%-52.45%). In summary, the data presented in the study suggest the presence of biocompounds with biotechnological and nutraceutical potential in the D armatus biomass. Future studies may evaluate the inclusion of this biomass in foods in order to increase their biological value.
Collapse
Affiliation(s)
- Alysson de Sá P Lima
- Departamento de Bioquímica, Universidade Federal de Pernambuco, Cidade Universitária, Recife, PE, Brazil
| | - Thiago B Cahú
- Departamento de Bioquímica, Universidade Federal de Pernambuco, Cidade Universitária, Recife, PE, Brazil
| | - Danielli M M Dantas
- Departamento de Pesca e Aquicultura, Universidade Federal Rural de Pernambuco, Recife, PE, Brazil
| | - Bruno O Veras
- Departamento de Bioquímica, Universidade Federal de Pernambuco, Cidade Universitária, Recife, PE, Brazil
| | - Carlos Y B Oliveira
- Departamento de Pesca e Aquicultura, Universidade Federal Rural de Pernambuco, Recife, PE, Brazil
| | - Rayanna S Souza
- Departamento de Pesca e Aquicultura, Universidade Federal Rural de Pernambuco, Recife, PE, Brazil
| | - Laenne B S Moraes
- Departamento de Pesca e Aquicultura, Universidade Federal Rural de Pernambuco, Recife, PE, Brazil
| | - Francisca C O Silva
- Departamento de Bioquímica, Universidade Federal de Pernambuco, Cidade Universitária, Recife, PE, Brazil
| | - Maria I F Araújo
- Departamento de Bioquímica, Universidade Federal de Pernambuco, Cidade Universitária, Recife, PE, Brazil
| | - Alfredo O Gálvez
- Departamento de Pesca e Aquicultura, Universidade Federal Rural de Pernambuco, Recife, PE, Brazil
| | - Ranilson B Souza
- Departamento de Bioquímica, Universidade Federal de Pernambuco, Cidade Universitária, Recife, PE, Brazil
| |
Collapse
|
2
|
Chitolina Schetinger L, de Jesus LSB, Bottari NB, Viana AR, Nauderer JN, Silveira MV, Castro M, Nass P, Caetano PA, Morsch V, Jacob-Lopes E, Queiroz Zepka L, Chitolina Schetinger MR. Microalgae-Derived Carotenoid Extract and Biomass Reduce Viability, Induce Oxidative Stress, and Modulate the Purinergic System in Two Melanoma Cell Lines. Life (Basel) 2025; 15:199. [PMID: 40003608 PMCID: PMC11856458 DOI: 10.3390/life15020199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2024] [Revised: 01/24/2025] [Accepted: 01/27/2025] [Indexed: 02/27/2025] Open
Abstract
Cutaneous melanoma (CM) is an aggressive and metastatic tumor, resulting in high mortality rates. Despite significant advances in therapeutics, the available treatments still require improvements. Thus, purinergic signaling emerged as a potential pathway to cancer therapy due to its involvement in cell communication, proliferation, differentiation, and apoptosis. In addition, due to safety and acceptable clinical tolerability, carotenoids from microalgae have been investigated as adjuvants in anti-melanoma therapy. Then, this work aimed to investigate the in vitro anti-melanogenic effect of carotenoid extract (CA) and total biomass (BM) of the Scenedesmus obliquus microalgae on two cutaneous melanoma cell lines (A375 and B16F10). Cells were cultivated under ideal conditions and treated with 10, 25, 50, and 100 μM of CA or BM for 24 h. The effects of the compounds on viability, oxidant status, and purinergic signaling were verified. The IC50 cell viability results showed that CA and BM decreased B16F10 viability at 24.29 μM and 74.85 μM, respectively and decreased A375 viability at 73.93 μM and 127.80 μM, respectively. Carotenoid treatment for 24 h in B16F10 and A375 cells increased the release of reactive oxygen species compared to the control. In addition, CA and BM isolated or combined with cisplatin chemotherapy (CIS) modulated the purinergic system in B16F10 and A375 cell lines through P2X7, A2AR, CD39, and 5'-nucleotidase. They led to cell apoptosis and immunoregulation by activating A2A receptors and CD73 inhibition. The results disclose that CA and BM from Scenedesmus obliquus exhibit an anti-melanogenic effect, inhibiting melanoma cell growth.
Collapse
Affiliation(s)
- Luisa Chitolina Schetinger
- Department of Food Science and Technology, Federal University of Santa Maria (UFSM), Santa Maria 97105-900, Brazil; (L.C.S.); (P.N.); (P.A.C.); (E.J.-L.)
| | - Loren S. B. de Jesus
- Department of Biochemistry and Molecular Biology, Federal University of Santa Maria (UFSM), Santa Maria 97105-900, Brazil; (L.S.B.d.J.); (N.B.B.); (A.R.V.); (J.N.N.); (M.V.S.); (M.C.); (V.M.)
| | - Nathieli B. Bottari
- Department of Biochemistry and Molecular Biology, Federal University of Santa Maria (UFSM), Santa Maria 97105-900, Brazil; (L.S.B.d.J.); (N.B.B.); (A.R.V.); (J.N.N.); (M.V.S.); (M.C.); (V.M.)
- Department of Microbiology and Parasitology, Biology Institute, Federal University of Pelotas (UFPEL), Pelotas 96010-610, Brazil
| | - Altevir R. Viana
- Department of Biochemistry and Molecular Biology, Federal University of Santa Maria (UFSM), Santa Maria 97105-900, Brazil; (L.S.B.d.J.); (N.B.B.); (A.R.V.); (J.N.N.); (M.V.S.); (M.C.); (V.M.)
| | - Jelson N. Nauderer
- Department of Biochemistry and Molecular Biology, Federal University of Santa Maria (UFSM), Santa Maria 97105-900, Brazil; (L.S.B.d.J.); (N.B.B.); (A.R.V.); (J.N.N.); (M.V.S.); (M.C.); (V.M.)
| | - Marcylene V. Silveira
- Department of Biochemistry and Molecular Biology, Federal University of Santa Maria (UFSM), Santa Maria 97105-900, Brazil; (L.S.B.d.J.); (N.B.B.); (A.R.V.); (J.N.N.); (M.V.S.); (M.C.); (V.M.)
| | - Milagros Castro
- Department of Biochemistry and Molecular Biology, Federal University of Santa Maria (UFSM), Santa Maria 97105-900, Brazil; (L.S.B.d.J.); (N.B.B.); (A.R.V.); (J.N.N.); (M.V.S.); (M.C.); (V.M.)
| | - Pricila Nass
- Department of Food Science and Technology, Federal University of Santa Maria (UFSM), Santa Maria 97105-900, Brazil; (L.C.S.); (P.N.); (P.A.C.); (E.J.-L.)
| | - Patrícia Acosta Caetano
- Department of Food Science and Technology, Federal University of Santa Maria (UFSM), Santa Maria 97105-900, Brazil; (L.C.S.); (P.N.); (P.A.C.); (E.J.-L.)
| | - Vera Morsch
- Department of Biochemistry and Molecular Biology, Federal University of Santa Maria (UFSM), Santa Maria 97105-900, Brazil; (L.S.B.d.J.); (N.B.B.); (A.R.V.); (J.N.N.); (M.V.S.); (M.C.); (V.M.)
| | - Eduardo Jacob-Lopes
- Department of Food Science and Technology, Federal University of Santa Maria (UFSM), Santa Maria 97105-900, Brazil; (L.C.S.); (P.N.); (P.A.C.); (E.J.-L.)
| | - Leila Queiroz Zepka
- Department of Food Science and Technology, Federal University of Santa Maria (UFSM), Santa Maria 97105-900, Brazil; (L.C.S.); (P.N.); (P.A.C.); (E.J.-L.)
| | - Maria Rosa Chitolina Schetinger
- Department of Biochemistry and Molecular Biology, Federal University of Santa Maria (UFSM), Santa Maria 97105-900, Brazil; (L.S.B.d.J.); (N.B.B.); (A.R.V.); (J.N.N.); (M.V.S.); (M.C.); (V.M.)
| |
Collapse
|
3
|
Miranda Júnior JR, da Silva CAS, de Moura Guimarães L, Rocha DN, Alhaji AM, de Oliveira EB, Martins MA, Dos Reis Coimbra JS. Cell rupture of Tetradesmus obliquus using high-pressure homogenization at the pilot scale and recovery of pigments and lipids. Food Res Int 2024; 196:115113. [PMID: 39614578 DOI: 10.1016/j.foodres.2024.115113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 08/21/2024] [Accepted: 09/19/2024] [Indexed: 12/01/2024]
Abstract
Microalgae are promising sources of intracellular metabolites such as proteins, polysaccharides, pigments, and lipids. Thus, this study applied high-pressure homogenization (HPH) techniques on a pilot scale to disrupt the cells of Tetradesmus obliquus. The effects of pressure (P; 150, 250, and 350 bar), suspension concentration (Cs; 1.0, 1.5, and 2.0 % w/v), and number of cycles (Nc; 5, 15, and 25) were evaluated in HPH via a Box-Behnken experimental design. Response surface methodology was applied to optimize the recovery rate (dTr) of pigments and lipids. The specific energy consumption (SEC) and color change gradient (ΔE) of the biomass during HPH were also assessed. The optimal HPH conditions for pigment extraction with 1.5 % Cs (w/v) were as follows: P = 312 bar and Nc = 22 for chlorophyll-a (0.83 g/100 g; dTr = 69 %; SEC = 47.50 kJ/g dry matter); P = 345 bar and Nc = 24 for chlorophyll-b (0.63 g/100 g; dTr = 80 %; SEC = 57.30 kJ/g dry matter); P = 345 bar and Nc = 24 for total carotenoids (0.53 g/100 g; dTr = 79 %; SEC = 54.12 kJ/g dry matter); and P = 350 bar and Nc = 25 for β-carotene (299 µg/g; dTr = 58 %; SEC = 62.08 kJ/g dry matter). The optimal HPH conditions for lipid extraction were P = 350 bar and Nc = 23, with a lipid recovery rate of ≥28 %. Cell disruption during HPH caused a change in the color of the biomass (ΔE) due to the release of intracellular biocompounds. Increasing P and Nc led to higher SECs, ΔE gradients, and pigment and lipid contents. Thus, the levels of recovered pigments and lipids can be indicators of cell disruption in T. obliquus.
Collapse
Affiliation(s)
- José Roberto Miranda Júnior
- Universidade Federal de Viçosa, Department of Food Technology, Campus Universitário S/N, Centro, 36570-900 Viçosa, MG, Brazil.
| | - César Augusto Sodré da Silva
- Universidade Federal de Viçosa, Department of Food Technology, Campus Universitário S/N, Centro, 36570-900 Viçosa, MG, Brazil
| | - Luciano de Moura Guimarães
- Universidade Federal de Viçosa, Department of Physics, Campus Universitário S/N, Centro, 36570-900 Viçosa, MG, Brazil
| | - Dilson Novais Rocha
- Universidade Federal de Viçosa, Department of Agricultural Engineering, Campus Universitário S/N, Centro, 36570-900 Viçosa, MG, Brazil
| | - Adamu Muhammad Alhaji
- Universidade Federal de Viçosa, Department of Food Technology, Campus Universitário S/N, Centro, 36570-900 Viçosa, MG, Brazil; Kano University of Science and Technology, Institute of Food Science and Technology, Wudil, Kano, Nigeria
| | - Eduardo Basílio de Oliveira
- Universidade Federal de Viçosa, Department of Food Technology, Campus Universitário S/N, Centro, 36570-900 Viçosa, MG, Brazil
| | - Marcio Arêdes Martins
- Universidade Federal de Viçosa, Department of Agricultural Engineering, Campus Universitário S/N, Centro, 36570-900 Viçosa, MG, Brazil
| | - Jane Sélia Dos Reis Coimbra
- Universidade Federal de Viçosa, Department of Food Technology, Campus Universitário S/N, Centro, 36570-900 Viçosa, MG, Brazil.
| |
Collapse
|
4
|
Lima VS, de Oliveira DRB, da Silva CAS, Santana RDC, Soares NDFF, de Oliveira EB, Martins MA, Coimbra JSDR. Stabilization of oil-water emulsions with protein concentrates from the microalga Tetradesmus obliquus. JOURNAL OF FOOD SCIENCE AND TECHNOLOGY 2023; 60:797-808. [PMID: 36712212 PMCID: PMC9873893 DOI: 10.1007/s13197-023-05666-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Revised: 11/07/2022] [Accepted: 01/02/2023] [Indexed: 01/15/2023]
Abstract
The present work used water-soluble protein concentrates from the microalga Tetradesmus obliquus to stabilize sunflower oil emulsions. Microalgal cells were disrupted by sonication, and proteins were separated from the biomass using two methods, isoelectric and solvent precipitations. The protein extracts were concentrated by lyophilization, and the concentrates were used to produce emulsions with three amounts of Tetradesmus obliquus protein concentrate (TobPC) (0.1, 0.5, and 1.0% w/v). Emulsions were homogenized through sonication and characterized for creaming index, optical microscopy, size distribution, ζ-potential, and rheology. Isoelectric precipitation resulted in TobPC with a high protein content (51.46 ± 2.37%) and a better dispersibility profile. Emulsion stability was higher for both the isoelectric TobPC and control systems than for the TobPC solvent. Solvent TobPC does not efficiently stabilize emulsions at low protein concentrations that showed microscopically larger oil droplets and flocculation spots. A high phase separation velocity was observed for solvent TobPC, probably due to the higher hydrodynamic droplet diameters. The increase in TobPC content in the emulsions resulted in more stable emulsions for all samples. Therefore, Tetradesmus obliquus protein concentrates are a potential emulsifying agent.
Collapse
Affiliation(s)
- Viviane Sobreira Lima
- Departamento de Tecnologia de Alimentos (DTA), Universidade Federal de Viçosa (UFV), Campus Universitário S/N, Viçosa, MG CEP 36570-900 Brazil
| | - Davi Rocha Bernardes de Oliveira
- Departamento de Tecnologia de Alimentos (DTA), Universidade Federal de Viçosa (UFV), Campus Universitário S/N, Viçosa, MG CEP 36570-900 Brazil
| | - César Augusto Sodré da Silva
- Departamento de Tecnologia de Alimentos (DTA), Universidade Federal de Viçosa (UFV), Campus Universitário S/N, Viçosa, MG CEP 36570-900 Brazil
| | - Rejane de Castro Santana
- Departamento de Química (DEQ), Universidade Federal de Viçosa (UFV), Campus Universitário S/N, Viçosa, MG CEP 36570-900 Brazil
| | - Nilda de Fátima Ferreira Soares
- Departamento de Tecnologia de Alimentos (DTA), Universidade Federal de Viçosa (UFV), Campus Universitário S/N, Viçosa, MG CEP 36570-900 Brazil
| | - Eduardo Basílio de Oliveira
- Departamento de Tecnologia de Alimentos (DTA), Universidade Federal de Viçosa (UFV), Campus Universitário S/N, Viçosa, MG CEP 36570-900 Brazil
| | - Marcio Aredes Martins
- Departamento de Engenharia Agrícola (DEA), Universidade Federal de Viçosa (UFV), Campus Universitário S/N, Viçosa, MG CEP 36570-900 Brazil
| | - Jane Sélia dos Reis Coimbra
- Departamento de Tecnologia de Alimentos (DTA), Universidade Federal de Viçosa (UFV), Campus Universitário S/N, Viçosa, MG CEP 36570-900 Brazil
| |
Collapse
|
5
|
Kaur M, Bhatia S, Gupta U, Decker E, Tak Y, Bali M, Gupta VK, Dar RA, Bala S. Microalgal bioactive metabolites as promising implements in nutraceuticals and pharmaceuticals: inspiring therapy for health benefits. PHYTOCHEMISTRY REVIEWS : PROCEEDINGS OF THE PHYTOCHEMICAL SOCIETY OF EUROPE 2023; 22:1-31. [PMID: 36686403 PMCID: PMC9840174 DOI: 10.1007/s11101-022-09848-7] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Accepted: 11/11/2022] [Indexed: 06/17/2023]
Abstract
The rapid increase in global population and shrinkage of agricultural land necessitates the use of cost-effective renewable sources as alternative to excessive resource-demanding agricultural crops. Microalgae seem to be a potential substitute as it rapidly produces large biomass that can serve as a good source of various functional ingredients that are not produced/synthesized inside the human body and high-value nonessential bioactive compounds. Microalgae-derived bioactive metabolites possess various bioactivities including antioxidant, anti-inflammatory, antimicrobial, anti-carcinogenic, anti-hypertensive, anti-lipidemic, and anti-diabetic activities, thereof rapidly elevating their demand as interesting option in pharmaceuticals, nutraceuticals and functional foods industries for developing new products. However, their utilization in these sectors has been limited. This demands more research to explore the functionality of microalgae derived functional ingredients. Therefore, in this review, we intended to furnish up-to-date knowledge on prospects of bioactive metabolites from microalgae, their bioactivities related to health, the process of microalgae cultivation and harvesting, extraction and purification of bioactive metabolites, role as dietary supplements or functional food, their commercial applications in nutritional and pharmaceutical industries and the challenges in this area of research. Graphical abstract
Collapse
Affiliation(s)
- Manpreet Kaur
- Department of Biochemistry, Punjab Agricultural University, Ludhiana, Punjab 141004 India
| | - Surekha Bhatia
- Department of Processing and Food Engineering, Punjab Agricultural University, Ludhiana, Punjab 141004 India
| | - Urmila Gupta
- Department of Renewable Energy Engineering, Punjab Agricultural University, Ludhiana, Punjab 141004 India
| | - Eric Decker
- Department of Food Science, University of Massachusetts, Amherst, MA USA
| | - Yamini Tak
- Agricultural Research Station, Agricultural University, Ummedganj, Kota India
| | - Manoj Bali
- Research & Development, Chemical Resources (CHERESO), Panchkula, Haryana India
| | - Vijai Kumar Gupta
- Center for Safe and Improved Food & Biorefining and Advanced Materials Research Center, SRUC Barony Campus, Dumfries, Scotland, UK
| | - Rouf Ahmad Dar
- Sam Hiiginbottom University of Agriculture, Technology and Sciences, Prayagraj, Uttar Pradesh 211007 India
| | - Saroj Bala
- Department of Microbiology, Punjab Agricultural University, Ludhiana, Punjab 141004 India
| |
Collapse
|
6
|
Nutritional Composition and Untargeted Metabolomics Reveal the Potential of Tetradesmus obliquus, Chlorella vulgaris and Nannochloropsis oceanica as Valuable Nutrient Sources for Dogs. Animals (Basel) 2022; 12:ani12192643. [PMID: 36230383 PMCID: PMC9558554 DOI: 10.3390/ani12192643] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Revised: 09/26/2022] [Accepted: 09/29/2022] [Indexed: 11/17/2022] Open
Abstract
The growing pet population is questioning the sustainability of the pet food system. Although microalgae may constitute a more sustainable food resource, the assessment of their potential for canine diets is almost non-existent. The present study aimed to evaluate the potential of three microalgae species (Tetradesmus obliquus, Chlorella vulgaris and Nannochloropsis oceanica) grown locally in industrial photobioreactors as alternative food resources for dogs. A detailed characterization of their nutritional composition and metabolomic profile was carried out and related to the nutritional requirements of dogs. Overall, the essential amino acid content exceeded the amounts required for dogs at all life stages, except methionine and cysteine. The three microalgae were deficient in linoleic acid, N. oceanica presented a linolenic acid content below requirements and T. obliquus and C. vulgaris were deficient in arachidonic and eicosapentaenoic acids. The fiber was mainly composed of insoluble dietary fiber. The mineral profile varied greatly with the microalgae species, demonstrating their different potential for dog feeding. Untargeted metabolomics highlighted glycolipids, glycerolipids and phospholipids as the most discriminating compounds between microalgae species. Overall, the results support the potential of T. obliquus, C. vulgaris and N. oceanica as valuable macro- and micro-nutrients sources for dog feeding.
Collapse
|
7
|
A novel tubular photobioreactor immersed in open waters for passive temperature control and operated with the microalga Tetradesmus obliquus. ALGAL RES 2022. [DOI: 10.1016/j.algal.2022.102832] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
8
|
Enhancement of Metabolite Production in High-Altitude Microalgal Strains by Optimized C/N/P Ratio. APPLIED SCIENCES-BASEL 2022. [DOI: 10.3390/app12136779] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
This study evaluated the role of C/N/P in the increase in the synthesis of carbohydrates, proteins, and lipids in two high-mountain strains of algae (Chlorella sp. UFPS019 and Desmodesmus sp. UFPS021). Three carbon sources (sodium acetate, sodium carbonate, and sodium bicarbonate), and the sources of nitrogen (NaNO3) and phosphate (KH2PO4 and K2HPO4) were analyzed using a surface response (3 factors, 2 levels). In Chlorella sp. UFPS019, the optimal conditions to enhance the synthesis of carbohydrates were high sodium carbonate content (3.53 g/L), high KH2PO4 and K2HPO4 content (0.06 and 0.14 g/L, respectively), and medium-high NaNO3 (0.1875 g/L). In the case of lipids, a high concentration of sodium acetate (1.19 g/L) coupled with high KH2PO4 and K2HPO4 content (0.056 and 0.131 g/L, respectively) and a low concentration of NaNO3 (0.075 g/L) drastically induced the synthesis of lipids. In the case of Desmodesmus sp. UFPS021, the protein content was increased using high sodium acetate (2 g/L), high KH2PO4 and K2HPO4 content (0.056 and 0.131 g/L, respectively), and high NaNO3 concentration (0.25 g/L). These results demonstrate that the correct adjustment of the C/N/P ratio can enhance the capacity of high-mountain strains of algae to produce high concentrations of carbohydrates, proteins, and lipids.
Collapse
|
9
|
do Carmo Cesário C, Soares J, Cossolin JFS, Almeida AVM, Bermudez Sierra JJ, de Oliveira Leite M, Nunes MC, Serrão JE, Martins MA, Dos Reis Coimbra JS. Biochemical and morphological characterization of freshwater microalga Tetradesmus obliquus (Chlorophyta: Chlorophyceae). PROTOPLASMA 2022; 259:937-948. [PMID: 34643788 DOI: 10.1007/s00709-021-01712-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Accepted: 09/29/2021] [Indexed: 06/13/2023]
Abstract
Tetradesmus is a microalgal genus with biotechnological potential due to its rapid production of biomass, which is plenty in proteins, carbohydrates, lipids, and bioactives. However, its morphology and physiology need to be determined to guide better research to optimize the species cultivation and biocompounds processing. Thus, this study describes the biochemistry and morphology of the strain Tetradesmus obliquus BR003, isolated from a sample of freshwater reservoirs in a Brazilian municipality. In the T. obliquus BR003 dry biomass, we identified 61.6% unsaturated fatty acids, and 3.4% saturated fatty acids. Regarding other compounds, 28.50 ± 1.47 g soluble proteins/100 g, 0.14 ± 0.009 g carotenoids/100 g, 0.76 ± 0.013 g chlorophyll a/100 g, and 0.42 ± 0.015 g chlorophyll b/100 g with a chlorophyll a/b ratio of 1.8 were detected. The main chemical elements found were S, Mg, and P. The cells of BR003 were elliptically curved at the ends and without appendages. Histochemical tests showed carbohydrates distributed in the cytoplasm and pyrenoids, some lipid droplets, and proteins. The cytoplasm is rich in vacuoles, rough endoplasmic reticulum, mitochondria, and chloroplasts. The nucleus has a predominance of decondensed chromatin, and the cell wall has three layers. Chloroplasts have many starch granules and may be associated with a spherical central pyrenoid. To the best of our knowledge, this was the first biochemical description combined with ultrastructural morphological characterization of the strain T. obliquus BR003, grown under standard conditions, to demonstrate specific characteristics of the species.
Collapse
Affiliation(s)
| | - Jimmy Soares
- Department of Agricultural Engineering, Universidade Federal de Viçosa, Viçosa, Brazil
| | | | | | | | | | - Maria Clara Nunes
- Department of Veterinary Medicine, Universidade Federal de Viçosa, Viçosa, Brazil
| | - José Eduardo Serrão
- Department of General Biology, Universidade Federal de Viçosa, Viçosa, Brazil.
| | - Marcio Arêdes Martins
- Department of Agricultural Engineering, Universidade Federal de Viçosa, Viçosa, Brazil
| | | |
Collapse
|
10
|
Correa KDP, Silva METD, Oliveira DRBD, Oliveira AFD, Santos IJB, Oliveira EBD, Coimbra JSDR. Influence of Homogenization in the Physicochemical Quality of Human Milk and Fat Retention in Gastric Tubes. J Hum Lact 2022; 38:309-322. [PMID: 34308701 DOI: 10.1177/08903344211031456] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
BACKGROUND The retention of human milk nutrients in gastric tubes used to feed premature infants is a challenge to be overcome. RESEARCH AIMS To evaluate (1) the performance of six homogenizers (mixing processor, piston valve, ultrasonic bath, ultraturrax, stirring mixer, and ultrasound probe) for the fat retention reduction in gastric tubes; (2) the influence of the best homogenization conditions on the fatty acid and protein profiles of human milk; and (3) the cost/benefit ratio for the inclusion of homogenization as a new step in human milk processing. METHODS The influence of different levels and times of homogenization on reducing fat retention of human milk in probes was evaluated in this comparative prospective cross-sectional study. After homogenization, human milk flowed through a gavage and infusion pump apparatus used for feeding. Fat content was quantified before and after feeding. The techniques that reduced fat globule sizes and/or promoted a lower percentage of fat holding were evaluated for efficiency, variations in the fatty acid and protein profiles, and energy density and operating costs. RESULTS Homogenization led to a reduction in fat retention in feeding probes. The mixer processor and the ultrasound probe reduced fat retention by 99.23% (SD = 0.07) and 99.95% (SD = 0.02), respectively, and did not negatively influence fatty acid and protein profiles. The mixer processor demonstrated low energy density and low cost for human milk processing. CONCLUSION Homogenization promoted reduced fat retention in the feed probe and could help maintain fat nutrients of human milk during enteral feeding.
Collapse
Affiliation(s)
- Kely de Paula Correa
- Departamento de Tecnologia de Alimentos, Universidade Federal de Viçosa (UFV), Viçosa, MG, Brasil
| | | | | | | | - Igor Jose Boggione Santos
- Departamento de Química, Biotecnologia e Engenharia de Bioprocessos, Universidade Federal de São João del-Rei (UFSJ) - Campus Alto Paraopeba, Ouro Branco, MG, Brasil
| | | | | |
Collapse
|
11
|
Correa KDP, Silva MET, Ribeiro OS, Matta SLP, Peluzio MDCG, Oliveira EB, Coimbra JSDR. Homogenised and pasteurised human milk: lipid profile and effect as a supplement in the enteral diet of Wistar rats. Br J Nutr 2022; 127:711-721. [PMID: 33902762 DOI: 10.1017/s0007114521001380] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
The retention of human milk (HM) fat in nasogastric probes of infusion pumps can be observed during the feed of infants unable to suck at the mother's breast. The lack of homogenisation of HM could contribute to the fat holding. Therefore, the present study evaluated (i) the influence of homogenisation on milk fat retaining in infant feeding probes and (ii) the in vivo effect of the homogenisation on lipid absorption by Wistar rats. The animals were fed with HM treated following two processing conditions, that is, pasteurised and homogenised-pasteurised. The animals were randomly subdivided into four experimental groups: water-fed (control), pasteurised milk, homogenised-pasteurised milk and pasteurised-skimmed milk. The results of food consumption, mass body gain, corporate metrics and plasma blood levels of total cholesterol did not show any difference (P < 0·05) among the three types of HM used in the experiments. The liver, intestine and intra-abdominal adipose tissue of the four groups of animals presented normal and healthy histology. The composition of fatty acids in the brain tissue of animals fed with homogenised HM increased when compared with the groups fed with non-homogenised HM. These values were 11·08 % higher for arachidonic acids, 6·59 % for DAH and 47·92 % for nervous acids. The ingestion of homogenised HM promoted higher absorption of milk nutrients. Therefore, the addition of the homogenisation stage in HM processing could be an alternative to reduce fat retention in probes and to improve the lipids' absorption in the body.
Collapse
Affiliation(s)
- Kely de Paula Correa
- Departamento de Tecnologia de Alimentos, Universidade Federal de Viçosa (UFV), Av. P.H. Rolfs, s/n, 36570-900 Viçosa, MG, Brasil
| | - Monique E T Silva
- Departamento de Tecnologia de Alimentos, Universidade Federal de Viçosa (UFV), Av. P.H. Rolfs, s/n, 36570-900 Viçosa, MG, Brasil
| | - Otávio S Ribeiro
- Departamento de Tecnologia de Alimentos, Universidade Federal de Viçosa (UFV), Av. P.H. Rolfs, s/n, 36570-900 Viçosa, MG, Brasil
| | - Sérgio L P Matta
- Departamento de Biologia Vegetal, Universidade Federal de Viçosa (UFV), Av. P.H. Rolfs, s/n, 36570-900 Viçosa, MG, Brasil
| | - Maria do Carmo G Peluzio
- Departamento de Nutrição e Saúde, Universidade Federal de Viçosa (UFV), Av. P.H. Rolfs, s/n, 36570-900 Viçosa, MG, Brasil
| | - Eduardo B Oliveira
- Departamento de Tecnologia de Alimentos, Universidade Federal de Viçosa (UFV), Av. P.H. Rolfs, s/n, 36570-900 Viçosa, MG, Brasil
| | - Jane S Dos R Coimbra
- Departamento de Tecnologia de Alimentos, Universidade Federal de Viçosa (UFV), Av. P.H. Rolfs, s/n, 36570-900 Viçosa, MG, Brasil
| |
Collapse
|
12
|
Aeroterrestrial and Extremophilic Microalgae as Promising Sources for Lipids and Lipid Nanoparticles in Dermal Cosmetics. COSMETICS 2022. [DOI: 10.3390/cosmetics9010011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Microscopic prokaryotic and eukaryotic algae (microalgae), which can be effectively grown in mass cultures, are gaining increasing interest in cosmetics. Up to now, the main attention was on aquatic algae, while species from aeroterrestrial and extreme environments remained underestimated. In these habitats, algae accumulate high amounts of some chemical substances or develop specific compounds, which cause them to thrive in inimical conditions. Among such biologically active molecules is a large family of lipids, which are significant constituents in living organisms and valuable ingredients in cosmetic formulations. Therefore, natural sources of lipids are increasingly in demand in the modern cosmetic industry and its innovative technologies. Among novelties in skin care products is the use of lipid nanoparticles as carriers of dermatologically active ingredients, which enhance their penetration and release in the skin strata. This review is an attempt to comprehensively cover the available literature on the high-value lipids from microalgae, which inhabit aeroterrestrial and extreme habitats (AEM). Data on different compounds of 87 species, subspecies and varieties from 53 genera (represented by more than 141 strains) from five phyla are provided and, despite some gaps in the current knowledge, demonstrate the promising potential of AEM as sources of valuable lipids for novel skin care products.
Collapse
|
13
|
The Effect of Trophic Modes on Biomass and Lipid Production of Five Microalgal Strains. WATER 2022. [DOI: 10.3390/w14020240] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Five microalgae strains, namely Isochrysis galbana, Microchloropsis gaditana, Scenedesmus obliquus, Nannochloropsis oculata and Tetraselmis suecica, were selected as potential candidates for polyunsaturated fatty acids’ production, evaluating biomass productivity and their capacity to accumulate high lipid contents under different trophic modes. Microalgae strains were cultivated in the presence of 1% glucose using mixotrophic and heterotrophic conditions, while autotrophic cultures served as control experiments. The results demonstrate that S. obliquus performed the highest biomass productivity that reached 0.13 and 0.14 g L−1 d−1 under mixotrophic and heterotrophic conditions, respectively. I. galbana and S. obliquus utilized elevated contents of glucose in mixotrophy, removing 55.9% and 95.6% of the initial concentration of the carbohydrate, respectively, while glucose consumption by the aforementioned strains also remained high under heterotrophic cultivation. The production of lipids was maximal for I. galbana in mixotrophy and S. obliquus in heterotrophy, performing lipid productivities of 24.85 and 22.77 mg L−1 d−1, respectively. The most abundant saturated acid detected for all microalgae strains evaluated was palmitic acid (C16:0), while oleic and linolenic acids (C18:1n9c/C18:3n3) comprised the most abundant unsaturated fatty acids. I. galbana performed the highest linoleic acid (C18:2n6c) content under heterotrophic nutrition, which reached 87.9 mg g−1 of ash-free dry weight. Among the microalgae strains compared, the biomass and lipid production monitored for I. galbana and S. obliquus confirm that both strains could serve as efficient bioproducers for application in algal biorefineries.
Collapse
|
14
|
Duarte FLM, da Silva BP, Grancieri M, Sant'Ana CT, Toledo RCL, de São José VPB, Pacheco S, Duarte Martino HS, Ribeiro de Barros FA. Macauba ( Acrocomia aculeata) kernel has good protein quality and improves the lipid profile and short chain fatty acids content in Wistar rats. Food Funct 2022; 13:11342-11352. [DOI: 10.1039/d2fo02047e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Macauba kernel can be indicated as a complementary source for a healthy diet and as an ingredient in the elaboration of food products, and can contribute to the continued growth of the plant-based food market.
Collapse
Affiliation(s)
| | | | - Mariana Grancieri
- Department of Nutrition and Health, Federal University of Viçosa, Viçosa, MG, Brazil
| | - Cíntia Tomaz Sant'Ana
- Department of Food Technology, Federal University of Viçosa, Viçosa, MG, 36570-000, Brazil
| | | | | | - Sidney Pacheco
- Liquid Chromatography Laboratory, Embrapa Food Agroindustry, Rio de Janeiro, RJ, Brazil
| | | | | |
Collapse
|
15
|
Silva METD, Leal MA, Resende MDO, Martins MA, Coimbra JSDR. Scenedesmus obliquus protein concentrate: A sustainable alternative emulsifier for the food industry. ALGAL RES 2021. [DOI: 10.1016/j.algal.2021.102468] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
16
|
Olsen MFL, Pedersen JS, Thomsen ST, Martens HJ, Petersen A, Jensen PE. Outdoor cultivation of a novel isolate of the microalgae Scenedesmus sp. and the evaluation of its potential as a novel protein crop. PHYSIOLOGIA PLANTARUM 2021; 173:483-494. [PMID: 34427928 DOI: 10.1111/ppl.13532] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Accepted: 08/10/2021] [Indexed: 06/13/2023]
Abstract
A Danish strain of the green microalgae Scenedesmus sp. was isolated, identified and characterized with respect to productivity under outdoor cultivation conditions at northern latitudes. The algae were cultivated outdoors in Denmark in closed tubular photobioreactors using only sunlight, simple inorganic nutrients and under ambient temperatures. The biomass composition was evaluated in terms of protein content and quality. The average volumetric and areal biomass productivity obtained for the Scenedesmus sp. isolate during outdoor cultivation was 0.083 g dry matter L-1 and 6.40 g dm m-2 day-1 , respectively. Thus, productivities are comparable to data reported in the literature under similar conditions. A strain-specific nitrogen to protein conversion factor of 5.5 was determined for the Scenedesmus sp. strain enabling more accurate protein estimations from simple nitrogen determination methods like Kjeldahl analysis in the future. The protein content was determined to be 52.4% of dried biomass for this Scenedesmus strain. The sum of essential amino acids was 42% which is high compared to other microalgae. The results are compared and discussed in comparison to other microalgae and soybean as a common plant protein source.
Collapse
Affiliation(s)
| | | | - Sune Tjalfe Thomsen
- Department of Geosciences and Natural Resource Management, University of Copenhagen, Frederiksberg, Denmark
| | - Helle Jakobe Martens
- Department of Geosciences and Natural Resource Management, University of Copenhagen, Frederiksberg, Denmark
| | | | - Poul Erik Jensen
- Department of Food Science, University of Copenhagen, Frederiksberg, Denmark
| |
Collapse
|
17
|
Amorim ML, Soares J, Vieira BB, Leite MDO, Rocha DN, Aleixo PE, Falconí JHH, Xavier Júnior MDL, Albino LFT, Martins MA. Pilot-scale biorefining of Scenedesmus obliquus for the production of lipids and proteins. Sep Purif Technol 2021. [DOI: 10.1016/j.seppur.2021.118775] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
18
|
Barros de Medeiros VP, da Costa WKA, da Silva RT, Pimentel TC, Magnani M. Microalgae as source of functional ingredients in new-generation foods: challenges, technological effects, biological activity, and regulatory issues. Crit Rev Food Sci Nutr 2021; 62:4929-4950. [PMID: 33544001 DOI: 10.1080/10408398.2021.1879729] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Microalgae feasibility as food ingredients or source of nutrients and/or bioactive compounds and their health effects have been widely studied. This review aims to provide an overview of the use of microalgae biomass in food products, the technological effects of its incorporation, and their use as a source of health-promoting bioactive compounds. In addition, it presents the regulatory aspects of commercialization and consumption, and the main trends and market challenges Microalgae have stood out as sources of nutritional compounds (polysaccharides, proteins, lipids, vitamins, minerals, and dietary fiber) and biologically active compounds (asthaxanthin, β-carotene, omega-3 fatty acids). The consumption of microalgae biomass proved to have several health effects, such as hypoglycemic activity, gastroprotective and anti-steatotic properties, improvements in neurobehavioral and cognitive dysfunction, and hypolipidemic properties. Its addition to food products can improve the nutritional value, aroma profile, and technological properties, with important alterations on the syneresis of yogurts, meltability in cheeses, overrun values and melting point in ice creams, physical properties and mechanical characteristics in crisps, and texture, cooking and color characteristics in pastas. However, more studies are needed to prove the health effects in humans, expand the market size, reduce the cost of production, and tighter constraints related to regulations.
Collapse
Affiliation(s)
- Viviane Priscila Barros de Medeiros
- Laboratory of Microbial Processes in Foods, Department of Food Engineering, Technology Center, Federal University of Paraíba, João Pessoa, Brazil
| | - Whyara Karoline Almeida da Costa
- Laboratory of Microbial Processes in Foods, Department of Food Engineering, Technology Center, Federal University of Paraíba, João Pessoa, Brazil
| | - Ruthchelly Tavares da Silva
- Laboratory of Microbial Processes in Foods, Department of Food Engineering, Technology Center, Federal University of Paraíba, João Pessoa, Brazil
| | | | - Marciane Magnani
- Laboratory of Microbial Processes in Foods, Department of Food Engineering, Technology Center, Federal University of Paraíba, João Pessoa, Brazil
| |
Collapse
|
19
|
Exploiting the use of agro-industrial residues from fruit and vegetables as alternative microalgae culture medium. Food Res Int 2020; 137:109722. [PMID: 33233291 DOI: 10.1016/j.foodres.2020.109722] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Revised: 08/29/2020] [Accepted: 09/06/2020] [Indexed: 01/29/2023]
Abstract
There is a need for searching new microalgae species, and the most suitable strategy to increase the cost-effectiveness of a microalgae culture system is to use resources of low costs, such as residues. This study aimed to evaluate the cultivation of microalgae isolated from the Brazilian Northeast region (Lagerheimia longiseta, Monoraphidium contortum, and Scenedesmus quadricauda) in an alternative medium of low cost (biocompost of discarded fruits and vegetables) with a view to possible applications in the food industry. Microalgae cultivated in the conventional synthetic medium was used as control. The cultivation of microalgae in the alternative medium allowed suitable cell growth, and improved the antioxidant activity and the levels of monounsaturated fatty acid and polyunsaturated fatty acid compared to the synthetic medium. The cultivation of S. quadricauda and L. longiseta species in the alternative medium resulted in increased protein content and/or total phenolic content, and improved health indices (lower levels of atherogenic, thrombogenic, and hypercholesterolemic saturated fatty acids indices, and higher levels of desired fatty acids index) compared to cultivation in synthetic medium. The cultivation of M. contortum in the alternative medium contributed to the production of higher lipid content, mainly saturated fatty acid (palmitic acid), which contributed negatively to the health indices. This study proved that S. quadricauda and L. longiseta microalga species from freshwaters have significant potential for distinct applications in functional food industries, and the biocompost of discarded fruits and vegetables is a suitable medium for microalgae cultivation.
Collapse
|
20
|
Amorim ML, Soares J, Vieira BB, Batista-Silva W, Martins MA. Extraction of proteins from the microalga Scenedesmus obliquus BR003 followed by lipid extraction of the wet deproteinized biomass using hexane and ethyl acetate. BIORESOURCE TECHNOLOGY 2020; 307:123190. [PMID: 32213445 DOI: 10.1016/j.biortech.2020.123190] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2020] [Revised: 03/12/2020] [Accepted: 03/13/2020] [Indexed: 06/10/2023]
Abstract
A current problem of the lipid extraction from wet biomass is the formation of emulsions during the mixing of the microalgal biomass and organic solvents. It has been suggested that microalgal proteins play an important role in the formation and stability of such emulsions. Herein, the extraction of proteins of the freshwater microalga Scenedesmus obliquus BR003 was optimized for further extraction of lipids from the wet deproteinized biomass. The optimal (pH 12 at 60 °C for 3 h) and moderate (pH 10.5 at 50 °C for 2 h) conditions of protein extraction resulted in protein yields of 20.6% and 15.4%, respectively. Wet lipid extraction of deproteinized biomass resulted in a less stable emulsion that released twice the solvent than the control biomass. However, the faster separation of phases that occurred during the wet lipid extraction of the deproteinized biomass resulted in a lipid yield twice lower than the control biomass.
Collapse
Affiliation(s)
- Matheus Lopes Amorim
- Department of Agricultural Engineering, Universidade Federal de Viçosa, Viçosa, Minas Gerais 36570-900, Brazil
| | - Jimmy Soares
- Department of Agricultural Engineering, Universidade Federal de Viçosa, Viçosa, Minas Gerais 36570-900, Brazil
| | - Bruno Bezerra Vieira
- Department of Chemical Engineering, Universidade Federal de Viçosa, Viçosa, Minas Gerais 36570-900, Brazil
| | - Willian Batista-Silva
- Department of Plant Biology, Universidade Federal de Viçosa, Viçosa, Minas Gerais 36570-900, Brazil
| | - Marcio Arêdes Martins
- Department of Agricultural Engineering, Universidade Federal de Viçosa, Viçosa, Minas Gerais 36570-900, Brazil.
| |
Collapse
|
21
|
Silva TL, Lacerda UV, da Matta SLP, Queiroz VAV, Stringheta PC, Martino HSD, de Barros FAR. Evaluation of the efficacy of toasted white and tannin sorghum flours to improve oxidative stress and lipid profile in vivo. J Food Sci 2020; 85:2236-2244. [PMID: 32609891 DOI: 10.1111/1750-3841.15301] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Revised: 05/10/2020] [Accepted: 05/19/2020] [Indexed: 12/29/2022]
Abstract
The objective of the present work was to evaluate and compare the effect of toasted white and tannin sorghum flours on lipid metabolism and antioxidant potential in vivo. Male spontaneously hypertensive rats (SHR) were induced to oxidative stress with paracetamol and fed a normal diet (AIN-93M) and diets containing toasted tannin sorghum flour and toasted white sorghum flour (without tannins), replacing 100% cellulose, during 29 days. Hepatotoxicity was assessed by biochemical tests and by quantifying oxidative stress markers. Groups that received toasted sorghum flour with and without tannins showed reduction of alanine aminotransferase (ALT) concentration and improvement of lipid profile, with increase of high-density lipoprotein (HDL) compared to paracetamol control, and did not differ statistically from the AIN-93M control. Moreover, toasted white sorghum flour presented similar efficacy in reducing oxidative stress in liver tissue compared to toasted tannin sorghum flour, although the former had lower total phenolic content and antioxidant capacity, suggesting a greater effect of small phenolic compounds, such as phenolic acids, in the prevention of oxidative stress. Therefore, toasted white and tannin sorghum flours had similar efficacy to improve the lipid profile and oxidative stress in rats treated with paracetamol, constituting potential sources of antioxidants, which can be used as promising ready-to-eat foods and as ingredients for the development of sorghum-based products. PRACTICAL APPLICATION: The health benefits of sorghum coupled with the growing interest of the food industry in producing healthier food products have motivated the development of toasted sorghum flours as potential sources of antioxidants and dietary fiber. We have demonstrated that consumption of toasted white and tannin sorghum flours by rats treated with paracetamol had similar efficacy to improve oxidative stress and lipid profile. Thus, these toasted sorghum flours have great potential to be used by the food industry as ready-to-eat foods or as ingredients in the development of various food products.
Collapse
Affiliation(s)
- Thaís Lessa Silva
- Departamento de Tecnologia de Alimentos, Universidade Federal de Viçosa, Viçosa, Minas Gerais, Brazil
| | - Udielle Vermelho Lacerda
- Departamento de Tecnologia de Alimentos, Universidade Federal de Viçosa, Viçosa, Minas Gerais, Brazil
| | | | | | - Paulo César Stringheta
- Departamento de Tecnologia de Alimentos, Universidade Federal de Viçosa, Viçosa, Minas Gerais, Brazil
| | | | | |
Collapse
|