1
|
Yang Z, Song Y, Chen H, Li D, Chen L, Zhang W, Jiang L, Huang Z, Zhang W. Pickering emulsions stabilized by soybean protein-based nanoparticles: A review of formulation, characterization, and food-grade applications. Compr Rev Food Sci Food Saf 2025; 24:e70157. [PMID: 40119799 DOI: 10.1111/1541-4337.70157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2024] [Revised: 02/17/2025] [Accepted: 02/23/2025] [Indexed: 03/24/2025]
Abstract
Pickering emulsions (PEs) have attracted considerable interest as platforms for encapsulating and controlling the release of bioactive compounds. Recent studies emphasize the potential of soybean protein nanoparticles to improve PE-based carriers, enhancing the stability and bioavailability of these compounds through unique self-assembly behaviors. This review analyzes recent advancements in the use of soybean protein nanoparticle-stabilized PEs as carriers for bioactive compounds. Various fabrication techniques, including physical, chemical, and biological methods, are explored. The effectiveness of soybean protein nanoparticles, both individually and in combination with polysaccharides or polyphenols, is evaluated, highlighting their roles in stabilizing PEs and enhancing functionality. Findings indicate that soybean protein nanoparticles are effective stabilizers for a wide range of PE structures, including oil-in-water, water-in-oil, high internal phase PEs, and Pickering emulgels. Fabrication methods, properties of Pickering particles, processing parameters, and formulations significantly influence the interfacial behavior, structure, and functionality of PEs. Fabrication methods, properties of Pickering particles, processing parameters, and formulations significantly influence the interfacial behavior, structure, and functionality of PEs. Additionally, innovative applications and future developments of soybean protein-based Pickering nanoparticles are discussed, emphasizing plant-based substitutes and advanced materials. Despite extensive discussions on soybean protein-based PEs in various food forms, research into their techno-functional properties and flavor mechanisms remains limited.
Collapse
Affiliation(s)
- Zhen Yang
- School of Food Science and Engineering, Hainan University, Haikou, China
| | - Yuanyang Song
- School of Food Science and Engineering, Hainan University, Haikou, China
| | - Hui Chen
- School of Food Science and Engineering, Hainan University, Haikou, China
| | - Dongze Li
- School of Food Science and Engineering, Hainan University, Haikou, China
| | - Liang Chen
- School of Food Science and Engineering, Hainan University, Haikou, China
| | - Weimin Zhang
- School of Food Science and Engineering, Hainan University, Haikou, China
| | - Lianzhou Jiang
- School of Food Science and Engineering, Hainan University, Haikou, China
- College of Food Science, Northeast Agricultural University, Harbin, China
- Collaborative Innovation Center of Nanfan and High-Efficiency Tropical Agriculture, Hainan University, Haikou, China
- Hainan International Joint Research Center for High Value Processing of Tropical Protein Resources, Haikou, China
| | - Zhaoxian Huang
- School of Food Science and Engineering, Hainan University, Haikou, China
- Collaborative Innovation Center of Nanfan and High-Efficiency Tropical Agriculture, Hainan University, Haikou, China
- Hainan International Joint Research Center for High Value Processing of Tropical Protein Resources, Haikou, China
| | - Wanli Zhang
- School of Food Science and Engineering, Hainan University, Haikou, China
| |
Collapse
|
2
|
Yang Z, Li D, Chen L, Zhang W, Jiang L, Huang Z, Tian T. Structural characteristics, techno-functionalities, innovation applications and future prospects of soybean β-conglycinin/glycinin: a comprehensive review. Crit Rev Food Sci Nutr 2024:1-18. [PMID: 39673690 DOI: 10.1080/10408398.2024.2440601] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2024]
Abstract
The structural molecules and conformational variations of soybean β-conglycinin/glycinin are crucial in defining the characteristics of protein-based foods. Recently, significant attention has been focused on the characteristics of soybean β-conglycinin/glycinin across various fields, particularly their structure and application. The research contributes to expanding the application fields of soybean protein-related component in food industry. This research generally concerned on, but not limited to, the novel substitution of animal-originated foods based on globulins and the deeper precising protein nutrition support. Furthermore, the innovative applications and future development of soybean globulins are presented, focusing on plant-based substitutes and advanced materials. This paper provides a comprehensive review of soybean β-conglycinin/glycinin, focusing on structural characteristics, techno-functionalities, innovation applications, and future prospects, supported by diverse citation and analyses. Additionally, the article introduces various methods for modifying soybean globulins, including physical, chemical, and biological treatments. Furthermore, the innovative applications and future development of soybean globulins are presented, focusing on plant-based substitutes and advanced materials. Despite extensive discussion on globulin applications in diverse food forms, the discourse on their flavor and safety is insufficient. Addressing these limitations is essential for a comprehensive understanding and effective utilization of soybean globulins.
Collapse
Affiliation(s)
- Zhen Yang
- School of Food Science and Engineering, Hainan University, Haikou, China
| | - Dongze Li
- School of Food Science and Engineering, Hainan University, Haikou, China
| | - Liang Chen
- School of Food Science and Engineering, Hainan University, Haikou, China
| | - Weimin Zhang
- School of Food Science and Engineering, Hainan University, Haikou, China
| | - Lianzhou Jiang
- School of Food Science and Engineering, Hainan University, Haikou, China
- College of Food Science, Northeast Agricultural University, Harbin, China
- Collaborative Innovation Center of Nanfan and High-Efficiency Tropical Agriculture, Hainan University, Haikou, China
- Hainan International Joint Research Center for High Value Processing of Tropical Protein Resources, Haikou, China
| | - Zhaoxian Huang
- School of Food Science and Engineering, Hainan University, Haikou, China
- Collaborative Innovation Center of Nanfan and High-Efficiency Tropical Agriculture, Hainan University, Haikou, China
- Hainan International Joint Research Center for High Value Processing of Tropical Protein Resources, Haikou, China
| | - Tian Tian
- School of Food Science and Engineering, Hainan University, Haikou, China
| |
Collapse
|
3
|
Luo T, Fan Y, Fan M, Li M, Qiu Z, Du Q, Ma C, Liu C, Peng Y, Zhang S, Liu S, Song B. Physicochemical and Functional Properties of DND358 (A Hypocholesterolemic Soybean) Protein Isolate. Foods 2024; 13:3236. [PMID: 39456296 PMCID: PMC11508184 DOI: 10.3390/foods13203236] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Revised: 10/02/2024] [Accepted: 10/07/2024] [Indexed: 10/28/2024] Open
Abstract
The properties and applications of soybean protein isolates (SPIs) have been extensively investigated. In this study, we determined the optimal conditions for the preparation of the DND358 soybean protein isolate (DND358-SPI), assessed its physicochemical and functional properties, and investigated its potential applications in the food industry. According to the results, the highest extraction rate of DND358-SPI was observed when the pH was 9.5, the temperature was 55 °C, the duration was 80 min, and the material-to-liquid ratio was 1:20 (w/v). With regard to the functional properties, the water-holding capacity (WHC) and oil-binding capacity (OBC) of DND358-SPI were higher than those of other varieties, reaching 4.73% and 11.04%, respectively. In addition, the hardness, adhesiveness, chewiness, and resilience of DND358-SPI were higher than those of other varieties, reaching 159.27 g, 186.07 g, 6.78 mj, and 1.88, respectively. These findings indicate that DND358-SPI can reduce cholesterol levels and may be used to produce cholesterol-lowering food products.
Collapse
Affiliation(s)
- Tingting Luo
- Soybean Research Institute, Northeast Agricultural University, Harbin 150030, China
| | - Yuanhang Fan
- Soybean Research Institute, Northeast Agricultural University, Harbin 150030, China
| | - Mengmeng Fan
- Soybean Research Institute, Northeast Agricultural University, Harbin 150030, China
| | - Ming Li
- Keshan Branch of Heilongjiang Academy of Agricultural Sciences, Qiqihar 161000, China
| | - Zhendong Qiu
- Soybean Research Institute, Northeast Agricultural University, Harbin 150030, China
| | - Qiuyan Du
- Soybean Research Institute, Northeast Agricultural University, Harbin 150030, China
| | - Chongxuan Ma
- Soybean Research Institute, Northeast Agricultural University, Harbin 150030, China
| | - Chang Liu
- Soybean Research Institute, Northeast Agricultural University, Harbin 150030, China
| | - Yuhan Peng
- Soybean Research Institute, Northeast Agricultural University, Harbin 150030, China
| | - Shuzhen Zhang
- Soybean Research Institute, Northeast Agricultural University, Harbin 150030, China
| | - Shanshan Liu
- Soybean Research Institute, Northeast Agricultural University, Harbin 150030, China
| | - Bo Song
- Soybean Research Institute, Northeast Agricultural University, Harbin 150030, China
- Key Laboratory of Molecular and Cytogenetics, College of Life Sciences and Technology, Harbin Normal University, Harbin 150025, China
| |
Collapse
|
4
|
Lyu B, Wang F, Li Y, Quek SY, Yu H. Editorial: Innovative high value-added processing of soybean and its by-products. Front Nutr 2023; 10:1240249. [PMID: 37441518 PMCID: PMC10334418 DOI: 10.3389/fnut.2023.1240249] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Accepted: 06/16/2023] [Indexed: 07/15/2023] Open
Affiliation(s)
- Bo Lyu
- College of Food Science and Engineering, Jilin Agriculture University, Changchun, China
- Soybean Research & Development Center, Division of Soybean Processing, Chinese Agricultural Research System, Changchun, China
| | - Fengzhong Wang
- Soybean Research & Development Center, Division of Soybean Processing, Chinese Agricultural Research System, Changchun, China
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Yang Li
- Soybean Research & Development Center, Division of Soybean Processing, Chinese Agricultural Research System, Changchun, China
- College of Food Science, Northeast Agricultural University, Harbin, China
| | - Siew Young Quek
- School of Chemical Sciences, University of Auckland, Auckland, New Zealand
| | - Hansong Yu
- College of Food Science and Engineering, Jilin Agriculture University, Changchun, China
- Soybean Research & Development Center, Division of Soybean Processing, Chinese Agricultural Research System, Changchun, China
| |
Collapse
|
5
|
Hypocholesterolemic effects of soy protein isolates from soybeans differing in 7S and 11S globulin subunits vary in rats fed a high cholesterol diet. J Funct Foods 2022. [DOI: 10.1016/j.jff.2022.105347] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
|
6
|
Lyu B, Li J, Meng X, Fu H, Wang W, Ji L, Wang Y, Guo Z, Yu H. The Protein Composition Changed the Quality Characteristics of Plant-Based Meat Analogues Produced by a Single-Screw Extruder: Four Main Soybean Varieties in China as Representatives. Foods 2022; 11:1112. [PMID: 35454698 PMCID: PMC9032996 DOI: 10.3390/foods11081112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Revised: 04/08/2022] [Accepted: 04/12/2022] [Indexed: 11/24/2022] Open
Abstract
Plant-based meat analogues (PBMs) are increasingly interesting to customers because of their meat-like quality and contribution to a healthy diet. The single-screw extruder is an important method for processing PBMs, and the characteristics of the product are directly affected by the composition of the raw materials; however, little research focuses on this issue. To explore the effect of protein composition on the quality characteristics of PBMs produced by a single-screw extruder, four soybean varieties used in China (Heihe 43 (HH 43), Jiyu 86 (JY 86), Suinong 52 (SN 52), and Shengfeng 5 (SF 5)) were selected. The 11S/7S ratios for these varieties ranged from 1.0: 1 to 2.5: 1 in order to produce PBMs with different protein compositions. The structure, processing, nutrition, and flavor characteristics were explored to analyze their differences. The results showed that protein composition affected the structure of PBMs, but the correlation was not significant. Meanwhile, a lower 11S/7S ratio (HH 43) did not prove to be a favorable characteristic for the processing of PBMs. From the perspective of nutrition and flavor, it seems acceptable to use a moderate 11S/7S ratio (JY 86 and SN 43) to produce PBMs. This study proved that the protein composition of raw materials affects the characteristics of PBM products produced by a single-screw extruder. To produce PBMs of higher quality, soybeans with a markedly different 11S/7S ratio should not be selected.
Collapse
Affiliation(s)
- Bo Lyu
- College of Food Science and Engineering, Jilin Agricultural University, Changchun 130118, China; (B.L.); (J.L.); (X.M.); (H.F.); (L.J.); (Y.W.)
- Division of Soybean Processing, Soybean Research & Development Center, Chinese Agricultural Research System, Changchun 130118, China;
- College of Food Science, Northeast Agricultural University, Harbin 150030, China
| | - Jiaxin Li
- College of Food Science and Engineering, Jilin Agricultural University, Changchun 130118, China; (B.L.); (J.L.); (X.M.); (H.F.); (L.J.); (Y.W.)
- Division of Soybean Processing, Soybean Research & Development Center, Chinese Agricultural Research System, Changchun 130118, China;
| | - Xiangze Meng
- College of Food Science and Engineering, Jilin Agricultural University, Changchun 130118, China; (B.L.); (J.L.); (X.M.); (H.F.); (L.J.); (Y.W.)
- Division of Soybean Processing, Soybean Research & Development Center, Chinese Agricultural Research System, Changchun 130118, China;
| | - Hongling Fu
- College of Food Science and Engineering, Jilin Agricultural University, Changchun 130118, China; (B.L.); (J.L.); (X.M.); (H.F.); (L.J.); (Y.W.)
- Division of Soybean Processing, Soybean Research & Development Center, Chinese Agricultural Research System, Changchun 130118, China;
| | - Wei Wang
- Division of Soybean Processing, Soybean Research & Development Center, Chinese Agricultural Research System, Changchun 130118, China;
- Jilin Provincial Agricultural Products Processing Industry Promotion Center, Changchun 130022, China
| | - Lei Ji
- College of Food Science and Engineering, Jilin Agricultural University, Changchun 130118, China; (B.L.); (J.L.); (X.M.); (H.F.); (L.J.); (Y.W.)
- Division of Soybean Processing, Soybean Research & Development Center, Chinese Agricultural Research System, Changchun 130118, China;
| | - Yi Wang
- College of Food Science and Engineering, Jilin Agricultural University, Changchun 130118, China; (B.L.); (J.L.); (X.M.); (H.F.); (L.J.); (Y.W.)
- Division of Soybean Processing, Soybean Research & Development Center, Chinese Agricultural Research System, Changchun 130118, China;
| | - Zengwang Guo
- Division of Soybean Processing, Soybean Research & Development Center, Chinese Agricultural Research System, Changchun 130118, China;
- College of Food Science, Northeast Agricultural University, Harbin 150030, China
| | - Hansong Yu
- College of Food Science and Engineering, Jilin Agricultural University, Changchun 130118, China; (B.L.); (J.L.); (X.M.); (H.F.); (L.J.); (Y.W.)
- Division of Soybean Processing, Soybean Research & Development Center, Chinese Agricultural Research System, Changchun 130118, China;
| |
Collapse
|