1
|
Hosseini E, Tsegay ZT, Smaoui S, Varzakas T. Lactic Acid Bacteria in Vinegar Fermentation: Diversity, Functionality and Health Benefits. Foods 2025; 14:698. [PMID: 40002142 PMCID: PMC11854781 DOI: 10.3390/foods14040698] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2025] [Revised: 02/14/2025] [Accepted: 02/16/2025] [Indexed: 02/27/2025] Open
Abstract
Vinegar, frequently distilled by solid fermentation or liquid processes, was generated through the synergistic effect of a microbial community in open or semi-open environments. Based on the studied raw materials, researchers distributed the vinegar into three classes: grain, fruit and animal, with lactic acid bacteria (LAB) playing a pivotal role in their fermentation and contributing significantly to their functional and sensory qualities. Typically, the natural maturation of fresh vinegar necessitates a long period and vast space, engendering a reduced efficiency. To accelerate the vinegar aging process, some physical methods, viz. micro-oxygenation, ozone, ultrasound, microwave, gamma rays, infrared, electric fields and high pressure, have been developed. Produced or enriched by LAB, key bioactive vinegar components are organic acids, phenolic compounds, melanoidins, and tetramethylpyrazine. These active compounds have antibacterial, antioxidant, anti-inflammatory functions; aid in the regulation of liver protection metabolism and glucose control; and have blood pressure, anti-tumor, anti-fatigue and metabolic regulatory effects. The review explores advancements in vinegar production, including modernized fermentation processes and optimized aging techniques, which enhance these beneficial compounds and ensure product consistency and safety. By examining the LAB variety strains and the bioactive profiles of different vinegar types, this study highlights vinegar's value beyond a culinary product, as a potential therapeutic agent in human nutrition and health. The findings underscore vinegar's relevance not only in dietary and preventive healthcare but also as a potential functional food ingredient. Further research is needed to explore the mechanisms of action through which LAB contribute to the development of several new healthy vinegars.
Collapse
Affiliation(s)
- Elahesadat Hosseini
- National Nutrition and Food Technology Research Institute, Faculty of Nutrition Sciences and Food Technology, Shahid Beheshti University of Medical Sciences, Tehran 1981619573, Iran;
- Department of Chemical Engineering, Payame Noor University, Tehran 1659639884, Iran
| | - Zenebe Tadesse Tsegay
- Department of Food Science and Post-Harvest Technology, College of Dryland Agriculture and Natural Resources, Mekelle University, Mekelle P.O. Box 231, Ethiopia;
| | - Slim Smaoui
- Laboratory of Microbial and Enzymatic Biotechnologies and Biomolecules, Center of Biotechnology of Sfax (CBS), University of Sfax, Road of Sidi Mansour Km 6, P.O. Box 1177, Sfax 3018, Tunisia;
| | - Theodoros Varzakas
- Department of Food Science and Technology, University of the Peloponnese, Antikalamos, 24100 Kalamata, Greece
| |
Collapse
|
2
|
Ousaaid D, Bakour M, Laaroussi H, El Ghouizi A, Lyoussi B, El Arabi I. Fruit vinegar as a promising source of natural anti-inflammatory agents: an up-to-date review. Daru 2024; 32:307-317. [PMID: 38040916 PMCID: PMC11087403 DOI: 10.1007/s40199-023-00493-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Accepted: 11/14/2023] [Indexed: 12/03/2023] Open
Abstract
OBJECTIVES Fruit vinegar is one of the most famous fruit byproducts worldwide with several unique properties. There are two types of fruit vinegar, artisanal and industrial, for consumers to choose from. This review aims to assess for the first time the phytochemistry of fruit vinegar and its anti-inflammatory effects. METHOD The present work was conducted based on a literature search that selected the relevant papers from indexed databases such as Scopus, Science Direct, MDPI, PubMed, Hindawi, and Web of Science. We used numerous terms to assure a good search in different databases, including fruit vinegar, phytochemistry, bioavailability and bioaccessibility, and anti-inflammatory effect. All articles were selected based on their relevance, quality, and problematic treatment. RESULTS Literature data have shown that vinegar has a long medicinal history and has been widely used by different civilizations, due to its richness in bioactive molecules, vinegar plays an important role in the prevention and treatment of various inflammatory diseases, including atopic dermatitis, mastitis, asthma, arthritis, acute pancreatitis, and colitis. Fruit vinegar consumption benefit is highly dependent on its chemical composition, especially organic acids and antioxidants, which can act as nutraceuticals. CONCLUSION Fruit vinegar has a rich chemical composition, including organic acids that can be transformed in the digestive system into compounds that play an important role in health-promoting features such as anti-inflammatory effects throughout the control of intestinal microbiota and pro-inflammatory cytokine production.
Collapse
Affiliation(s)
- Driss Ousaaid
- Laboratory of Natural Substances, Pharmacology, Environment, Modeling, Health and Quality of Life (SNAMOPEQ), Faculty of Sciences Dhar El Mahraz, Sidi Mohamed Ben Abdellah University, Fez, 30000, Morocco.
| | - Meryem Bakour
- Laboratory of Natural Substances, Pharmacology, Environment, Modeling, Health and Quality of Life (SNAMOPEQ), Faculty of Sciences Dhar El Mahraz, Sidi Mohamed Ben Abdellah University, Fez, 30000, Morocco
| | - Hassan Laaroussi
- Laboratory of Natural Substances, Pharmacology, Environment, Modeling, Health and Quality of Life (SNAMOPEQ), Faculty of Sciences Dhar El Mahraz, Sidi Mohamed Ben Abdellah University, Fez, 30000, Morocco
| | - Asmae El Ghouizi
- Laboratory of Natural Substances, Pharmacology, Environment, Modeling, Health and Quality of Life (SNAMOPEQ), Faculty of Sciences Dhar El Mahraz, Sidi Mohamed Ben Abdellah University, Fez, 30000, Morocco
| | - Badiaa Lyoussi
- Laboratory of Natural Substances, Pharmacology, Environment, Modeling, Health and Quality of Life (SNAMOPEQ), Faculty of Sciences Dhar El Mahraz, Sidi Mohamed Ben Abdellah University, Fez, 30000, Morocco
| | - Ilham El Arabi
- Laboratory of Natural Substances, Pharmacology, Environment, Modeling, Health and Quality of Life (SNAMOPEQ), Faculty of Sciences Dhar El Mahraz, Sidi Mohamed Ben Abdellah University, Fez, 30000, Morocco
| |
Collapse
|
3
|
Vieira ACA, Pinheiro RO, Soares NL, Bezerra MLR, Nascimento DDS, Alves AF, Sousa MCDP, Dutra MLDV, Lima MDS, Donato NR, Aquino JDS. Maternal high-fat diet alters the neurobehavioral, biochemical and inflammatory parameters of their adult female rat offspring. Physiol Behav 2023; 266:114180. [PMID: 37037382 DOI: 10.1016/j.physbeh.2023.114180] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 03/24/2023] [Accepted: 03/31/2023] [Indexed: 04/12/2023]
Abstract
BACKGROUND Lipid metabolism dysregulations have been associated with depressive and anxious behaviors which can affect pregnant and lactating individuals, with indications that such changes extend to the offspring. Therefore, the aim of this study was to evaluate the effect of a maternal high-fat diet on the neurobehavioral, biochemical and inflammatory parameters of their adult female offspring. METHODS Wistar rats ± 90 days old were mated. The dams were allocated to consume a control (CTL) or high-fat (HFD) diet during pregnancy and lactation. After weaning, the female offspring from the CTL (N=10) and HFD (N=10) groups received standard chow. The offspring behavioral tests were started at 120 days old. Then, the somatic measures were evaluated followed by euthanasia, histological and biochemical analyses. RESULTS The HFD group had less ambulation and longer immobility time in the open field test compared to the CTL. The HFD group had lower HDL (48.4%) and a higher adiposity (71.8%) and LDL (62.2%) than the CTL. The CTL had a higher organic acid concentration in the intestine, mainly acetic and butyric acids, however the HFD had a higher citric and acetic acid concentration in the brain and ischemic lesion in the hippocampus with a higher NF-κB concentration. CONCLUSION The results demonstrate deleterious effects of a maternal HFD on the neurobehavioral and biochemical parameters of their offspring which may be associated with the role of organic acids and NF-κB in fetal programming.
Collapse
Affiliation(s)
- Anne Caroline Alves Vieira
- Laboratory of Experimental Nutrition, Department of Nutrition, Federal University of Paraíba, UFPB, João Pessoa PB, Brazil; Post Graduate Program in Nutrition Sciences, Federal University of Paraíba (UFPB), João Pessoa, Paraíba, Brazil
| | - Rafael Oliveira Pinheiro
- Laboratory of Experimental Nutrition, Department of Nutrition, Federal University of Paraíba, UFPB, João Pessoa PB, Brazil; Post Graduate Program in Nutrition Sciences, Federal University of Paraíba (UFPB), João Pessoa, Paraíba, Brazil
| | - Naís Lira Soares
- Laboratory of Experimental Nutrition, Department of Nutrition, Federal University of Paraíba, UFPB, João Pessoa PB, Brazil; Post Graduate Program in Nutrition Sciences, Federal University of Paraíba (UFPB), João Pessoa, Paraíba, Brazil
| | - Maria Luiza Rolim Bezerra
- Laboratory of Experimental Nutrition, Department of Nutrition, Federal University of Paraíba, UFPB, João Pessoa PB, Brazil; Post Graduate Program in Nutrition Sciences, Federal University of Paraíba (UFPB), João Pessoa, Paraíba, Brazil
| | - Davi Dos Santos Nascimento
- Post Graduate Program in Nutrition Sciences, Federal University of Paraíba (UFPB), João Pessoa, Paraíba, Brazil; Laboratory of food microbiology and biochemistry, Department of Nutrition, Federal University of Paraíba, UFPB, João Pessoa PB, Brazil
| | - Adriano Francisco Alves
- Laboratory of General pathology, Department of Physiology and Pathology, Federal University of Paraíba (UFPB), João Pessoa, Paraíba, Brazil
| | - Maria Carolina de Paiva Sousa
- Laboratory of General pathology, Department of Physiology and Pathology, Federal University of Paraíba (UFPB), João Pessoa, Paraíba, Brazil
| | - Maria Letícia da Veiga Dutra
- Laboratory of Experimental Nutrition, Department of Nutrition, Federal University of Paraíba, UFPB, João Pessoa PB, Brazil; Post Graduate Program in Nutrition Sciences, Federal University of Paraíba (UFPB), João Pessoa, Paraíba, Brazil
| | - Marcos Dos Santos Lima
- Department of Food Technology, Federal Institute of Sertão Pernambucano, Petrolina, Brazil; Post Graduate Program in Food Science and Technology, Federal University of Paraíba (UFPB), João Pessoa, Paraíba, Brazil
| | - Nilcimelly Rodrigues Donato
- Department of Nutrition, Center for Education and Health, Federal University of Campina Grande (UFCG), Cuité, Paraíba, Brazil
| | - Jailane de Souza Aquino
- Laboratory of Experimental Nutrition, Department of Nutrition, Federal University of Paraíba, UFPB, João Pessoa PB, Brazil; Post Graduate Program in Nutrition Sciences, Federal University of Paraíba (UFPB), João Pessoa, Paraíba, Brazil; Post Graduate Program in Food Science and Technology, Federal University of Paraíba (UFPB), João Pessoa, Paraíba, Brazil.
| |
Collapse
|
4
|
Huang X, Yuan Z, Liu X, Wang Z, Lu J, Wu L, Lin X, Zhang Y, Pi W, Cai D, Chu F, Wang P, Lei H. Integrative multi-omics unravels the amelioration effects of Zanthoxylum bungeanum Maxim. on non-alcoholic fatty liver disease. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2023; 109:154576. [PMID: 36610127 DOI: 10.1016/j.phymed.2022.154576] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Revised: 10/26/2022] [Accepted: 11/20/2022] [Indexed: 06/17/2023]
Abstract
BACKGROUND The effect of Zanthoxylum bungeanum Maxim. (ZBM) on anti-obesity, lipid-lowering and liver protection has been identified, but the effect on the development of NAFLD induced by high-fat diet remains unclear. PURPOSE To evaluate the alleviation effect of ZBM on NAFLD in vivo and explore the mechanisms by analyzing the liver transcriptome, microbiota and fecal metabolites. METHODS NAFLD model was induced in C57BL/6J mice by feeding with high-fat diet (HFD). The potential mechanism of ZBM in improving NAFLD was studied by liver transcriptome analysis, real-time PCR, immunofluorescence, 16s rRNA sequencing and non-targeted metabonomics. RESULTS ZBM has alleviation effects on HFD-induced NAFLD. The liver transcriptome, real-time PCR and immunofluorescence analysis showed that ZBM could efficiently regulate fatty acid and cholesterol metabolism. The 16S rRNA sequencing and LC-MS based metabonomic demonstrated that ZBM could rebalance gut microbiota dysbiosis and regulate metabolic profiles in HFD-induced NAFLD mice. Spearman correlation analysis revealed a strong correlation between gut microbiota and biochemical, pathological indexes and differential metabolic biomarkers. CONCLUSION ZBM ameliorates HFD-induced NAFLD by regulating fatty acid and cholesterol metabolism, gut microbiota and metabolic profile.
Collapse
Affiliation(s)
- Xuemei Huang
- School of Chinese Pharmacy, Beijing University of Chinese Medicine, Beijing 102488, China
| | - Zhihua Yuan
- School of Chinese Pharmacy, Beijing University of Chinese Medicine, Beijing 102488, China
| | - Xiaojing Liu
- School of Chinese Pharmacy, Beijing University of Chinese Medicine, Beijing 102488, China
| | - Zhijia Wang
- School of Chinese Pharmacy, Beijing University of Chinese Medicine, Beijing 102488, China
| | - Jihui Lu
- School of Chinese Pharmacy, Beijing University of Chinese Medicine, Beijing 102488, China
| | - Linying Wu
- School of Chinese Pharmacy, Beijing University of Chinese Medicine, Beijing 102488, China
| | - Xiaoyu Lin
- School of Chinese Pharmacy, Beijing University of Chinese Medicine, Beijing 102488, China
| | - Yaozhi Zhang
- School of Chinese Pharmacy, Beijing University of Chinese Medicine, Beijing 102488, China
| | - Wenmin Pi
- School of Chinese Pharmacy, Beijing University of Chinese Medicine, Beijing 102488, China
| | - Desheng Cai
- School of Chinese Pharmacy, Beijing University of Chinese Medicine, Beijing 102488, China
| | - Fuhao Chu
- School of Chinese Pharmacy, Beijing University of Chinese Medicine, Beijing 102488, China
| | - Penglong Wang
- School of Chinese Pharmacy, Beijing University of Chinese Medicine, Beijing 102488, China.
| | - Haimin Lei
- School of Chinese Pharmacy, Beijing University of Chinese Medicine, Beijing 102488, China.
| |
Collapse
|
5
|
Galf-containing polysaccharides from medicinal molds: Sources, structures and bioactive properties. Trends Food Sci Technol 2022. [DOI: 10.1016/j.tifs.2022.11.026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
|