1
|
Menezes Pinto N, das Chagas Mendonça MR, da Silva Santos J, Dos Santos Ferraz CM, Santos Oliveira D, Dos Santos LVB, de Souza Araújo AA, José Quintans Júnior L, Lyra Júnior DP, de Oliveira Filho AD, Lira AAM, Russo Serafini M, de Souza Nunes R. Lessons learned from the COVID-19 pandemic: the intranasal administration as a route for treatment - a patent review. Pharm Dev Technol 2025; 30:400-416. [PMID: 40186505 DOI: 10.1080/10837450.2025.2487575] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Revised: 03/26/2025] [Accepted: 03/28/2025] [Indexed: 04/07/2025]
Abstract
The COVID-19 pandemic exposed the fragility of today's marketed treatments for respiratory infections. As a primary site of infection, the upper airways may represent a key access route for the control and treatment for these conditions. The present study aims to explore and identify, through a patent review, the novelty of therapies for COVID-19 that use the intranasal route for drug administration. A search was carried out in Wipo and Espacenet, using the descriptors 'COVID-19 OR SARS-CoV 2' AND 'treatment OR therapy' AND NOT 'vaccine OR immunizing' and the classification 'A61K9/0043'. Of the 151 patents identified, we excluded 73 duplicates, and 36 documents that meet the criteria adopted for exclusion (not nasally administered formulations, vaccines, post COVID-19 treatments, uncertain route of administration or form). We identified 78 unique patents on patent databases, of which 42 were selected for this review. The documents revealed the use of the intranasal pathway not only for drug repositioning but also for using plant-derived and biological molecules. Overall, the new formulations explore a variety of known drugs and natural products incorporated in drug carrier systems and devices for drug delivery and administration. Thus, the intranasal route remains a promising strategy for drug delivery, offering direct access to the primary infection site and warranting further exploration.
Collapse
|
2
|
Kumar S, Dey P, Pathak AK, Wadawale A, Maurya DK, Natu K, Bose K, Goswami D. Structure-Activity Relationship of Ciprofloxacin towards S-Spike Protein of SARS-CoV-2: Synthesis and In-Silico Evaluation. J Chem Inf Model 2025; 65:825-844. [PMID: 39800972 DOI: 10.1021/acs.jcim.4c00918] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2025]
Abstract
The recent outbreak of the coronavirus (COVID-19) pandemic, caused by the SARS-CoV-2 virus, has posed serious threats to global health systems. Although several directions have been put by the WHO for effective treatment, use of antibiotics, particularly ciprofloxacin, in suspected and acquired Covid-19 patients has raised an even more serious concern of antibiotic resistance. Ciprofloxacin has been reported to inhibit entry of SARS-CoV-2 into the host cells via interacting with the spike (S) protein. However, a proper structure-activity relationship study of ciprofloxacin with the S-protein is lacking, which inhibits researchers from developing a more potent fluoroquinolone analogue, specific for inhibition of SARS-CoV-2 viral entry. Herein, in order to have a structure-activity relationship study, we have accomplished a short and convergent synthesis of different derivatives of ciprofloxacin and a detailed in-silico study using molecular docking to explore the interactions of the derivatives with S-protein. The ADMET studies also indicated the drug likeliness and nontoxicity of the derivatives. Furthermore, the molecular dynamics simulation approach was used to study the dynamical behavior after the best docked derivative binds to the protein, and the MM-PBSA approach was adopted to calculate the binding energies. This has led to a derivative that has higher interactions with the S-protein compared to ciprofloxacin, without hampering the dynamics of the interactions. The strong affinity of compound 5 with the SARS-CoV-2 spike RBD protein was further evaluated experimentally using biolayer interferometry (BLI). Furthermore, molecular docking and molecular dynamics simulation were extended to evaluate its binding with the mutated variants Delta and Omicron. We anticipate that the current study could lead to an alternative therapeutic viral inhibitor with a better efficacy than ciprofloxacin.
Collapse
Affiliation(s)
- Sahil Kumar
- Bio-Organic Division, Bhabha Atomic Research Centre, Trombay, Mumbai400085, India
| | - Papiya Dey
- Bio-Organic Division, Bhabha Atomic Research Centre, Trombay, Mumbai400085, India
| | - Arup Kumar Pathak
- Chemistry Division, Bhabha Atomic Research Centre, Trombay, Mumbai400085, India
- Homi Bhabha National Institute, BARC Training School Complex, Anushaktinagar, Mumbai 400094, India
| | - Amey Wadawale
- Chemistry Division, Bhabha Atomic Research Centre, Trombay, Mumbai400085, India
- Homi Bhabha National Institute, BARC Training School Complex, Anushaktinagar, Mumbai 400094, India
| | - Dharmendra K Maurya
- Radiation Biology & Health Sciences Division, Bhabha Atomic Research Centre, Trombay, Mumbai400085, India
- Homi Bhabha National Institute, BARC Training School Complex, Anushaktinagar, Mumbai 400094, India
| | - Kalyani Natu
- Integrated Biophysics and Structural Biology Lab, Advanced Centre for Treatment Research and Education in Cancer (ACTREC), Tata Memorial Centre, Mumbai410210, India
- Homi Bhabha National Institute, BARC Training School Complex, Anushaktinagar, Mumbai 400094, India
| | - Kakoli Bose
- Integrated Biophysics and Structural Biology Lab, Advanced Centre for Treatment Research and Education in Cancer (ACTREC), Tata Memorial Centre, Mumbai410210, India
- Homi Bhabha National Institute, BARC Training School Complex, Anushaktinagar, Mumbai 400094, India
| | - Dibakar Goswami
- Bio-Organic Division, Bhabha Atomic Research Centre, Trombay, Mumbai400085, India
- Homi Bhabha National Institute, BARC Training School Complex, Anushaktinagar, Mumbai 400094, India
| |
Collapse
|
3
|
Gao K, Wang R, Chen J, Cheng L, Frishcosy J, Huzumi Y, Qiu Y, Schluckbier T, Wei X, Wei GW. Methodology-Centered Review of Molecular Modeling, Simulation, and Prediction of SARS-CoV-2. Chem Rev 2022; 122:11287-11368. [PMID: 35594413 PMCID: PMC9159519 DOI: 10.1021/acs.chemrev.1c00965] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Despite tremendous efforts in the past two years, our understanding of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), virus-host interactions, immune response, virulence, transmission, and evolution is still very limited. This limitation calls for further in-depth investigation. Computational studies have become an indispensable component in combating coronavirus disease 2019 (COVID-19) due to their low cost, their efficiency, and the fact that they are free from safety and ethical constraints. Additionally, the mechanism that governs the global evolution and transmission of SARS-CoV-2 cannot be revealed from individual experiments and was discovered by integrating genotyping of massive viral sequences, biophysical modeling of protein-protein interactions, deep mutational data, deep learning, and advanced mathematics. There exists a tsunami of literature on the molecular modeling, simulations, and predictions of SARS-CoV-2 and related developments of drugs, vaccines, antibodies, and diagnostics. To provide readers with a quick update about this literature, we present a comprehensive and systematic methodology-centered review. Aspects such as molecular biophysics, bioinformatics, cheminformatics, machine learning, and mathematics are discussed. This review will be beneficial to researchers who are looking for ways to contribute to SARS-CoV-2 studies and those who are interested in the status of the field.
Collapse
Affiliation(s)
- Kaifu Gao
- Department
of Mathematics, Michigan State University, East Lansing, Michigan 48824, United States
| | - Rui Wang
- Department
of Mathematics, Michigan State University, East Lansing, Michigan 48824, United States
| | - Jiahui Chen
- Department
of Mathematics, Michigan State University, East Lansing, Michigan 48824, United States
| | - Limei Cheng
- Clinical
Pharmacology and Pharmacometrics, Bristol
Myers Squibb, Princeton, New Jersey 08536, United States
| | - Jaclyn Frishcosy
- Department
of Mathematics, Michigan State University, East Lansing, Michigan 48824, United States
| | - Yuta Huzumi
- Department
of Mathematics, Michigan State University, East Lansing, Michigan 48824, United States
| | - Yuchi Qiu
- Department
of Mathematics, Michigan State University, East Lansing, Michigan 48824, United States
| | - Tom Schluckbier
- Department
of Mathematics, Michigan State University, East Lansing, Michigan 48824, United States
| | - Xiaoqi Wei
- Department
of Mathematics, Michigan State University, East Lansing, Michigan 48824, United States
| | - Guo-Wei Wei
- Department
of Mathematics, Michigan State University, East Lansing, Michigan 48824, United States
- Department
of Electrical and Computer Engineering, Michigan State University, East Lansing, Michigan 48824, United States
- Department
of Biochemistry and Molecular Biology, Michigan
State University, East Lansing, Michigan 48824, United States
| |
Collapse
|
4
|
Delandre O, Gendrot M, Jardot P, Le Bideau M, Boxberger M, Boschi C, Fonta I, Mosnier J, Hutter S, Levasseur A, La Scola B, Pradines B. Antiviral Activity of Repurposing Ivermectin against a Panel of 30 Clinical SARS-CoV-2 Strains Belonging to 14 Variants. Pharmaceuticals (Basel) 2022; 15:445. [PMID: 35455442 PMCID: PMC9024598 DOI: 10.3390/ph15040445] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Revised: 03/28/2022] [Accepted: 03/30/2022] [Indexed: 02/05/2023] Open
Abstract
Over the past two years, several variants of SARS-CoV-2 have emerged and spread all over the world. However, infectivity, clinical severity, re-infection, virulence, transmissibility, vaccine responses and escape, and epidemiological aspects have differed between SARS-CoV-2 variants. Currently, very few treatments are recommended against SARS-CoV-2. Identification of effective drugs among repurposing FDA-approved drugs is a rapid, efficient and low-cost strategy against SARS-CoV-2. One of those drugs is ivermectin. Ivermectin is an antihelminthic agent that previously showed in vitro effects against a SARS-CoV-2 isolate (Australia/VI01/2020 isolate) with an IC50 of around 2 µM. We evaluated the in vitro activity of ivermectin on Vero E6 cells infected with 30 clinically isolated SARS-CoV-2 strains belonging to 14 different variants, and particularly 17 strains belonging to six variants of concern (VOC) (variants related to Wuhan, alpha, beta, gamma, delta and omicron). The in vitro activity of ivermectin was compared to those of chloroquine and remdesivir. Unlike chloroquine (EC50 from 4.3 ± 2.5 to 29.3 ± 5.2 µM) or remdesivir (EC50 from 0.4 ± 0.3 to 25.2 ± 9.4 µM), ivermectin showed a relatively homogeneous in vitro activity against SARS-CoV-2 regardless of the strains or variants (EC50 from 5.1 ± 0.5 to 6.7 ± 0.4 µM), except for one omicron strain (EC50 = 1.3 ± 0.5 µM). Ivermectin (No. EC50 = 219, mean EC50 = 5.7 ± 1.0 µM) was, overall, more potent in vitro than chloroquine (No. EC50 = 214, mean EC50 = 16.1 ± 9.0 µM) (p = 1.3 × 10-34) and remdesivir (No. EC50 = 201, mean EC50 = 11.9 ± 10.0 µM) (p = 1.6 × 10-13). These results should be interpreted with caution regarding the potential use of ivermectin in SARS-CoV-2-infected patients: it is difficult to translate in vitro study results into actual clinical treatment in patients.
Collapse
Affiliation(s)
- Océane Delandre
- Unité Parasitologie et Entomologie, Département Microbiologie et Maladies Infectieuses, Institut de Recherche Biomédicale des Armées, 13005 Marseille, France; (O.D.); (M.G.); (I.F.); (J.M.)
- Aix Marseille University, IRD, SSA, AP-HM, VITROME, 13005 Marseille, France;
- IHU Méditerranée Infection, 13005 Marseille, France; (P.J.); (M.L.B.); (M.B.); (C.B.); (A.L.); (B.L.S.)
| | - Mathieu Gendrot
- Unité Parasitologie et Entomologie, Département Microbiologie et Maladies Infectieuses, Institut de Recherche Biomédicale des Armées, 13005 Marseille, France; (O.D.); (M.G.); (I.F.); (J.M.)
- Aix Marseille University, IRD, SSA, AP-HM, VITROME, 13005 Marseille, France;
- IHU Méditerranée Infection, 13005 Marseille, France; (P.J.); (M.L.B.); (M.B.); (C.B.); (A.L.); (B.L.S.)
| | - Priscilla Jardot
- IHU Méditerranée Infection, 13005 Marseille, France; (P.J.); (M.L.B.); (M.B.); (C.B.); (A.L.); (B.L.S.)
- Aix Marseille University, IRD, AP-HM, MEPHI, 13005 Marseille, France
| | - Marion Le Bideau
- IHU Méditerranée Infection, 13005 Marseille, France; (P.J.); (M.L.B.); (M.B.); (C.B.); (A.L.); (B.L.S.)
- Aix Marseille University, IRD, AP-HM, MEPHI, 13005 Marseille, France
| | - Manon Boxberger
- IHU Méditerranée Infection, 13005 Marseille, France; (P.J.); (M.L.B.); (M.B.); (C.B.); (A.L.); (B.L.S.)
- Aix Marseille University, IRD, AP-HM, MEPHI, 13005 Marseille, France
| | - Céline Boschi
- IHU Méditerranée Infection, 13005 Marseille, France; (P.J.); (M.L.B.); (M.B.); (C.B.); (A.L.); (B.L.S.)
- Aix Marseille University, IRD, AP-HM, MEPHI, 13005 Marseille, France
| | - Isabelle Fonta
- Unité Parasitologie et Entomologie, Département Microbiologie et Maladies Infectieuses, Institut de Recherche Biomédicale des Armées, 13005 Marseille, France; (O.D.); (M.G.); (I.F.); (J.M.)
- Aix Marseille University, IRD, SSA, AP-HM, VITROME, 13005 Marseille, France;
- IHU Méditerranée Infection, 13005 Marseille, France; (P.J.); (M.L.B.); (M.B.); (C.B.); (A.L.); (B.L.S.)
- Centre National de Référence du Paludisme, 13005 Marseille, France
| | - Joel Mosnier
- Unité Parasitologie et Entomologie, Département Microbiologie et Maladies Infectieuses, Institut de Recherche Biomédicale des Armées, 13005 Marseille, France; (O.D.); (M.G.); (I.F.); (J.M.)
- Aix Marseille University, IRD, SSA, AP-HM, VITROME, 13005 Marseille, France;
- IHU Méditerranée Infection, 13005 Marseille, France; (P.J.); (M.L.B.); (M.B.); (C.B.); (A.L.); (B.L.S.)
- Centre National de Référence du Paludisme, 13005 Marseille, France
| | - Sébastien Hutter
- Aix Marseille University, IRD, SSA, AP-HM, VITROME, 13005 Marseille, France;
- IHU Méditerranée Infection, 13005 Marseille, France; (P.J.); (M.L.B.); (M.B.); (C.B.); (A.L.); (B.L.S.)
| | - Anthony Levasseur
- IHU Méditerranée Infection, 13005 Marseille, France; (P.J.); (M.L.B.); (M.B.); (C.B.); (A.L.); (B.L.S.)
- Aix Marseille University, IRD, AP-HM, MEPHI, 13005 Marseille, France
| | - Bernard La Scola
- IHU Méditerranée Infection, 13005 Marseille, France; (P.J.); (M.L.B.); (M.B.); (C.B.); (A.L.); (B.L.S.)
- Aix Marseille University, IRD, AP-HM, MEPHI, 13005 Marseille, France
| | - Bruno Pradines
- Unité Parasitologie et Entomologie, Département Microbiologie et Maladies Infectieuses, Institut de Recherche Biomédicale des Armées, 13005 Marseille, France; (O.D.); (M.G.); (I.F.); (J.M.)
- Aix Marseille University, IRD, SSA, AP-HM, VITROME, 13005 Marseille, France;
- IHU Méditerranée Infection, 13005 Marseille, France; (P.J.); (M.L.B.); (M.B.); (C.B.); (A.L.); (B.L.S.)
- Centre National de Référence du Paludisme, 13005 Marseille, France
| |
Collapse
|