1
|
Dai D, Li D, Zhang C. Unraveling Nanomaterials in Biomimetic Mineralization of Dental Hard Tissue: Focusing on Advantages, Mechanisms, and Prospects. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2405763. [PMID: 39206945 PMCID: PMC11516058 DOI: 10.1002/advs.202405763] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2024] [Revised: 07/31/2024] [Indexed: 09/04/2024]
Abstract
The demineralization of dental hard tissue imposes considerable health and economic burdens worldwide, but an optimal method that can repair both the chemical composition and complex structures has not been developed. The continuous development of nanotechnology has created new opportunities for the regeneration and repair of dental hard tissue. Increasingly studies have reported that nanomaterials (NMs) can induce and regulate the biomimetic mineralization of dental hard tissue, but few studies have examined how they are involved in the different stages, let alone the relevant mechanisms of action. Besides their nanoscale dimensions and excellent designability, NMs play a corresponding role in the function of the raw materials for mineralization, mineralized microenvironment, mineralization guidance, and the function of mineralized products. This review comprehensively summarizes the advantages of NMs and examines the specific mineralization mechanisms. Design strategies to promote regeneration and repair are summarized according to the application purpose of NMs in the oral cavity, and limitations and development directions in dental hard tissue remineralization are proposed. This review can provide a theoretical basis to understand the interaction between NMs and the remineralization of dental hard tissue, thereby optimizing design strategy, rational development, and clinical application of NMs in the field of remineralization.
Collapse
Affiliation(s)
- Danni Dai
- Stomatological HospitalSchool of StomatologySouthern Medical UniversityGuangzhou510280China
| | - Dan Li
- Stomatological HospitalSchool of StomatologySouthern Medical UniversityGuangzhou510280China
| | - Chao Zhang
- Stomatological HospitalSchool of StomatologySouthern Medical UniversityGuangzhou510280China
| |
Collapse
|
2
|
Zeng H, Wang J, Qiu Z, Tan Y, Huang Y, Luo J, Shu W. Natural High Strontium Mineral Water Might Reduce Liver Protein Synthesis: A Non-Targeted Metabolomics Study in Rats. Biol Trace Elem Res 2024:10.1007/s12011-024-04379-y. [PMID: 39320572 DOI: 10.1007/s12011-024-04379-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Accepted: 09/12/2024] [Indexed: 09/26/2024]
Abstract
Strontium-rich mineral water (strontium > 0.20 mg/L) is the second largest type of mineral water on commercial drinking water market. Exposure to high levels of strontium through drinking water or soil may interfere with calcium metabolism and increase the risk of cardiovascular and skeletal diseases, but no in-depth mechanism has been disclosed to date. Data on liver metabolic alterations in rats resulted from drinking natural high strontium mineral water (strontium 26.06 mg/L, SrHW) or tap water (filtered by activated carbon, strontium 0.49 mg/L, TW) for 3 months were obtained and analyzed with non-targeted metabolomics strategy. Compared with rats drinking TW, those drinking SrHW showed a significant change in 36 liver metabolites. Among them, 33 liver metabolites (including 14 amino acids, 6 carbohydrates, 4 short-chain fatty acids, 4 organic acids, 2 phenylpropanoic acids, 1 fatty acid, 1 peptide, and 1 bile acid) were down-regulated, and 3 (hydroxyphenyllactic acid, propionylcarnitine and S-adenosine homocysteine) were up-regulated. Metabolic pathway analysis showed that aminoacyl-tRNA biosynthesis, valine, leucine and isoleucine biosynthesis, and alanine, aspartate and glutamate metabolism are most impacted. Furthermore, the serum prealbumin content also significantly decreased in rats drinking SrHW. Therefore, changes in liver metabolites and serum protein levels suggested that high concentration of strontium in water was associated with decreased liver protein synthesis; changes in liver metabolites suggested that high strontium was associated with decreased lipid levels. In conclusion, high strontium in water may exert a negative effect on protein synthesis, and further study on the dose-response relationship is necessary.
Collapse
Affiliation(s)
- Hui Zeng
- Department of Environmental Hygiene, College of Preventive Medicine, Army Medical University (Third Military Medical University), Chongqing, 400038, China
| | - Jia Wang
- Department of Medical English, College of Basic Medicine, Army Medical University (Third Military Medical University), Chongqing, China
| | - Zhiqun Qiu
- Department of Environmental Hygiene, College of Preventive Medicine, Army Medical University (Third Military Medical University), Chongqing, 400038, China
| | - Yao Tan
- Department of Environmental Hygiene, College of Preventive Medicine, Army Medical University (Third Military Medical University), Chongqing, 400038, China
| | - Yujing Huang
- Department of Environmental Hygiene, College of Preventive Medicine, Army Medical University (Third Military Medical University), Chongqing, 400038, China
| | - Jiaohua Luo
- Department of Environmental Hygiene, College of Preventive Medicine, Army Medical University (Third Military Medical University), Chongqing, 400038, China.
| | - Weiqun Shu
- Department of Environmental Hygiene, College of Preventive Medicine, Army Medical University (Third Military Medical University), Chongqing, 400038, China.
| |
Collapse
|
3
|
Abdalla MM, Sayed O, Lung CYK, Rajasekar V, Yiu CKY. Applications of Bioactive Strontium Compounds in Dentistry. J Funct Biomater 2024; 15:216. [PMID: 39194654 DOI: 10.3390/jfb15080216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Revised: 07/26/2024] [Accepted: 07/30/2024] [Indexed: 08/29/2024] Open
Abstract
Divalent cations have captured the interest of researchers in biomedical and dental fields due to their beneficial effects on bone formation. These metallic elements are similar to trace elements found in human bone. Strontium is a divalent cation commonly found in various biomaterials. Since strontium has a radius similar to calcium, it has been used to replace calcium in many calcium-containing biomaterials. Strontium has the ability to inhibit bone resorption and increase bone deposition, making it useful in the treatment of osteoporosis. Strontium has also been used as a radiopacifier in dentistry and has been incorporated into a variety of dental materials to improve their radiopacity. Furthermore, strontium has been shown to improve the antimicrobial and mechanical properties of dental materials, promote enamel remineralization, alleviate dentin hypersensitivity, and enhance dentin regeneration. The objective of this review is to provide a comprehensive review of the applications of strontium in dentistry.
Collapse
Affiliation(s)
- Mohamed Mahmoud Abdalla
- Paediatric Dentistry, Faculty of Dentistry, The University of Hong Kong, Hong Kong, China
- Dental Biomaterials, Faculty of Dental Medicine, Al-Azhar University, Cairo 11651, Egypt
| | - Osama Sayed
- Faculty of Dentistry, Fayoum University, Faiyum 63514, Egypt
| | - Christie Ying Kei Lung
- Restorative Dental Sciences, Faculty of Dentistry, The University of Hong Kong, Hong Kong, China
| | - Vidhyashree Rajasekar
- Paediatric Dentistry, Faculty of Dentistry, The University of Hong Kong, Hong Kong, China
| | - Cynthia Kar Yung Yiu
- Paediatric Dentistry, Faculty of Dentistry, The University of Hong Kong, Hong Kong, China
| |
Collapse
|
4
|
Shearer A, Molinaro M, Montazerian M, Sly JJ, Miola M, Baino F, Mauro JC. The unexplored role of alkali and alkaline earth elements (ALAEs) on the structure, processing, and biological effects of bioactive glasses. Biomater Sci 2024; 12:2521-2560. [PMID: 38530228 DOI: 10.1039/d3bm01338c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/27/2024]
Abstract
Bioactive glass has been employed in several medical applications since its inception in 1969. The compositions of these materials have been investigated extensively with emphasis on glass network formers, therapeutic transition metals, and glass network modifiers. Through these experiments, several commercial and experimental compositions have been developed with varying chemical durability, induced physiological responses, and hydroxyapatite forming abilities. In many of these studies, the concentrations of each alkali and alkaline earth element have been altered to monitor changes in structure and biological response. This review aims to discuss the impact of each alkali and alkaline earth element on the structure, processing, and biological effects of bioactive glass. We explore critical questions regarding these elements from both a glass science and biological perspective. Should elements with little biological impact be included? Are alkali free bioactive glasses more promising for greater biological responses? Does this mixed alkali effect show increased degradation rates and should it be employed for optimized dissolution? Each of these questions along with others are evaluated comprehensively and discussed in the final section where guidance for compositional design is provided.
Collapse
Affiliation(s)
- Adam Shearer
- Department of Materials Science and Engineering, The Pennsylvania State University, University Park, Pennsylvania, USA.
| | - Matthew Molinaro
- Department of Engineering Science and Mechanics, The Pennsylvania State University, University Park, Pennsylvania, USA
| | - Maziar Montazerian
- Department of Materials Science and Engineering, The Pennsylvania State University, University Park, Pennsylvania, USA.
| | - Jessica J Sly
- Department of Materials Science and Engineering, The Pennsylvania State University, University Park, Pennsylvania, USA.
| | - Marta Miola
- Institute of Materials Physics and Engineering, Applied Science and Technology Department, Politecnico di Torino, Torino, Italy.
| | - Francesco Baino
- Institute of Materials Physics and Engineering, Applied Science and Technology Department, Politecnico di Torino, Torino, Italy.
| | - John C Mauro
- Department of Materials Science and Engineering, The Pennsylvania State University, University Park, Pennsylvania, USA.
| |
Collapse
|
5
|
Gang H, Zuo J, Jia Z, Liu H, Xia W, Xu S, Shen Y, Li Y. Trimester-Specific Urinary Strontium Concentrations during Pregnancy and Longitudinally Assessed Fetal Growth: Findings from a Prospective Cohort. J Nutr 2024; 154:224-232. [PMID: 37984738 DOI: 10.1016/j.tjnut.2023.11.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 11/04/2023] [Accepted: 11/17/2023] [Indexed: 11/22/2023] Open
Abstract
BACKGROUND Studies have claimed that strontium (Sr) is associated with fetal growth, but the research evidence is insufficient. OBJECTIVES Our study aimed to evaluate associations of trimester-specific urinary Sr concentrations with fetal growth parameters and birth size indicators. METHODS In this prospective cohort, 9015 urine samples (first trimester: 3561, 2nd trimester: 2756, 3rd trimester: 2698) from 3810 mothers were measured for urinary Sr levels using inductively coupled plasma mass spectrometry (ICP-MS) and adjusted to urine specific gravity. We calculated standard deviation scores (SD-scores) for ultrasound-measured fetal growth parameters (head circumference, abdominal circumference, femur length, and estimated fetal weight) at 16, 24, 31, and 37 wk of gestation and birth size indicators (birth weight, birth length, and Ponderal index). Generalized linear models and generalized estimating equations models were used. Models were adjusted for potential covariates (gestational age, maternal age, body mass index, parity, passive smoking during pregnancy, education, folic acid supplements use, physical activity, maternal and paternal height, and infant sex). RESULTS Positive associations of naturally logarithm-transformed Sr concentrations with fetal growth parameters and birth size indicators were observed. With each doubling increase in the urinary ln-Sr level in all 3 trimesters resulting in a percent change in SD-scores fetal growth parameters at 24, 31, and 37 wk of gestation and birth size indicators, 5.09%-8.23% in femur length, 7.57%-11.53% in estimated fetal weight, 6.56%-10.42% in abdominal circumference, 6.25% in head circumference, 5.15%-7.85% in birth weight, and 5.71%-9.39% in birth length, respectively. Most of the above statistical results could only be observed in male fetuses. CONCLUSIONS Our findings suggest a potential association between Sr concentration and increased fetal growth, but these results and underlying mechanisms need further confirmation and clarification.
Collapse
Affiliation(s)
- Huiqing Gang
- Institute of Maternal and Child Health, Wuhan Children's Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; Key Laboratory of Environment and Health (HUST), Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (Incubation), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Jingwen Zuo
- Key Laboratory of Environment and Health (HUST), Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (Incubation), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Zhenxian Jia
- Key Laboratory of Environment and Health (HUST), Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (Incubation), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Hongxiu Liu
- Key Laboratory of Environment and Health (HUST), Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (Incubation), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Wei Xia
- Key Laboratory of Environment and Health (HUST), Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (Incubation), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Shunqing Xu
- Key Laboratory of Environment and Health (HUST), Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (Incubation), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Ye Shen
- Institute of Maternal and Child Health, Wuhan Children's Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; Department of Gynaecology, Wuhan Children's Hospital (Wuhan Maternal and Child Healthcare Hospital), Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| | - Yuanyuan Li
- Institute of Maternal and Child Health, Wuhan Children's Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; Key Laboratory of Environment and Health (HUST), Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (Incubation), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China.
| |
Collapse
|
6
|
Nabil Sulyiman S, El-Rashidy AA, El Moshy S, Abbas MMS, Waly G. Nano eggshell-based slurry as a direct pulp-capping material: In vitro characterization and histopathological assessment in an experimental animal model. Int Endod J 2023; 56:1129-1146. [PMID: 37358385 DOI: 10.1111/iej.13949] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Revised: 06/21/2023] [Accepted: 06/22/2023] [Indexed: 06/27/2023]
Abstract
AIM Pulp vitality is essential for tooth integrity. Following pulp exposure, choosing a suitable pulp-capping material is crucial to maintain pulp vitality. However, the reparative dentine bridge created by calcium hydroxide (Ca(OH)2 ) is generally porous and incomplete. The aim of the current study is to assess the in vitro and in vivo bioactivities of nano eggshell-based slurry (NES), using NES as a direct pulp-capping material, compared with Ca(OH)2 in rabbit animal model. METHODOLOGY Nano eggshell powder (NE) was characterized for particle morphology, chemical composition and ion release. In vitro bioactivity was tested by immersion in simulated body fluid (SBF) for 7 days. For histopathological evaluation, 36 adult New Zealand rabbits (72 pulp exposures) were divided into nine groups (n = 8) according to the pulp-capping material (NES, Ca(OH)2 and no capping as negative control group) and the animals were sacrificed after 7, 14 or 28 days. The pulps of the two lower central incisors were exposed and then directly capped by Ca(OH)2 or NES or left untreated. The cavities were then sealed with glass ionomer cement. Teeth were collected for histopathological evaluation using an optical microscope. Pulp haemorrhage, inflammation, fibrosis and calcific bridge formation were assessed. Results were statistically analysed using anova and Tukey's tests. RESULTS Nano eggshell particles were spherical with a 20 nm diameter and were composed mainly of calcite. Statistical analysis showed that there was a significant increase in the release of all investigated ions between days 1 and 28, except for copper. NES group showed a significantly higher release of all elements as compared to Ca(OH)2 . Environmental scanning electron microscope micrographs of NES incubated for 7 days in SBF showed the formation of HAp with a Ca/P ratio (1.686). For histopathological evaluation, the difference between groups was statistically significant. At day 28, 75% of the pulps of the Ca(OH)2 group showed mild calcific bridge in comparison with 100% moderate calcific bridge in the NES group. The NES group showed significantly less inflammation at days 7 and 28, and higher fibrosis at day 7 compared with Ca(OH)2 . CONCLUSIONS Nano eggshell-based slurry represents a promising novel direct pulp-capping material with favourable pulp tissue response.
Collapse
Affiliation(s)
| | - Aiah A El-Rashidy
- Biomaterials Department, Faculty of Dentistry, Cairo university, Cairo, Egypt
| | - Sara El Moshy
- Oral Biology Department, Faculty of Dentistry, Cairo university, Cairo, Egypt
| | - Marwa M S Abbas
- Oral Biology Department, Faculty of Dentistry, Cairo university, Cairo, Egypt
| | - Gihan Waly
- Biomaterials Department, Faculty of Dentistry, Cairo university, Cairo, Egypt
| |
Collapse
|
7
|
Rajendran R, Antony DP, Paul P, Ashik P M, M A, Hameed H. A Systematic Review on the Effect of Strontium-Doped Nanohydroxyapatite in Remineralizing Early Caries Lesion. Cureus 2023; 15:e44176. [PMID: 37753022 PMCID: PMC10519711 DOI: 10.7759/cureus.44176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Accepted: 08/24/2023] [Indexed: 09/28/2023] Open
Abstract
The aim of this study is to review the potential of strontium-doped nanohydroxyapatite (SrnHAP) as a biomaterial for remineralizing early carious lesions. Publications from 2012 to 2022 were included based on the patient/population, intervention, comparison, and outcomes (PICO) framework, focusing on demineralized enamel treated with strontium-doped nanohydroxyapatite compared to other remineralizing agents, with the primary outcome being remineralization capacity. Electronic databases, namely, PubMed, Cochrane Library, and Google Scholar, were explored from March 31, 2023, to April 10, 2023. Only English language studies were included, while certain research types and studies on bovine teeth were excluded. Bias was assessed using the Cochrane methodology. Five studies were synthesized, all using extracted human maxillary premolars. Four studies focused on remineralizing enamel, while one study focused on remineralizing dentin. Among these studies, comparisons were made between different strontium concentrations and various remineralizing agents such as nanohydroxyapatite (nHAP), Acclaim, casein phosphopeptide-amorphous calcium phosphate (CPP-ACP), and NovaMin. X-ray diffraction analysis was used to examine hydroxyapatite formation, while scanning electron microscopy (SEM) and transmission electron microscopy (TEM) were used for characterization. Additionally, one study evaluated the mechanical properties of partially demineralized dentin specimens. This study was registered in the PROSPERO under the ID CRD42023397413 and completed in accordance with the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines.
Collapse
Affiliation(s)
- Ratheesh Rajendran
- Department of Conservative Dentistry and Endodontics, Saveetha College of Dental Sciences and Research, Chennai, IND
| | - Delphine P Antony
- Department of Conservative Dentistry and Endodontics, Saveetha Dental College, Saveetha Institute of Medical and Technical Sciences, Chennai, IND
| | - Princy Paul
- Department of Conservative Dentistry and Endodontics, Kunhitharuvai Memorial Charitable Trust (KMCT) Dental College, Kozhikode, IND
| | - Mohammed Ashik P
- Department of Conservative Dentistry and Endodontics, Kunhitharuvai Memorial Charitable Trust (KMCT) Dental College, Kozhikode, IND
| | - Ameena M
- Department of Oral Pathology and Microbiology, Azeezia College of Dental Sciences and Research, Kollam, IND
| | - Hana Hameed
- Department of Conservative Dentistry and Endodontics, Krishnadevaraya College of Dental Sciences, Bengaluru, IND
| |
Collapse
|
8
|
Shimojima M, Hiraishi N, Akabane K, Nassar M, Otsuki M, Shimada Y. Effect of an In-Office Bleaching Agent with Surface Pre-Reacted Glass-Ionomer Filler on the Enamel Surface: A In-Vitro Study. J Funct Biomater 2023; 14:386. [PMID: 37504881 PMCID: PMC10381306 DOI: 10.3390/jfb14070386] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Revised: 07/08/2023] [Accepted: 07/18/2023] [Indexed: 07/29/2023] Open
Abstract
In-office bleaching with high concentrations of hydrogen peroxide (H2O2) agents causes undesirable alterations in the enamel. Surface pre-reacted glass-ionomer (S-PRG) filler is a functional material known for its acid-neutralizing and demineralization-inhibition properties. This study evaluates the effect of S-PRG filler incorporation in H2O2-based bleaching on the enamel surface. Bovine enamel surfaces were bleached using a bleaching paste formulated with a liquid (35% H2O2) and a powder containing 5% or 10% S-PRG filler. The surface roughness and the Vickers microhardness of the treated enamel surfaces were evaluated. The enamel surfaces were observed under a scanning electron microscope (SEM) and analyzed using energy dispersive X-ray (EDX) technology. The surfaces were challenged by citric acid and observed by SEM. The specimens bleached with the paste containing the S-PRG filler showed lower enamel surface roughness and higher microhardness values than did those bleached with the plain paste (0% S-PRG filler); meanwhile, there were no significant differences between the 5% or 10% S-PRG filler groups. The S-PRG filler groups showed enamel surface morphologies similar to those of the non-bleached enamel, according to SEM observation, and EDX analysis detected the presence of fluoride and strontium ions. The S-PRG filler groups showed a higher resistance to erosion. The S-PRG filler mitigated the detrimental effects of bleaching agents on the enamel surface and provided resistance to erosion.
Collapse
Affiliation(s)
- Mika Shimojima
- Department of Cariology and Operative Dentistry, Tokyo Medical and Dental University, Tokyo 113-8549, Japan
| | - Noriko Hiraishi
- Department of Cariology and Operative Dentistry, Tokyo Medical and Dental University, Tokyo 113-8549, Japan
| | - Kodai Akabane
- Department of Cariology and Operative Dentistry, Tokyo Medical and Dental University, Tokyo 113-8549, Japan
| | - Mohannad Nassar
- Department of Preventive and Restorative Dentistry, College of Dental Medicine, University of Sharjah, Sharjah P.O. Box 27272, United Arab Emirates
| | - Masayuki Otsuki
- Department of Cariology and Operative Dentistry, Tokyo Medical and Dental University, Tokyo 113-8549, Japan
| | - Yasushi Shimada
- Department of Cariology and Operative Dentistry, Tokyo Medical and Dental University, Tokyo 113-8549, Japan
| |
Collapse
|
9
|
Liu Z, Sun T, Chen Y, Mo X, Kao H, Chen HJ. Integrated Multiplex Sensing Clear Aligner for In Situ Monitoring of Dental Enamel Demineralization. ACS Biomater Sci Eng 2023. [PMID: 37115517 DOI: 10.1021/acsbiomaterials.3c00029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/29/2023]
Abstract
Clear aligners have become one of the most important tools in orthodontic treatment. However, over a lengthy period of orthodontic treatment, enamel demineralization or even dental caries could be susceptible for occurrence. Therefore, early diagnosis of enamel demineralization has been widely investigated. Nevertheless, for reasons including bulky monitoring equipment and complexity of operation, few techniques reported to date possessed clinical utility. The combination of flexible electronics and electrochemical sensing technology presented a promising strategy. Herein, an integrated multiplex sensing clear aligner (IMSCA) system, including a clear aligner with a multiplex sensor array patch, was developed for in situ monitoring of Ca2+, pH, and PO43- in the oral environment to provide a foundation for early diagnosis of enamel demineralization. The IMSCA exhibited a broad linear response range, great selectivity, temporal stability, reproducibility, and biological safety. Results of enamel demineralization simulating experiments and human permanent tooth demineralization experiments validate the capability of the IMSCA to indicate the occurrence of enamel demineralization. All results ultimately point to the promising clinical utility of the IMSCA, which facilitates the quantitative characterization of enamel demineralization in complex oral environments. This study provides a novel strategy in the early diagnosis of enamel demineralization.
Collapse
Affiliation(s)
- Ziqi Liu
- School of Electronics and Information Technology, State Key Laboratory of Optoelectronic Materials and Technologies, Sun Yat-Sen University, Guangzhou 510006, China
| | - Tiancheng Sun
- School of Electronics and Information Technology, State Key Laboratory of Optoelectronic Materials and Technologies, Sun Yat-Sen University, Guangzhou 510006, China
| | - Yiyin Chen
- Department of Orthodontics, State Key Laboratory of Oral Diseases & National Clinical Center for Oral Research, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Xiaoyi Mo
- Division of Spine Surgery, Department of Orthopedics, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Hsiaohan Kao
- Xiamen Chang Gung Hospital, Xiamen 361021, China
| | - Hui-Jiuan Chen
- School of Electronics and Information Technology, State Key Laboratory of Optoelectronic Materials and Technologies, Sun Yat-Sen University, Guangzhou 510006, China
| |
Collapse
|
10
|
Dotta TC, Hayann L, de Padua Andrade Almeida L, Nogueira LFB, Arnez MM, Castelo R, Cassiano AFB, Faria G, Martelli-Tosi M, Bottini M, Ciancaglini P, Catirse ABCEB, Ramos AP. Strontium Carbonate and Strontium-Substituted Calcium Carbonate Nanoparticles Form Protective Deposits on Dentin Surface and Enhance Human Dental Pulp Stem Cells Mineralization. J Funct Biomater 2022; 13:jfb13040250. [PMID: 36412891 PMCID: PMC9680411 DOI: 10.3390/jfb13040250] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Revised: 11/09/2022] [Accepted: 11/14/2022] [Indexed: 11/19/2022] Open
Abstract
Strontium acetate is applied for dental hypersensitivity treatment; however, the use of strontium carbonates for this purpose has not been described. The use of Sr-carbonate nanoparticles takes advantage of both the benefits of strontium on dentin mineralization and the abrasive properties of carbonates. Here in, we aimed to synthesize strontium carbonate and strontium-substituted calcium carbonate nanoparticles and test them as potential compounds in active dentifrices for treating dental hypersensitivity. For this, SrCO3, Sr0.5Ca0.5CO3, and CaCO3 nanoparticles were precipitated using Na2CO3, SrCl2, and/or CaCl2 as precursors. Their morphology and crystallinity were evaluated by electron microscopy (SEM) and X-ray diffraction, respectively. The nanoparticles were added to a poly (vinyl alcohol) gel and used to brush dentin surfaces isolated from human third molars. Dentin chemical composition before and after brushing was investigated by infrared spectroscopy (FTIR) and X-ray dispersive energy spectroscopy. Dentin tubule morphology, obliteration, and resistance of the coatings to acid attack were investigated by SEM and EDS. The cytotoxicity and ability of the particles to trigger the mineralization of hDPSCs in vitro were studied. Dentin brushed with the nanoparticles was coated by a mineral layer that was also able to penetrate the tubules, while CaCO3 remained as individual particles on the surface. FTIR bands related to carbonate groups were intensified after brushing with either SrCO3 or Sr0.5Ca0.5CO3. The shift of the phosphate-related FTIR band to a lower wavenumber indicated that strontium replaced calcium on the dentin structure after treatment. The coating promoted by SrCO3 or Sr0.5Ca0.5CO3 resisted the acid attack, while calcium and phosphorus were removed from the top of the dentin surface. The nanoparticles were not toxic to hDPSCs and elicited mineralization of the cells, as revealed by increased mineral nodule formation and enhanced expression of COL1, ALP, and RUNX2. Adding Sr0.5Ca0.5CO3 as an active ingredient in dentifrices formulations may be commercially advantageous since this compound combines the well-known abrasive properties of calcium carbonate with the mineralization ability of strontium, while the final cost remains between the cost of CaCO3 and SrCO3. The novel Sr0.5Ca0.5CO3 nanoparticles might emerge as an alternative for the treatment of dental hypersensitivity.
Collapse
Affiliation(s)
- Tatiane Cristina Dotta
- Department of Dental Materials and Prosthodontics, Ribeirão Preto School of Dentistry, University of São Paulo, Ribeirão Preto 14040-904, Brazil
| | - Larwsk Hayann
- Department of Chemistry, Ribeirão Preto Faculty of Philosophy, Sciences and Letters at Ribeirão Preto, University of São Paulo, Ribeirão Preto 14040-901, Brazil
| | - Leonardo de Padua Andrade Almeida
- Department of Dental Materials and Prosthodontics, Ribeirão Preto School of Dentistry, University of São Paulo, Ribeirão Preto 14040-904, Brazil
| | - Lucas Fabrício B. Nogueira
- Department of Chemistry, Ribeirão Preto Faculty of Philosophy, Sciences and Letters at Ribeirão Preto, University of São Paulo, Ribeirão Preto 14040-901, Brazil
| | - Mayara M. Arnez
- Department of Dental Materials and Prosthodontics, Ribeirão Preto School of Dentistry, University of São Paulo, Ribeirão Preto 14040-904, Brazil
| | - Raisa Castelo
- Department of Dental Materials and Prosthodontics, Ribeirão Preto School of Dentistry, University of São Paulo, Ribeirão Preto 14040-904, Brazil
| | - Ana Flávia B. Cassiano
- Department of Restorative Dentistry, School of Dentistry at Araraquara, Sao Paulo State University (UNESP), Araraquara 14801-385, Brazil
| | - Gisele Faria
- Department of Restorative Dentistry, School of Dentistry at Araraquara, Sao Paulo State University (UNESP), Araraquara 14801-385, Brazil
| | - Milena Martelli-Tosi
- Department of Chemistry, Ribeirão Preto Faculty of Philosophy, Sciences and Letters at Ribeirão Preto, University of São Paulo, Ribeirão Preto 14040-901, Brazil
- Department of Food Engineering, Faculty of Animal Science and Food Engineering, University of São Paulo, Pirassununga 13645-900, Brazil
| | - Massimo Bottini
- Department of Experimental Medicine, University of Rome Tor Vergata, 00133 Rome, Italy
| | - Pietro Ciancaglini
- Department of Chemistry, Ribeirão Preto Faculty of Philosophy, Sciences and Letters at Ribeirão Preto, University of São Paulo, Ribeirão Preto 14040-901, Brazil
| | - Alma B. C. E. B. Catirse
- Department of Dental Materials and Prosthodontics, Ribeirão Preto School of Dentistry, University of São Paulo, Ribeirão Preto 14040-904, Brazil
| | - Ana Paula Ramos
- Department of Chemistry, Ribeirão Preto Faculty of Philosophy, Sciences and Letters at Ribeirão Preto, University of São Paulo, Ribeirão Preto 14040-901, Brazil
- Correspondence:
| |
Collapse
|
11
|
Wang H, Wang J, Cao Y, Chen J, Deng Q, Chen Y, Qiu Y, Lin L, Shi B, Liu F, He B, Chen F. Combined Exposure to 33 Trace Elements and Associations With the Risk of Oral Cancer: A Large-Scale Case-Control Study. Front Nutr 2022; 9:913357. [PMID: 35873417 PMCID: PMC9301066 DOI: 10.3389/fnut.2022.913357] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Accepted: 06/16/2022] [Indexed: 11/28/2022] Open
Abstract
BACKGROUND Trace elements exist widely in the natural environment and mostly enter the human body through drinking water or various types of food, which has raised increasing health concerns. Exposure to a single or a few trace elements has been previously reported to be associated with oral cancer risk, but studies on other elements and combined effects are limited. This study aimed to comprehensively evaluate the independent and joint effects of 33 trace elements on oral cancer risk. METHODS The concentrations of 33 trace elements from the serum samples of 463 cases and 1,343 controls were measured using inductively coupled plasma mass spectrometry (ICP-MS). Propensity score matching was used to minimize the impact of potential confounders. Conditional logistic regression was utilized to evaluate the association of each element individually with oral cancer risk. Quantile g-computation and Bayesian kernel machine regression (BKMR) models were used to assess the joint effect of the overall element mixture and interactions. RESULTS In single-element models, essential elements (Cu, Se, Zn, Sr, and Cr) and non-essential elements (As, Li, Th, Ce, Ti, and Sc) showed significant association with oral cancer risk. In multiple-element models, a quartile increase in overall non-essential elements was observed for a significant inverse association with oral cancer risk (β = -3.36, 95% CI: -4.22 to -2.51). The BKMR analysis revealed a potential beneficial joint effect of essential metals on the risk of oral cancer. Among these, higher levels of serum Zn and V exhibited an adverse effect, while serum Sr, Se, and Cu displayed favorable effects when all other essential elements were fixed at 25th or 50th percentiles. Of note, Se performed complex interactions among essential metals. As for non-essential elements, there were greater effect estimates for serum Th, Li, and Y when all other elements were held at the 75th percentile. CONCLUSION This study provides supportive evidence that the overall mixture effect of essential and non-essential elements might be associated with oral cancer risk, especially for serum Zn, V, Cu, Sr, Se, Th, Li, and Y. Extensive prospective studies and other experiments are warranted to confirm our findings.
Collapse
Affiliation(s)
- Huiying Wang
- Department of Epidemiology and Health Statistics, Fujian Provincial Key Laboratory of Environment Factors and Cancer, School of Public Health, Fujian Medical University, Fuzhou, China
- Key Laboratory of Ministry of Education for Gastrointestinal Cancer, Fujian Medical University, Fuzhou, China
| | - Jing Wang
- Laboratory Center, School of Public Health, The Major Subject of Environment and Health of Fujian Key Universities, Fujian Medical University, Fuzhou, China
| | - Yujie Cao
- Department of Stomatology, The First Affiliated Hospital of Fujian Medical University, Fuzhou, China
| | - Jinfa Chen
- Laboratory Center, School of Public Health, The Major Subject of Environment and Health of Fujian Key Universities, Fujian Medical University, Fuzhou, China
| | - Qingrong Deng
- Department of Epidemiology and Health Statistics, Fujian Provincial Key Laboratory of Environment Factors and Cancer, School of Public Health, Fujian Medical University, Fuzhou, China
- Key Laboratory of Ministry of Education for Gastrointestinal Cancer, Fujian Medical University, Fuzhou, China
| | - Yujia Chen
- Department of Epidemiology and Health Statistics, Fujian Provincial Key Laboratory of Environment Factors and Cancer, School of Public Health, Fujian Medical University, Fuzhou, China
- Key Laboratory of Ministry of Education for Gastrointestinal Cancer, Fujian Medical University, Fuzhou, China
| | - Yu Qiu
- Department of Oral and Maxillofacial Surgery, The First Affiliated Hospital of Fujian Medical University, Fuzhou, China
| | - Lisong Lin
- Department of Oral and Maxillofacial Surgery, The First Affiliated Hospital of Fujian Medical University, Fuzhou, China
| | - Bin Shi
- Department of Oral and Maxillofacial Surgery, The First Affiliated Hospital of Fujian Medical University, Fuzhou, China
| | - Fengqiong Liu
- Department of Epidemiology and Health Statistics, Fujian Provincial Key Laboratory of Environment Factors and Cancer, School of Public Health, Fujian Medical University, Fuzhou, China
- Key Laboratory of Ministry of Education for Gastrointestinal Cancer, Fujian Medical University, Fuzhou, China
| | - Baochang He
- Department of Epidemiology and Health Statistics, Fujian Provincial Key Laboratory of Environment Factors and Cancer, School of Public Health, Fujian Medical University, Fuzhou, China
- Key Laboratory of Ministry of Education for Gastrointestinal Cancer, Fujian Medical University, Fuzhou, China
- Department of Oral and Maxillofacial Surgery, The First Affiliated Hospital of Fujian Medical University, Fuzhou, China
| | - Fa Chen
- Department of Epidemiology and Health Statistics, Fujian Provincial Key Laboratory of Environment Factors and Cancer, School of Public Health, Fujian Medical University, Fuzhou, China
- Key Laboratory of Ministry of Education for Gastrointestinal Cancer, Fujian Medical University, Fuzhou, China
| |
Collapse
|
12
|
Dai LL, Mei ML, Chu CH, Zhao IS, Lo ECM. Effect of Strontium-Doped Bioactive Glass on Preventing Formation of Demineralized Lesion. MATERIALS 2021; 14:ma14164645. [PMID: 34443169 PMCID: PMC8399109 DOI: 10.3390/ma14164645] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Revised: 08/09/2021] [Accepted: 08/10/2021] [Indexed: 01/01/2023]
Abstract
This study investigated the effect of strontium-doped bioactive glass (SBAG) on the formation of dental demineralized lesions. Materials and methods: The study materials were 48 sound human tooth specimens with both dentine and enamel, divided equally into four groups: Group 1 (SBAG), Group 2 (SBAG+Fluoride), Group 3 (Fluoride), and Group 4 (Water as control). After 14 days of pH cycling, the surface morphology of the specimens was observed by scanning electron microscopy. Crystal characteristics of the precipitates were assessed by X-ray diffraction (XRD). Micro-CT was used to measure the mineral loss and the depths of the demineralized lesions formed. Results: Exposure of collagen in inter-tubular areas in dentine was seen in the control group (Group 4) but not in Groups 1 to 3. In Group 2, there were obvious granular particles on the surface of the dentine. XRD revealed precipitation of apatites on the surface of the tooth specimens in Groups 1 to 3. The mean lesion depths in dentine were 81.80 μm, 30.68 μm, 39.04 μm, and 146.36 μm in Groups 1 to 4, respectively (p < 0.001). Lesions in enamel were only found in the control group. The mean mineral loss values in the dentine lesions were 1.25 g/cm3, 0.88 g/cm3, 0.87 g/cm3, and 1.65 g/cm3, in Groups 1 to 4, respectively (p < 0.001). Conclusion: Strontium-doped bioactive glass has a preventive effect on the formation of demineralized lesions in enamel and dentine.
Collapse
Affiliation(s)
- Lin-Lu Dai
- Faculty of Dentistry, The University of Hong Kong, Hong Kong; (L.-L.D.); (C.-H.C.)
| | - May-Lei Mei
- Faculty of Dentistry, University of Otago, Dunedin 9016, New Zealand;
| | - Chun-Hung Chu
- Faculty of Dentistry, The University of Hong Kong, Hong Kong; (L.-L.D.); (C.-H.C.)
| | - Irene Shuping Zhao
- School of Dentistry, Shenzhen University Health Science Center, Shenzhen 518000, China;
| | - Edward Chin-Man Lo
- Faculty of Dentistry, The University of Hong Kong, Hong Kong; (L.-L.D.); (C.-H.C.)
- Correspondence: ; Tel.: +852-2859-0292
| |
Collapse
|
13
|
Liu XC, Skibsted LH. Strontium increasing calcium accessibility from calcium citrate. Food Chem 2021; 367:130674. [PMID: 34343801 DOI: 10.1016/j.foodchem.2021.130674] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Revised: 06/04/2021] [Accepted: 07/20/2021] [Indexed: 11/30/2022]
Abstract
Strontium chloride added to aqueous suspensions of metastable calcium citrate tetrahydrate increased calcium ion activity measured electrochemically without transition of metastable tetrahydrate to stable calcium citrate hexahydrate as shown by DSC. Calcium activity increase was explained by lower solubility of strontium citrate pentahydrate formed (8.9 × 10-4 M at 25 °C) increasing with temperature compared to calcium citrate tetrahydrate (1.6 × 10-3 M) decreasing with temperature. Strontium binding to citrate was found endothermic, ΔH0 = 45 kJ∙mol-1 at 25 °C, while calcium binding shows variation from ΔH0 = 94 kJ∙mol-1 at 10 °C becoming exothermic above physiological temperature with ΔH0 = -9 kJ∙mol-1 at 45 °C as determined from temperature and concentration variation in electric conductivity. These differences in solution thermodynamics and pH effect on complex formation between calcium and strontium citrate are discussed in relation to biomineralization.
Collapse
Affiliation(s)
- Xiao-Chen Liu
- Department of Food Science, University of Copenhagen, Rolighedsvej 26, DK-1958 Frederiksberg C, Denmark.
| | - Leif H Skibsted
- Department of Food Science, University of Copenhagen, Rolighedsvej 26, DK-1958 Frederiksberg C, Denmark.
| |
Collapse
|
14
|
Peng H, Yao F, Xiong S, Wu Z, Niu G, Lu T. Strontium in public drinking water and associated public health risks in Chinese cities. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:23048-23059. [PMID: 33432414 PMCID: PMC8113192 DOI: 10.1007/s11356-021-12378-y] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Accepted: 01/04/2021] [Indexed: 05/09/2023]
Abstract
Due to the fact that strontium (Sr) is not involved in the scope of supervision of drinking water in China, the Sr concentration in public drinking water and its related health risks have been neglected for a long time. In this research, public drinking water samples were collected from 314 cities across the country to reveal the concentration and spatial distribution of Sr in public drinking water. In addition, the Monte Carlo method (a statistical simulation method) was applied to evaluate the Sr intake from drinking water and human health risks among different age groups and different regions. As shown in the results, the Sr was in the concentration range of 0.005-3.11 mg/L with a mean value of 0.360 mg/L. There were significant differences in the Sr concentration in different regions; in general, it was high in the north and low in the south. The Sr intakes of infants, children, teens, and adults from drinking water were 0.273, 0.503, 0.633, and 0.784 mg/day, respectively. There was a significant positive correlation between Sr concentration in drinking water and bone mineral density (BMD) in the elderly. Especially, the correlation coefficients (r) between Sr concentration and the BMD of the elderly whose age fell in the range of 60-70 years were 0.692 (male) and 0.483 (female). In addition, the Sr concentration in drinking water was positively correlated with the incidence of children's rickets (r = 0.411), while the Ca/Br ratio was negatively correlated with the incidence of children's rickets (r = - 0.410). According to the health risk assessment, among people of different ages, infants' hazard index (HI) value was the highest. The mean value and 95th percentile value were 0.066 and 0.247. Non-carcinogenic risk of Sr through drinking water among different people in different regions was less than 1, which meant no significant damage to human health. This study is the first time to systematically investigate Sr in public drinking water across the whole country. More importantly, the conclusions can be applied to risk control and management of public drinking water.
Collapse
Affiliation(s)
- Hao Peng
- School of Environmental Studies, China University of Geoscience, Wuhan, 430078, China
| | - Feifei Yao
- Qingdao Haier Smart Technology R&D Co., Ltd, Qingdao, 266101, China
| | - Shuang Xiong
- Wuhan Zondy W&R Environmental Technology Co., Ltd, Wuhan, 430078, China
| | - Zhonghua Wu
- Qingdao Haier Smart Technology R&D Co., Ltd, Qingdao, 266101, China
| | - Geng Niu
- Wuhan Zondy W&R Environmental Technology Co., Ltd, Wuhan, 430078, China
| | - Taotao Lu
- Department of Hydrology, University of Bayreuth, 95440, Bayreuth, Germany.
| |
Collapse
|
15
|
Effect of Diabetes on Rotary Instrumentation of Dentin. J Endod 2021; 47:1301-1307. [DOI: 10.1016/j.joen.2021.03.019] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Revised: 03/16/2021] [Accepted: 03/31/2021] [Indexed: 12/18/2022]
|
16
|
Manno SHC, Manno FAM, Tian L, Khan MS, Ahmed I, Liu Y, Li VWT, Xu S, Xie F, Hung TF, Ma V, Cho W, Aldape B, Cheng SH, Lau C. Spectroscopic and microscopic examination of teeth exposed to green tea at different temperatures. PLoS One 2020; 15:e0244542. [PMID: 33378409 PMCID: PMC7773275 DOI: 10.1371/journal.pone.0244542] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2020] [Accepted: 12/14/2020] [Indexed: 11/18/2022] Open
Abstract
Tea is a popular beverage consumed at different temperatures. The effect of tea on teeth at different temperatures has not been studied previously. The present study used an in vitro green tea immersed tooth model at different tea temperatures (hot and cold) compared to an in vivo tea administration model allowing rats to drink tea over the course of a week. The elements present in tea leaves were identified by Inductively Coupled Plasma Mass Spectrometry (ICP-MS) and compared to the elements in teeth (enamel surface) using Laser-Induced Breakdown Spectroscopy (LIBS). Here, LIBS demonstrated in vivo and in vitro green tea treatments resulted in a significant increase in the mineral elements found in enamel. For the in vitro assessment, elements in enamel varied based on cold-tea and hot-tea treatment; however, hot water reduced the elements in enamel. Atomic force microscopy found the in vivo tea group had a higher roughness average (RA) compared with the in vivo water group. Cold tea and hot tea in vitro groups demonstrated lower RA than in vitro water controls. Scanning electron microscopy found hot water induced cracks more than 1.3μm in enamel while cold tea and hot tea promoted the adhering of extrinsic matter to teeth. Overall, teeth treated to high temperature lost the mineral phase leading to demineralization. Our results indicate that green tea protects enamel, but its protective action in dental structures is enhanced at cold temperature.
Collapse
Affiliation(s)
- Sinai H. C. Manno
- Department of Biomedical Sciences, City University of Hong Kong, Hong Kong SAR, China
- State Key Laboratory of Marine Pollution (SKLMP), City University of Hong Kong, Hong Kong SAR, China
- Department of Physics, City University of Hong Kong, Hong Kong SAR, China
| | - Francis A. M. Manno
- Department of Biomedical Sciences, City University of Hong Kong, Hong Kong SAR, China
- Department of Physics, City University of Hong Kong, Hong Kong SAR, China
| | - Li Tian
- Department of Biomedical Sciences, City University of Hong Kong, Hong Kong SAR, China
- State Key Laboratory of Marine Pollution (SKLMP), City University of Hong Kong, Hong Kong SAR, China
| | - Muhammad S. Khan
- Department of Physics, City University of Hong Kong, Hong Kong SAR, China
| | - Irfan Ahmed
- Department of Physics, City University of Hong Kong, Hong Kong SAR, China
- Department of Electrical Engineering, Sukkur IBA University, Sukkur, Sindh, Pakistan
| | - Yuanchao Liu
- Department of Physics, City University of Hong Kong, Hong Kong SAR, China
| | - Vincent W. T. Li
- Department of Biomedical Sciences, City University of Hong Kong, Hong Kong SAR, China
| | - Shisan Xu
- Department of Biomedical Sciences, City University of Hong Kong, Hong Kong SAR, China
| | - Fangjing Xie
- Department of Biomedical Sciences, City University of Hong Kong, Hong Kong SAR, China
| | - Tak Fu Hung
- Department of Materials Science and Engineering, City University of Hong Kong, Hong Kong, Hong Kong SAR, China
| | - Victor Ma
- Department of Clinical Oncology, Queen Elizabeth Hospital, Hong Kong, Hong Kong SAR, China
| | - William Cho
- Department of Clinical Oncology, Queen Elizabeth Hospital, Hong Kong, Hong Kong SAR, China
| | - Beatriz Aldape
- División de Estudios de Posgrado e Investigación, Facultad de Odontología, Portal de la Universidad Nacional Autónoma de México, México, D.F., México
| | - Shuk Han Cheng
- Department of Biomedical Sciences, City University of Hong Kong, Hong Kong SAR, China
- State Key Laboratory of Marine Pollution (SKLMP), City University of Hong Kong, Hong Kong SAR, China
- Department of Materials Science and Engineering, City University of Hong Kong, Hong Kong, Hong Kong SAR, China
| | - Condon Lau
- Department of Biomedical Sciences, City University of Hong Kong, Hong Kong SAR, China
| |
Collapse
|
17
|
Örtengren U, Lehrkinder A, Safarloo A, Axelsson J, Lingström P. Opportunities for caries prevention using an ion-releasing coating material: a randomised clinical study. Odontology 2020; 109:358-367. [PMID: 32888115 PMCID: PMC7954742 DOI: 10.1007/s10266-020-00551-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Accepted: 08/23/2020] [Indexed: 11/30/2022]
Abstract
Ion-releasing materials (containing fluoride and boron, for example) have shown caries-preventive effects in vitro. The purpose of the present study was to investigate the impact of multi-ion-releasing coating material on pH stabilisation, plaque accumulation and the bacterial composition of dental plaque during a time period of 90 days. The null hypothesis tested here was that the evaluated material would not show any differences in pH stabilisation, plaque accumulation or bacterial composition compared with control material. The study was carried out as a double-blind, split-mouth, randomised, controlled clinical trial in 28 volunteers. Over the evaluation period (days 4, 30, 60 and 90), pH measurements, plaque index and plaque sampling for bacterial analyses were conducted in a calibrated, standardized manner. The study received ethical permission and was carried out in accordance with the Helsinki Declaration. A significant difference was observed, with less plaque accumulation over time in the subjects in whom the ion-releasing material was applied in comparison to the non-active group. No significant difference was evident in terms of either pH stabilisation or plaque levels of mutans streptococci. The null hypothesis relating to plaque accumulation was rejected, with a lower plaque index shown for the test group up to 60–90 days. No adverse effects during the observation period were observed. Since the studied cohort was healthy from a caries perspective, more clinical studies are needed to further evaluate the caries-prevention potential of the ion-releasing material in other patient groups.
Collapse
Affiliation(s)
- Ulf Örtengren
- Department of Cariology, Institute of Odontology, Sahlgrenska Academy, University of Gothenburg, Box 450, 405 30, Göteborg, Sweden. .,Department for Clinical Odontology, Faculty of Health Sciences, The Arctic University of Norway, Tromsø, Norway.
| | - Anna Lehrkinder
- Department of Cariology, Institute of Odontology, Sahlgrenska Academy, University of Gothenburg, Box 450, 405 30, Göteborg, Sweden
| | - Aram Safarloo
- Department of Cariology, Institute of Odontology, Sahlgrenska Academy, University of Gothenburg, Box 450, 405 30, Göteborg, Sweden
| | - Jasmine Axelsson
- Department of Cariology, Institute of Odontology, Sahlgrenska Academy, University of Gothenburg, Box 450, 405 30, Göteborg, Sweden
| | - Peter Lingström
- Department of Cariology, Institute of Odontology, Sahlgrenska Academy, University of Gothenburg, Box 450, 405 30, Göteborg, Sweden
| |
Collapse
|